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Abstract

The paper addresses the selection of the best representations for distributed

and/or dependent signals. Given an indexed tree structured library of

bases and a semi-collaborative distribution scheme associated with mini-

mum information exchange (emission and reception of one single index cor-

responding to a marginal best basis), the paper proposes the median basis

computed on a set of best marginal bases for joint representation or fusion

of distributed/dependent signals. The paper provides algorithms for com-

puting this median basis with respect to standard tree structured libraries

of bases such as wavelet packet bases or cosine trees. These algorithms

are e�ective when an additive information cost is under consideration. Ex-

perimental results performed on distributed signal compression con�rms

worthwhile properties for the median of marginal best bases with respect

to the ideal best joint basis, the latter being underdetermined in practice,

except when a full collaboration scheme is under consideration.
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1. Introduction

Among the functional representations one can associate with a regular

or piecewise regular deterministic signal, low cost information representa-

tions are important for many applications involving compression, coding,

estimation, dimensionality reduction, etc.. In general �nding a relevant

representation for a whole class of signals is intricate, especially when sig-

nals under consideration are impacted by uncertainties/imprecisions inher-

ent to the measurement process and/or speci�c noise emanating from the

acquisition system or external disturbances.

Adaptive and/or fuzzy approaches have shown to be relevant for joint

analysis and processing of such class of signals. For instance, in [12] a

statistical model associating fuzzy regression, nearest neighbor matching,

and neural networks has been proposed for predicting the demand of nat-

ural gas by using heterogeneous rooftop unit wireless sensors; in [13] a

fuzzy multi-sensor data fusion and a fuzzy Kalman feedback are used for

fault detection and e�ective risk reduction for an integrated vehicle health

maintenance system; the analysis of a neuro-fuzzy system involving adap-

tive wavelet activation that depends on the input signal characteristics is

described in [3]; the authors of [10] show that genetic algorithms based on

lifting (and thus adaptive) wavelet transforms enables relevant source sep-

aration for wide band signals while diminishing di�erent types of noises; in

[16] the correlation structure is used to improve the estimation accuracy of

highly correlated measurements performed in multi-sensor systems.

In this paper, we analyze a distributed set of signals by using a library

of wavelet functions. In contrast to [3] and [10], this paper does not involve

adaptive prediction and updating of wavelet coe�cients (wavelet lifting).

We �rst derive a �nite set of relevant wavelet base for representing a dis-

tributed set of signals through a `lower' and `upper' wavelet basis, delimit-

ing the set of bases-of-interest (fuzzy functional set). A functional ordering

of the bases-of-interest is then proposed for selecting the best joint-basis

for distributed compression or coding.

References [17], [5], [6], [7], [11] provide concentration norms and spar-

sity information costs for best basis selection with respect to one signal

observation (marginal best basis when considering a distributed set of de-
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pendent signals). However, for a distributed acquisition system involving

dependent and non-stationary signals, �nding a best basis from a joint cri-

terion is not an easy extension of the single signal acquisition case. Given a

joint information criterion, the best joint basis cannot be computed with-

out a full collaboration between sensors or gathering of all the data at a

central node, whereas both situations are undesirable due to their conse-

quence on sensor architectures and their energy consumptions [9]. In this

respect and in order to approach a locally optimal solution, some references

such as [1] have investigated semi-collaborative distributions schemes con-

sisting of recursive implementations of the Karhunen-Lo�eve transform. On

the other hand, [3], [10], [14, 4, 15] have considered wavelet node splitting

subject to prediction and updating stages and conditionally with respect

to pre-speci�ed collaboration schemes.

It is worth recalling that the above alternatives are with high com-

putational complexities when the number of sensors/signals is large. In

addition, these strategies do not guarantee a convergence to the ideal best

joint basis even when the number of recursive operations is signi�cant.

The motivation of the present work is to seek, from the sole knowledge of

the marginal best bases (best bases at each individual sensor levels), a basis

approximating the joint best basis, which is unknown and undetermined

in case of non-collaborative distribution schemes. We show that, on tree

structured libraries of functional bases, the median of marginal best bases

is a basis with relevant properties for joint representation. In addition,

the tree structuring makes the computation of the in�mum and supremum

bases possible, the latter being useful for evaluating the dispersion of a

set of marginal best bases. The paper provides theoretical concepts and

algorithmic tools that make the computation of the median, in�mum and

supremum of a best basis set associated with an additive information cost

possible over a tree structured library.

