691 research outputs found

    An Antenna Solution for Glacial Environmental Sensor Networks

    Get PDF
    Antennas used in glacial environmental sensor networks and reported in the last two decades have been reviewed. A link budget framework for designing such antenna systems is presented and used to design an antenna system for deployment at the Thwaites glacier, Antarctica. Design details of two left hand circularly polarized cross dipole antennas, one for englacial sensor probes and the other for supraglacial surface receivers are presented. The probe antenna is a 3D bent cross dipole that fits within a borehole of 8 cm diameter while providing a 1 dBic gain at 433 MHz in ice. The surface receiver antenna is a planar printed antenna providing a gain of 6.1 dBic with a quarter wave reflector. Both antennas provide 3 dB beamwidths of at least 50° in the xz and yz vertical planes catering for transmitter-receiver antenna misalignments caused by extended deployments. The antennas displayed good circular polarization and polarization purity traits. The 3 dB axial ratio bandwidths of both the antennas remained 54.9 %. The total efficiencies of the bent cross dipole and the surface receiver antennas were noted as 69.7 % and 86.9 % respectively. Lastly, the 433 MHz band has been validated for achieving englacial communication ranges of up to 2300 metres

    An Improved RHCP Archimedean Spiral Antenna for Glacial Environmental Sensor Networks

    Get PDF
    An improved version of a printed RHCP Archimedean spiral antenna for glacial environmental sensor networks is presented. Two changes have been made to the previous design. Firstly, the microstrip connections between the balun and the antenna arms have been tapered. Secondly, the antenna arms have been rounded at the edges towards the antenna boundary. These measures have improved the antenna performance in the following ways. Firstly, the signal quality has been improved by minimizing reflections and signal distortion. Secondly, the microstrip tapering between the balun and the antenna arms has increased the radiating surface area in the region. Resultantly, significant improvements in the antenna’s reflection coefficient, gain, total efficiency, and axial ratio have been observed

    A LHCP Printed Cross Dipole Antenna for Glacial Environmental Sensor Networks

    Get PDF
    A left hand circularly polarized antenna called SPD-PCD (Symmetric phase difference - printed cross dipole) has been designed, developed, and experimentally validated for use with glacier telemetry surface receivers. The antenna is portable and easy to fabricate. It provides a gain of 5.9 dBic at 433 MHz, a 57 % -10 dB fractional bandwidth, and a -3 dB angular width of 60° in the vertical planes. The antenna offers good circular polarization with the axial ratio remaining below 1.1 dB between 330-580 MHz. The co-polarization is at least 10 dB stronger than cross-polarization within a beam width of 80° in both the vertical planes. This work also validates the 433 MHz band is suitable to achieve communication ranges of up to 2300 m through ice

    A wireless sensor network system deployment for detecting stick slip motion in glaciers

    No full text
    The behaviour of glaciers is an area in which only limited research has been carried out due to the difficulties of monitoring sub-glacial movements. The authors believe that this can be addressed by the deployment of a wireless sensor network, consisting of heterogeneous sensors to instrument this activity. By deploying a sensor network measurements can be taken for a longer period than would otherwise be possible. The initial designs for this sensor network are presented along with details of some of the challenges posed by the project

    Springbrook: Challenges in developing a long-term, rainforest wireless sensor network

    Get PDF
    We describe the design, development and learnings from the first phase of a rainforest ecological sensor network at Springbrook - part of a World Heritage precinct in South East Queensland. This first phase is part of a major initiative to develop the capability to provide reliable, long-term monitoring of rainforest ecosystems. We focus in particular on our analysis around energy and communication challenges which need to be solved to allow for reliable, long-term deployments in these types of environments

    Data centric modeling of environmental sensor networks

    Get PDF
    Meteorological and hydrological sensors deployed over several hundred kilometers of geographical area comprise an environmental sensor network. Large amounts of data need to be processed in minimal time and transmitted over the available low speed and low bandwidth links. This paper describes algorithms for optimal data collection and data fusion. An inductive model using exponential back-off policy is used to collect optimal amount of data. The data measurements for temperature, pH and specific conductance collected for a year from the sensors deployed at Lake Lewisville are used to test the inductive model. Energy savings of 90% are achieved even with 1% of degree of tolerance. The problem of data fusion is addressed by the introduction of a novel concept of a super-sensor, based on self-organization and collaboration among sensors. A histogram application is described that uses recursive doubling for global collaboration between sensors. The performance of the networked super-sensor in comparison to a centralized polling approach is analyzed for optimality on two different geographical areas. ©2004 IEEE

    Information Agents for Pervasive Sensor Networks

    No full text
    In this paper, we describe an information agent, that resides on a mobile computer or personal digital assistant (PDA), that can autonomously acquire sensor readings from pervasive sensor networks (deciding when and which sensor to acquire readings from at any time). Moreover, it can perform a range of information processing tasks including modelling the accuracy of the sensor readings, predicting the value of missing sensor readings, and predicting how the monitored environmental parameters will evolve into the future. Our motivating scenario is the need to provide situational awareness support to first responders at the scene of a large scale incident, and we describe how we use an iterative formulation of a multi-output Gaussian process to build a probabilistic model of the environmental parameters being measured by local sensors, and the correlations and delays that exist between them. We validate our approach using data collected from a network of weather sensors located on the south coast of England

    Gumsense - a high power low power sensor node

    No full text
    The development of increasingly complex algorithms for sensor networks has made it difficult for researchers to implement their design on typical sensor network hardware with limited computing resources. The demands on hardware can also mean that small microcontrollers are not the ideal platform for testing computationally and/or memory intensive algorithms. Researchers would also like access to high level programming languages and a wider range of open source libraries. To address this problem we have designed and implemented an architecture, Gumsense which combines a low power micro-controller (8MHz MSP430) with a powerful processor (100-600MHz ARM) on a Gumstix board running Linux. This Open Embedded OS supports a wide variety of programming languages, package management and development tools. A similar hybrid approach was also used in the LEAP platform. The microcontroller wakes up frequently to manage tasks such as activating sensors and gathering data. The intended use-case is to power-up the ARM board and storage only during the brief periods it is needed, for example performing computation or communication

    A Review of the Enviro-Net Project

    Get PDF
    Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis.Comment: v2: 29 pages, 5 figures, reflects changes addressing reviewers' comments v1: 38 pages, 8 figure
    corecore