3,736 research outputs found

    The District Energy-Efficient Retrofitting of Torrelago (Laguna de Duero – Spain)

    Get PDF
    The urban growth is estimated to reach up the 66 % by 2050 and consequently the need of resources within the cities will increase significantly. This, combined with the 40 % of energy consumption and 36 % of CO2 emissions of the building sector, makes necessary to accelerate the transition towards more sustainable cities. The CITyFiED project contributes to this transition, aiming to develop an innovative and holistic methodological approach for energy-efficient district renovation and deliver three large scale demonstration cases in the cities of Lund (Sweden), Laguna de Duero (Spain) and Soma (Turkey). CITyFiED methodology consists of several phases that ease the decision-making tasks towards the district renovation, considering the energy efficiency as the main pillar and local authorities as clients. For the case of Torrelago district (Spain) the intervention consists of a set of energy conservative measures including the facąde retrofitting of 143.025 m2 of living space in 31 twelve-storey buildings; the renovation of the district heating network with a new biomass thermal plant; the integration of renewable energy sources, including a micro-cogeneration system, and the installation of individual smart meters. After the renovation action, one-year monitoring campaign is ongoing. The CITyFiED monitoring platform will collect information from the energy systems and deliver environmental, technical, economic and social key performance indicators by March 2019. At the end of the project the achievement of the predefined goals will be verified: Up to 36 % of energy saving and 3,429 tons-CO2/yr emissions saving covering the 59,4 % of the energy consumption with renewable sources.The research and results presented in this paper evolve from activities related to the CITyFiED project, which has received funding from the European Commission under the Grant Agreement no. 609129. This article is the result of cooperative research work of many experts from various countries and we would like to gratefully acknowledge the rest of the CITyFiED partners

    Identification of the Right Environmental KPIs for Manufacturing Operations:Towards a Continuous Sustainability Framework

    Get PDF
    Sustainable manufacturing has grown into a major subject of discussion between individuals and organisations around the world. This is attributed to the recognition of the urgency in advancing sustainable manufacturing due to the diminishing non-renewable resources, stricter regulations related to environmental impacts and the increasing consumer preference for environmental-friendly products. However, manufacturing companies have been confronted with a decision on which KPIs to select for appraising their processes, and how they should interpret these KPIs in transforming their processes towards a sustainable future. This paper presents a structured framework for the manufacturing industries to identify the right environmental KPIs. It includes building a database for environmental KPIs, categorising, ranking, and composing a final KPI set for specified targets. The developed method allows for the selection of the most effective KPI in representing a specified target as well as identifying unmonitored environmental aspects. The framework has been corroborated by subject matter and industry experts in which the potential benefits have been verified

    Distance education possibilities analysis for integrated innovative projects

    Get PDF
    The materials presented the possibilities development of solar and wind power plants, project development for all those who are engaged in the power studies and baseness. In this, phase of work in NTU "KPI" – studies the possibility of increasing the economic efficiency of alternative energy sources. A review of the literature and the necessary articles written on the subject: аs technologies and economies develop and become more complex, energy needs increase greatly; types and methods of alternative energy, as well as the possibility of calculating the basic set of main economic indicators are classified; identified possible areas of work in obtaining the necessary infor-mation and results. Energy is a fundamental input for economic systems. Current economic activity depends overwhelmingly on fossil fuels including oil, coal, and natural gas. These fuels are non-renewable. Renewable sources such as hydroelectric, wind, and solar power currently provide less than 10% of global energy. In just a few decide solar and wind power has developed from alternative energy sources to a new fast growing industrial branch. The history of industrial civilization is a history of energy transitions. In less developed, agrarian economies, people's basic need for food calories is provided through simple forms of agriculture, which is essentially a method of capturing solar energy for human use. As economies develop and become more complex, energy needs increase greatly

    On-Farm Benchmarking: How to Do It and How to Do It Better

    Get PDF
    Benchmarking is the practice of establishing the relative performance of a business or enterprise against an appropriate standard, generally industry standards derived from a survey of farms. The Policy Commission into the Future of Farming and Food (2002) highlighted a need to spread and improve benchmarking on farms. The requirements of effective benchmarking are illustrated in a ten step framework. The ten steps illustrate the range of expertise and resources a manager requires before being able to justify allocating resources to benchmarking. A comparison of alternative farm surveys and methodologies used to collect, analyse and report industry standards illustrates the difficulties farmers can have in identifying appropriate, robust and accurate industry standards. It is concluded that there needs to be a thorough rationalisation of farm surveys and agreement on methodologies to make benchmarking more effective and more efficient.benchmarking, comparative analysis, processes, industry standards, methodology, techniques, Farm Management,