The paper begins by providing the context of best basis selection for

distributed signals (Section 2). Then it focuses on de�ning algebra on

tree structured libraries (Section 3). From this algebra, the paper derives

algorithms for computing the median, in�mum and supremum of a set

of bases-of-interests (Section 3). The paper then highlights the relevance
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of the sample median basis for joint representation when the observation

amounts solely to marginal basis consideration (Section 4). The paper

�nally concludes by discussing some issues concerning the use and inter-

pretation of median, in�mum and supremum bases (Section 5).

2. Preliminary notation and issues

2.1. Context

Let us consider distributed compression or distributed fusion of a set of

signals delivered by K sensors, i.e., K observations yk (partial \views") of

a \big" signal s. These observations are available through a model of the

form:

yk = Θk(s, ξk), (1)

where Θk, ξk for k = 1, 2, . . . , K, are respectively operators and noise relat-

ing the speci�cities of the sources/sensors.

Operator Θk can be additive (signal s observed in presence of additive

noise ξ1), multiplicative (acquisition systems using coherent radiations),

convolutive (transfer function involved in some imaging systems) or mask-

ing (missing data inducing a partial loss of information or a partial obser-

vation of a whole phenomenon), etc.

Figure 1 provides an illustration of the model of Eq. (1) where operator

Θk is additive with respect to variables s and ξk, and masking (has a limited

access to the whole signal s):

yk = s1l∆k
+ ξk, (2)

where the intervals (∆k)k=1,2,...,K involved in Eq. (2) overlap, yielding de-

pendent observations (yk)k=1,2,...,K. Since multiplicative or convolutive op-

erators can be written in the form of Eq. (2) with appropriate transforms,

we will use the distributed system given by the model of Eq. (2) in the

following, for the sake of simplicity of presentation. We will moreover use

for convenience, the notation sk = s1l∆k
.

Let us assume that there exists a relevant library of functional bases

B = {B`, ` = 1, 2, . . . , L} for representing the signal. In order to avoid any
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∆1 ∩ ∆2 ∆2 ∩ ∆3

Figure 1: Distributed set of sensors model observation.

confusion when several bases are under consideration, we will denote the

representation B`[sk] of signal sk on a basis B` ∈ B by sB`

k .

We evaluate the relevance of representations in di�erent bases (sB`

k )`=1,2,...,L
in the particular context of the targeted application, e.g., compression,

coding or information fusion. For this purpose, we use an information

cost function that is attached to every representation. In the following

Section 3, there will be no need to detail the particular information cost

function, we will simply assume that an appropriate cost function exists.

However, information cost functions will be provided when needed, in Sec-

tion 4 speci�cally.

The goal of this paper is to derive a relevant basis B� ∈ B for the rep-

resentation of big signal s from its distributed versions (sk)`=1,2,...,K. We

emphasize that the scope of the paper is not to derive compression or

information fusion methods, but rather the selection of a best representa-

tion that guarantees lower information cost with respect to criteria such

as sparsity or Shannon information costs (needed for relevant compres-

sion/coding/information fusion).

2.2. Problem formulation

With a full collaboration between sensors, or by gathering all the data

at a central node, �nding a joint best basis can be performed. However,

these strategies are with high energy consumption.
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Without any collaboration between sensors, one can only compute and

use, at sensor levels, the L best marginal bases (one for each sensor); each

marginal basis being derived to be relevant for the sole signal sk represen-

tation. However, when considering the whole set of sensors, this strategy

is far from optimal.

The above remarks raise the issue of developing semi-collaborative strate-

gies that compromise, in terms of limiting the information exchange and

approaching in a certain sense, the best basis for the signal s. Distributed

semi-collaborative schemes exchanging correlation structures have been de-

signed in [9], [1], [14] so as to reach, asymptotically, the best joint basis.

However, for these methods, convergence is not always guarantee (correla-

tion is an incomplete statistic) and involves high energy consumption cost

when it holds true.

In this paper, we propose a semi-collaborative distribution scheme where

collaboration simply consists of information exchange regarding best mar-

ginal bases. Obviously, it is not possible, from these marginal best bases,

to infer the best basis for the joint representation of s due to under deter-

mination (semi-collaborative distribution schemes with partial information

exchanges do not guarantee convergence to the joint best basis, except for

some particular cases).

