2,063 research outputs found

    Survey on wavelet based image fusion techniques

    Get PDF
    Image fusion is the process of combining multiple images into a single image without distortion or loss of information. The techniques related to image fusion are broadly classified as spatial and transform domain methods. In which, the transform domain based wavelet fusion techniques are widely used in different domains like medical, space and military for the fusion of multimodality or multi-focus images. In this paper, an overview of different wavelet transform based methods and its applications for image fusion are discussed and analysed

    Best Basis for Joint Representation: the Median of Marginal Best Bases for Low Cost Information Exchanges in Distributed Signal Representation

    Get PDF
    International audienceThe paper addresses the selection of the best representations for distributed and/or dependent signals. Given an indexed tree structured library of bases and a semi-collaborative distribution scheme associated with minimum information exchange (emission and reception of one single index corresponding to a marginal best basis), the paper proposes the median basis computed on a set of best marginal bases for joint representation or fusion of distributed/dependent signals. The paper provides algorithms for computing this median basis with respect to standard tree structured libraries of bases such as wavelet packet bases or cosine trees. These algorithms are effective when an additive information cost is under consideration. Experimental results performed on distributed signal compression confirms worthwhile properties for the median of marginal best bases with respect to the ideal best joint basis, the latter being underdetermined in practice, except when a full collaboration scheme is under consideration

    OFCS: Optimized Framework of Compressive Sensing for Medical Images in Bottleneck Network Condition

    Get PDF
    Compressive sensing is one of teh cost effective solution towards performing compression of heavier form of signals. We reviewed the existing research contribution towards compressive sensing to find that existing system doesnt offer any form of optimization for which reason the signal are superiorly compressed but at the cost of enough resources. Therefore, we introduce a framework that optimizes the performance of the compressive sensing by introducing 4 sequential algorithms for performing Random Sampling, Lossless Compression for region-of-interest, Compressive Sensing using transform-based scheme, and optimization. The contribution of proposed paper is a good balance between computational efficiency and quality of reconstructed medical image when transmitted over network with low channel capacity. The study outcome shows that proposed system offers maximum signal quality and lower algorithm processing time in contrast to existing compression techniuqes on medical images

    Metrics to evaluate compressions algorithms for RAW SAR data

    Get PDF
    Modern synthetic aperture radar (SAR) systems have size, weight, power and cost (SWAP-C) limitations since platforms are becoming smaller, while SAR operating modes are becoming more complex. Due to the computational complexity of the SAR processing required for modern SAR systems, performing the processing on board the platform is not a feasible option. Thus, SAR systems are producing an ever-increasing volume of data that needs to be transmitted to a ground station for processing. Compression algorithms are utilised to reduce the data volume of the raw data. However, these algorithms can cause degradation and losses that may degrade the effectiveness of the SAR mission. This study addresses the lack of standardised quantitative performance metrics to objectively quantify the performance of SAR data-compression algorithms. Therefore, metrics were established in two different domains, namely the data domain and the image domain. The data-domain metrics are used to determine the performance of the quantisation and the associated losses or errors it induces in the raw data samples. The image-domain metrics evaluate the quality of the SAR image after SAR processing has been performed. In this study three well-known SAR compression algorithms were implemented and applied to three real SAR data sets that were obtained from a prototype airborne SAR system. The performance of these algorithms were evaluated using the proposed metrics. Important metrics in the data domain were found to be the compression ratio, the entropy, statistical parameters like the skewness and kurtosis to measure the deviation from the original distributions of the uncompressed data, and the dynamic range. The data histograms are an important visual representation of the effects of the compression algorithm on the data. An important error measure in the data domain is the signal-to-quantisation-noise ratio (SQNR), and the phase error for applications where phase information is required to produce the output. Important metrics in the image domain include the dynamic range, the impulse response function, the image contrast, as well as the error measure, signal-to-distortion-noise ratio (SDNR). The metrics suggested that all three algorithms performed well and are thus well suited for the compression of raw SAR data. The fast Fourier transform block adaptive quantiser (FFT-BAQ) algorithm had the overall best performance, but the analysis of the computational complexity of its compression steps, indicated that it is has the highest level of complexity compared to the other two algorithms. Since different levels of degradation are acceptable for different SAR applications, a trade-off can be made between the data reduction and the degradation caused by the algorithm. Due to SWAP-C limitations, there also remains a trade-off between the performance and the computational complexity of the compression algorithm.Dissertation (MEng)--University of Pretoria, 2019.Electrical, Electronic and Computer EngineeringMEngUnrestricte
    • …
    corecore