717 research outputs found

    Eikonal Fields for Refractive Novel-View Synthesis

    Get PDF

    Efficient image-based rendering

    Get PDF
    Recent advancements in real-time ray tracing and deep learning have significantly enhanced the realism of computer-generated images. However, conventional 3D computer graphics (CG) can still be time-consuming and resource-intensive, particularly when creating photo-realistic simulations of complex or animated scenes. Image-based rendering (IBR) has emerged as an alternative approach that utilizes pre-captured images from the real world to generate realistic images in real-time, eliminating the need for extensive modeling. Although IBR has its advantages, it faces challenges in providing the same level of control over scene attributes as traditional CG pipelines and accurately reproducing complex scenes and objects with different materials, such as transparent objects. This thesis endeavors to address these issues by harnessing the power of deep learning and incorporating the fundamental principles of graphics and physical-based rendering. It offers an efficient solution that enables interactive manipulation of real-world dynamic scenes captured from sparse views, lighting positions, and times, as well as a physically-based approach that facilitates accurate reproduction of the view dependency effect resulting from the interaction between transparent objects and their surrounding environment. Additionally, this thesis develops a visibility metric that can identify artifacts in the reconstructed IBR images without observing the reference image, thereby contributing to the design of an effective IBR acquisition pipeline. Lastly, a perception-driven rendering technique is developed to provide high-fidelity visual content in virtual reality displays while retaining computational efficiency.Jüngste Fortschritte im Bereich Echtzeit-Raytracing und Deep Learning haben den Realismus computergenerierter Bilder erheblich verbessert. Konventionelle 3DComputergrafik (CG) kann jedoch nach wie vor zeit- und ressourcenintensiv sein, insbesondere bei der Erstellung fotorealistischer Simulationen von komplexen oder animierten Szenen. Das bildbasierte Rendering (IBR) hat sich als alternativer Ansatz herauskristallisiert, bei dem vorab aufgenommene Bilder aus der realen Welt verwendet werden, um realistische Bilder in Echtzeit zu erzeugen, so dass keine umfangreiche Modellierung erforderlich ist. Obwohl IBR seine Vorteile hat, ist es eine Herausforderung, das gleiche Maß an Kontrolle über Szenenattribute zu bieten wie traditionelle CG-Pipelines und komplexe Szenen und Objekte mit unterschiedlichen Materialien, wie z.B. transparente Objekte, akkurat wiederzugeben. In dieser Arbeit wird versucht, diese Probleme zu lösen, indem die Möglichkeiten des Deep Learning genutzt und die grundlegenden Prinzipien der Grafik und des physikalisch basierten Renderings einbezogen werden. Sie bietet eine effiziente Lösung, die eine interaktive Manipulation von dynamischen Szenen aus der realen Welt ermöglicht, die aus spärlichen Ansichten, Beleuchtungspositionen und Zeiten erfasst wurden, sowie einen physikalisch basierten Ansatz, der eine genaue Reproduktion des Effekts der Sichtabhängigkeit ermöglicht, der sich aus der Interaktion zwischen transparenten Objekten und ihrer Umgebung ergibt. Darüber hinaus wird in dieser Arbeit eine Sichtbarkeitsmetrik entwickelt, mit der Artefakte in den rekonstruierten IBR-Bildern identifiziert werden können, ohne das Referenzbild zu betrachten, und die somit zur Entwicklung einer effektiven IBR-Erfassungspipeline beiträgt. Schließlich wird ein wahrnehmungsgesteuertes Rendering-Verfahren entwickelt, um visuelle Inhalte in Virtual-Reality-Displays mit hoherWiedergabetreue zu liefern und gleichzeitig die Rechenleistung zu erhalten

    Towards Real-time Mixed Reality Matting In Natural Scenes

    Get PDF
    In Mixed Reality scenarios, background replacement is a common way to immerse a user in a synthetic environment. Properly identifying the background pixels in an image or video is a dif- ficult problem known as matting. Proper alpha mattes usually come from human guidance, special hardware setups, or color dependent algorithms. This is a consequence of the under-constrained nature of the per pixel alpha blending equation. In constant color matting, research identifies and replaces a background that is a single color, known as the chroma key color. Unfortunately, the algorithms force a controlled physical environment and favor constant, uniform lighting. More generic approaches, such as natural image matting, have made progress finding alpha matte solutions in environments with naturally occurring backgrounds. However, even for the quicker algorithms, the generation of trimaps, indicating regions of known foreground and background pixels, normally requires human interaction or offline computation. This research addresses ways to automatically solve an alpha matte for an image in realtime, and by extension a video, using a consumer level GPU. It does so even in the context of noisy environments that result in less reliable constraints than found in controlled settings. To attack these challenges, we are particularly interested in automatically generating trimaps from depth buffers for dynamic scenes so that algorithms requiring more dense constraints may be used. The resulting computation is parallelizable so that it may run on a GPU and should work for natural images as well as chroma key backgrounds. Extra input may be required, but when this occurs, commodity hardware available in most Mixed Reality setups should be able to provide the input. This allows us to provide real-time alpha mattes for Mixed Reality scenarios that take place in relatively controlled environments. As a consequence, while monochromatic backdrops (such as green screens or retro-reflective material) aid the algorithm’s accuracy, they are not an explicit requirement. iii Finally we explore a sub-image based approach to parallelize an existing hierarchical approach on high resolution imagery. We show that locality can be exploited to significantly reduce the memory and compute requirements of previously necessary when computing alpha mattes of high resolution images. We achieve this using a parallelizable scheme that is both independent of the matting algorithm and image features. Combined, these research topics provide a basis for Mixed Reality scenarios using real-time natural image matting on high definition video sources

    Explorable images for visualizing volume data

    Full text link

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Motion-Aware Gradient Domain Video Composition

    Full text link

    Layered Neural Rendering for Retiming People in Video

    Full text link
    We present a method for retiming people in an ordinary, natural video---manipulating and editing the time in which different motions of individuals in the video occur. We can temporally align different motions, change the speed of certain actions (speeding up/slowing down, or entirely "freezing" people), or "erase" selected people from the video altogether. We achieve these effects computationally via a dedicated learning-based layered video representation, where each frame in the video is decomposed into separate RGBA layers, representing the appearance of different people in the video. A key property of our model is that it not only disentangles the direct motions of each person in the input video, but also correlates each person automatically with the scene changes they generate---e.g., shadows, reflections, and motion of loose clothing. The layers can be individually retimed and recombined into a new video, allowing us to achieve realistic, high-quality renderings of retiming effects for real-world videos depicting complex actions and involving multiple individuals, including dancing, trampoline jumping, or group running.Comment: To appear in SIGGRAPH Asia 2020. Project webpage: https://retiming.github.io
    corecore