However, this strategy has 3 main advantages: 1) when library B is �xed

in advance, information sending per sensor reduces to a single index: the

index of its best marginal basis (minimal amount of exchange, resulting in

very low energy consumption), 2) marginal bases are all relevant bases for

s `partial' representations and the structure of best joint basis is expected

to be close to the structure of these best marginal bases and 3) computing

best marginal bases is non-recursive.

The problem addressed hereafter concerns deriving a best basis for joint

representation conditionally to the knowledge of the best marginal bases.

This will be performed by assuming that library B is constructed with an

algebraic order structure which eases the computation of a set of bases

with suitable properties, in particular the in�mum, the supremum and the

median of a given subset of B.
For tree structured libraries with node inclusion properties, such an or-
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der structure exists and is derived hereafter from path and terminal node

considerations. This order structure will be associated to information vari-

ations from parent node to child nodes through a suitable information cost

function. Given a subset of bases of B, this order structure makes an-

swering the two questions possible: Question 1): how close are the bases

under consideration? Question 2): how to identify the median basis of this

subset?

3. Order statistics among a set of bases

In this section, we consider tree based basis libraries generated from a

unique root node (the input functional space) and composed with nested

orthogonal functional subspaces as tree nodes. For such a tree, a node

represents a subspace of the input functional space and the direct sum of

subspaces spanned by the bases of child nodes give the subspace spanned by

the basis of their father node. One can de�ne an order structure on paths

of such a tree (natural order structure relative to precedence of nodes in a

path, starting from the root and ending at a terminal node) and one can

extend this order structure further to sequence of nodes (subtrees) and the

speci�c collection of nodes composing a basis.

It is noteworthy that an arbitrary tree structured wavelet basis library

can be reformulated by using wavelet packet framework. Indeed, in a single

tree, this framework makes using a combination of di�erent wavelets and

di�erent node splitting schemes (M-band, whereM is node variable) possi-

ble (multi-wavelets and multivariate band wavelet packet decomposition).

We will therefore focus on the library B of wavelet packet bases in the fol-

lowing. For the sake of simplifying notation, we restrict the presentation

to a 2-band wavelet tree splitting scheme. Extensions to 1) an arbitrary

M-band wavelet packet library with constant M, 2) multivariate M-band

tree structured library or 3) speci�c tree structured libraries such as the

cosine tree, are straightforward.

3.1. Order structures among wavelet packet bases

Let T∗ denote a full wavelet packet tree down to a �xed decomposi-

tion level J∗. Tree T∗ is de�ned by the collection of nodes (wavelet packet
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subbands) T∗ =
{
Wj,n : 0 6 j 6 J∗, n = 0, 1, . . . , 2j − 1

}
. A full wavelet

packet path P of T∗ is de�ned by the sequence P =
(
Wj,nj

)
06j6J∗

where

nj = n(j) ∈ {0, 1, . . . , 2j − 1}, is recursively de�ned from n0 = 0 and

n` = 2n`−1 + ε`, with ε` ∈ {0, 1} for every 1 6 ` 6 j. From the above

recurrence, any given wavelet packet path, down to a �xed decomposition

level J 6 J∗, can be completely speci�ed by its terminal node WJ,nJ
or

equivalently by the binary sequence (ε`)16`6J [2]. This path will hereafter

be denoted by P(J, nJ) =
(
Wj,nj

)
06j6J

. For instance, P(0, 0) = {W0,0} is the

path consisting solely of the root node.

Consider two arbitrary wavelet packet paths P(J, nJ) and P(L, pL). Let

I be the cardinality of the set A = {n1, n2, . . . , nJ} ∩ {p1, p2, . . . , pL} and

qI =

{
maxA if A 6= ∅,
0 if A = ∅.

De�ne an operation ⊕ on paths by associating to P(J, nJ) ⊕ P(L, pL), the

path P(I, qI) with terminal node WI,qI (smallest wavelet packet space that

contains WJ,nJ
and WL,pL).

A subtree T of the wavelet packet tree T∗ is a collection T = (P(J`, nJ`))`
of paths, where J` 6 J∗ for every `.

Let T be the set of all wavelet packet subtrees of tree T∗ and T1 =

(P(J`, nJ`))` ∈ T , T2 = (P(Lk, pJk))k ∈ T .
De�ne an operation ] on T by associating to T1]T2, the tree T0 de�ned

from the convention: P(Im, qIm) pertains to T0 if there exists P(J`, nJ`) ∈ T1

and P(Lk, pJk) ∈ T2 such that P(Im, qIm) = P(J`, nJ`) ⊕ P(Lk, pJk). It follows

that tree T0 is composed of nodes that are common to T1 and T2.