    Inspection and maintenance KPIs to support decision making integrated into Digital Twin tool

    Get PDF
    In the H2020 European project ASHVIN “Assistants for Healthy, Safe, and Productive Virtual Construction Design, Operation & Maintenance using a Digital Twin”, a set of Key Performance Indicators (KPIs) and Performance Indicators (PIs) to plan and control productive, resource efficient, and safe maintenance are being developed for transport infrastructure. This paper is presenting PIs and KPIs for the assessment and monitoring of the following aspects: Productivity, Resource Efficiency, Cost, Health & Safety during the operational life cycle stage, which is mainly focusing on the inspection and maintenance planning. Quantifiable and measurable PIs and KPIs are proposed and applied on two demonstration projects, highway bridge in Spain and airport runway in Croatia, as part of transportation infrastructure. Proposed PIs and KPIs are integrated into digital twins of the analyzed assets and into decision making tools for risk based maintenance planning. This paper presents the overview of the proposed digital PIs and KPIs applied on two demonstration projects and the integration into decision support tools for efficient and sustainable maintenance planning

    Inspection and maintenance KPIs to support decision making integrated into Digital Twin tool

    Get PDF
    In the H2020 European project ASHVIN “Assistants for Healthy, Safe, and Productive Virtual Construction Design, Operation & Maintenance using a Digital Twin”, a set of Key Performance Indicators (KPIs) and Performance Indicators (PIs) to plan and control productive, resource efficient, and safe maintenance are being developed for transport infrastructure. This paper is presenting PIs and KPIs for the assessment and monitoring of the following aspects: Productivity, Resource Efficiency, Cost, Health & Safety during the operational life cycle stage, which is mainly focusing on the inspection and maintenance planning. Quantifiable and measurable PIs and KPIs are proposed and applied on two demonstration projects, highway bridge in Spain and airport runway in Croatia, as part of transportation infrastructure. Proposed PIs and KPIs are integrated into digital twins of the analyzed assets and into decision making tools for risk based maintenance planning. This paper presents the overview of the proposed digital PIs and KPIs applied on two demonstration projects and the integration into decision support tools for efficient and sustainable maintenance planning.Postprint (published version

    MULTI–CRITERIA HOME ENERGY MANAGEMENT SYSTEM SELECTION FOR THE SMART GRID SUPPORT

    Get PDF
    Home energy management systems (HEMS) are increasingly used as a tool that creates optimal consumption and production schedules for Smart Grids, by considering objectives such as energy costs, environmental concerns, load profiles, and consumer comfort. Multiple criteria selection of optimal HEMS seems to be superior to the traditional cost benefit assessment in measuring intangibles and soft impacts, introducing qualitative aspects in the analysis. This paper proposes an algorithm for the selection of optimal HEMS, using the fuzzy AHP method. This methodological framework provides a multi-criteria approach for estimating the benefits and costs of different HEMS within the Smart Grid uncertain environment. This method allows the decision makers to incorporate unquantifiable, asymmetrical, incomplete, non-obtainable information and partially ignorant facts into a decision model. Four criteria and eleven performances for the optimal solution selection are defined. The method is successful in the evaluation of alternatives in the presence of heterogeneous criteria and uncertain environment. The methodology is illustrated on the choice of HEMS from the power distribution company perspective. It is concluded that the evaluation of weighting factors has a decisive character in the choice of the final one of several alternative variants. Fuzzification of input values can also contribute to a more flexible view of the given problem and analysis of sensitivity to various input parameters

    IEA ECES Annex 31 Final Report - Energy Storage with Energy Efficient Buildings and Districts: Optimization and Automation

    Get PDF
    At present, the energy requirements in buildings are majorly met from non-renewable sources where the contribution of renewable sources is still in its initial stage. Meeting the peak energy demand by non-renewable energy sources is highly expensive for the utility companies and it critically influences the environment through GHG emissions. In addition, renewable energy sources are inherently intermittent in nature. Therefore, to make both renewable and nonrenewable energy sources more efficient in building/district applications, they should be integrated with energy storage systems. Nevertheless, determination of the optimal operation and integration of energy storage with buildings/districts are not straightforward. The real strength of integrating energy storage technologies with buildings/districts is stalled by the high computational demand (or even lack of) tools and optimization techniques. Annex 31 aims to resolve this gap by critically addressing the challenges in integrating energy storage systems in buildings/districts from the perspective of design, development of simplified modeling tools and optimization techniques
    corecore