We have: ] is a binary operation on T and,

Theorem 1. (T ,]) is a commutative monoid with identity element T∗.

Proof 1. Commutativity and associativity follow from the properties

of the binary operation ⊕ on paths. In addition, T∗ is the identity

since any element of T is included in T∗.
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Now, let P(J, nJ) be a wavelet packet path. We have: P(J, nJ)⊕P(J, nJ) =
P(J, nJ). Thus, we can formulate the following proposition.

Proposition 1. The operation ⊕ is idempotent over the set of all wavelet

packet paths.

The idempotence of ⊕ induces over wavelet packet paths, an order struc-

ture denoted 4 and de�ned by: P(J, nJ) 4 P(L, pL) ⇔ P(J, nJ) ⊕ P(L, pL) =

P(L, pL). This order relation is compatible with the operation ⊕. It is the
inverse of the natural set ordering induced by ⊂ operation on the wavelet

packet subspaces: the largest wavelet space with respect to set inclusion

(root node W0,0) is associated with the smallest wavelet packet path.

This order relation, derived from a binary operation on wavelet packet

paths, makes subtree ordering possible and eases the derivation of the func-

tional structure of relevant wavelet packet nodes thanks to the computation

of lower and upper paths from a given set of subtrees.

The lower (minimal, min) and upper (maximal, max) paths are de�ned

by:

rclP(J, nJ) 4 P(L, pL) ⇐⇒ P(J, nJ)⊕ P(L, pL) = P(L, pL)⇐⇒ min {P(J, nJ), P(L, pL)} = P(J, nJ)⇐⇒ max {P(J, nJ), P(L, pL)} = P(L, pL).

Remark 1. A full wavelet packet tree down to the decomposition level

j is composed of 2j paths whose terminal nodes are associated with

frequency indices nj ∈
{
0, 1, . . . , 2j − 1

}
.

Let us consider a re-ordering of these paths obtained from a permu-

tation G applied on the set
{
0, 1, . . . , 2j − 1

}
. This permutation operates

as isotonic with respect to the order de�ned on wavelet packet paths:

P(J, nJ) 4 P(L, pL) =⇒ P(J, G(nJ)) 4 P(L,G(pL)).

Thus, a re-ordering of the wavelet packet nodes such as the one in-

volved in the Shannon wavelet packet decomposition do not impact on

paths/trees ordering.
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A subtree being a collection of paths, the collection T of all subtrees of T∗

associated with ] inherits the above path order properties. The extension

of these order properties to basis ordering requires the identi�cation of

the particular subtrees that are associated with wavelet packet bases (see

Section 3.2 below).

3.2. Basis ordering - Extremal bases of a set of bases for the wavelet

packet library

A subtree is said to be associated with a basis if the collection of wavelet

functions generating its terminal nodes constitute a basis of the input space

W0,0. This is equivalent to saying that the direct sum of functional sub-

spaces
(
WJ`,nJ`

)
`
associated with its terminal nodes equals W0,0. We seek

to know whether an arbitrary subtree of T∗ de�nes a basis. Let us de�ne

the following interval:

Ij,n =

[
n

2j
,
(n+ 1)

2j

[
. (3)

Then, we can formalize:

Definition 1. A wavelet packet subtree (P(J`, nJ`))` de�nes a basis if the

intervals
(
IJ`,nJ`

)
`
obtained from its terminal nodes form a partition of

the interval [0, 1[.

Example 1. We have:
[
0
21
, 1
21

[
∪
[
2
22
, 3
22

[
∪
[
3
22
, 4
22

[
= [0, 1[. Therefore, the

subtree (P(1, 0), P(2, 2), P(2, 3)) is associated with a basis of the input

space. In other words, W1,0

⊕
W2,2

⊕
W2,3 = W0,0 where

⊕
represents

the direct sum between functional spaces.

A basis being a particular collection of subtrees, the collection B of all

wavelet packet bases from T∗ associated with ] inherits the properties of

T :

Theorem 2. (B,]) is a commutative monoid with identity element

B∗ ≡ T∗ ( B∗ is the basis corresponding to the terminal nodes of a

full wavelet packet tree expansion).
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B1 B2 B3

W0,0

W1,0 W1,1

W0,0

W1,0

W2,0 W2,1

W3,2 W3,3

W1,1

W0,0

W1,0 W1,1

W2,2 W2,3

B4

W0,0

W1,0

W2,0 W2,1

W3,2 W3,3

W1,1

W2,2 W2,3

Figure 2: Basis comparison with respect to 4. We have: min (B1, B2) = B1, inf (B2, B3) =

B1, sup (B2, B3) = B4 and max (B1, B4) = B4
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The order structure on B is such that for two arbitrary wavelet packet

bases B1 =
⊕

` WJ`,nJ`
and B2 =

⊕
k WLk,pLk

associated respectively with

terminal nodes (P(J`, nJ`))` and (P(Lk, pLk))k, we have: B1 4 B2 if and

only if every IJ`,nJ`
can be written as a partition consisting of elements

of
(
ILk,pLk

)
k
. As above, this order structure makes basis comparison possi-

ble with respect to the lower (min) and upper (max) elements, as well as the

greatest lower (in�mum, inf) and least upper (supremum, sup) elements.

Figure 2 illustrates basis comparison.

Remark 2. The above order relation between wavelet packet bases/trees

may have been de�ned only by terminal node consideration. But in

practice, computing a terminal node assumes that the coe�cients as-

sociated with every parent node have been computed. In addition, the

basis/tree ordering obtained from terminal node consideration is not

straightforward. This makes path consideration more convenient for

de�ning the order structure given above.

By considering the above order structure we derive the in�mum and

supremum of a set of bases: Tables 1 and 2 provide the algorithms for

computing these bases.

Table 1: Computation of the supremum of a subclass of bases.

Set node unions to be an empty set

For every query basis from the subclass:

Retrieve all the nodes of this query basis.

Set node unions to be the union between the

nodes of the query basis and the former

node unions set.

End

Retrieve the terminal nodes associated with sequence

node unions. These terminal nodes de�ne the supremum

basis among the subclass considered.
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Table 2: Computation of the in�mum of a subclass of bases.

Retrieve the largest decomposition level J∗ involved in the

subclass of bases under consideration.

Set node intersections to be the sequence of all nodes involved

in a full wavelet packet tree down to level J∗.

For every query basis from the subclass:

Retrieve all the nodes of this query basis.

Set node intersections to be the intersection between

the nodes of the query and the former

node intersections set.

end

Retrieve the terminal nodes associated with sequence

node intersections. These terminal nodes de�ne the in�mum

basis among the subclass of bases considered.

3.3. Median basis

Let B = {Bk, k = 1, 2, . . . , K} be a collection of wavelet packet bases. Let

J be the maximum decomposition level involved in the tree based decom-

positions associated with the elements of B.
We consider hereafter, the set of all paths issued from the root node W0,0

and having pairs (J, nJ) as terminal nodes, where nJ = nJ(P) ∈ {0, 1, . . . , 2J−

1}. We recall that such a path P is composed of subbands located at di�erent

decomposition levels, P =
(
Wj,nj

)
06j6J∗

(see Section 3.1).

Any basis Bk contributes to path P in the sense that it admits one of

the above subbands
{
Wj,nj

, j = 1, 2, . . . , J
}
as a terminal node.

Let

O(Wj,nj
,B) = #

{
B ∈ B : Wj,nj

⊂ B
}
.

Quantity O(Wj,nj
,B) represents the number of occurrences of the subband

Wj,nj
in B. Let

O(P,B) = {O(Wj,nj
,B), j = 0, 1, . . . , J and (j, nj) ∈ P}.

Set O(P,B) represents the occurrences in B of the di�erent subbands per-

taining to P.
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Then we can de�ne the median subband of the set B on path P as

argWj,nj
medianO∗(P,B) (4)

where O∗ denotes non-null values of O.
The above median subband is unique when K is odd. For even values of

K, the sample median is not unique, as in the case of the standard sample

median. In the latter case, one may use the middle lower occurrence (de-

composition with the shortest path) to de�ne the sample median subband,

however, we will consider only odd values of K in the rest of the paper. In

addition, the median subband will be sought by describing a subband with

a single indexed natural number Wj,nj
= WNj

with N = nj +
∑j−1

`=0 2
`.

Example 2. Consider the bases {B1, B2, B3} given in Figure 2. The largest

decomposition level is J = 3. We thus have 8 full paths corresponding

to terminal nodes associated with N = 7, 8, . . . , 14. Denote P7, P8, . . . , P14
to be the corresponding paths. We have

O∗(P7, {B1, B2, B3}) = {1, 3, 1}

O∗(P8, {B1, B2, B3}) = {1, 3, 1}

O∗(P9, {B1, B2, B3}) = {1, 3, 1}

O∗(P10, {B1, B2, B3}) = {1, 10, 1}

O∗(P11, {B1, B2, B3}) = {2, 2, 5}

O∗(P12, {B1, B2, B3}) = {2, 2, 5}

O∗(P13, {B1, B2, B3}) = {2, 2, 6}

O∗(P14, {B1, B2, B3}) = {2, 2, 6}.

(5)

Thus, the median subbands are associated with N = 1, 2 and we can

conclude that Median{B1, B2, B3} = B1. One can remark that, in this

example, the median basis is the smallest basis in terms of tree size.

This is justi�ed by the fact that B2 and B3 are not comparable.

Example 3. Consider now the bases {B2, B3, B4} given in Figure 2. Then
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we have
O∗(P7, {B2, B3, B4}) = {3, 1, 3}

O∗(P8, {B2, B3, B4}) = {3, 1, 3}

O∗(P9, {B2, B3, B4}) = {9, 1, 9}

O∗(P10, {B2, B3, B4}) = {10, 1, 10}

O∗(P11, {B2, B3, B4}) = {2, 5, 5}

O∗(P12, {B2, B3, B4}) = {2, 5, 5}

O∗(P13, {B2, B3, B4}) = {2, 6, 6}

O∗(P14, {B2, B3, B4}) = {2, 6, 6}

(6)

and derive median subbands corresponding to N = 3, 5, 6, 9 and 10,

so that Median{B2, B3, B4} = B4.

Theorem 3. Assume a totally ordered collection of bases

B = (Bk)k=1,2,...,2K+1,

with B1 � B2 � . . . � B2K+1. Then from the above de�ntion of sample

median basis, we have Median B = BK.

Algorithms given in Tables 1 and 2, as well as the one following from

Eq. (4), apply to any tree structure generated from a root node from a

recursive node splitting, by using an arbitrary number splits for each node.

The algorithms apply even for adaptive node splitting, when the number

of bands (subspaces) is computed depending on the signal (adaptive multi-

band splitting). Note also that many libraries of bases can be structured by

using such tree decomposition with the input signal represented at the root

node. In this way, these algorithms suit a large number of basis libraries

available from the literature.

4. Median of marginal best basis for the joint representation of

distributed signals

Section 3 above has emphasized 3 outstanding bases from the algebraic

structure of a tree based library of bases. These bases will deserve much
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interest in this section: under a distributed collaboration scheme associated

with a single-index information exchange, the median of the marginal best

bases will be associated to the best joint basis whereas extremal bases will

provide information on the statistical dispersion of the set of marginal best

bases.

The following section provides some convenient information costs with

respect to a fast search in tree structured libraries: these information costs,

hereafter called entropies, are additive in the sense that the corresponding

cost splits into a direct sum of functional subspaces, see [5] for details and

properties of these information costs.

4.1. Best basis entropies

References [17], [6] and [7] provide di�erent entropy cost functions for

the selection of a best basis from a tree structured library such as the

wavelet packet tree. In the above references, these cost functions have

shown relevancy in compression, coding and denoising problems involving

a single signal observation (marginal bases when considering the distributed

approach). Among these cost functions, we consider the following sparsity

entropies applied to a N-term vector c (set of signal coe�cients). For these

entropies, lower values relate to higher concentration of the energy of vector

c in few coe�cients.

Definition 2 (Concentration entropy, [17]). The Concentration entropy

of vector c is de�ned as the `1-norm of this vector:

H1-Norm(c) ,
N∑
k=1

|ck|. (7)

Definition 3 (Sparsity threshold entropy, [5]). The sparsity entropy

of vector c with respect to the threshold λ is de�ned by:

HThresh

λ (c) ,
N∑
k=1

1l]λ,+∞[(|ck|). (8)
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Definition 4 (Sparsity SURE entropy, [6]). The sparsity SURE entropy

of vector c with respect to the threshold λ is de�ned by:

HSURE

λ (c) , N− 2

N∑
k=1

1l[0,λ](|ck|) +
N∑
k=1

min(|ck|
2, λ2). (9)

Due to the additivity of these entropies, best basis search for a given

observation in a tree structured library is reduced to:

� splitting recursively the tree nodes (starting from the root node),

� comparing the entropies of the parent node with that of the child

nodes in order to evaluate the information gain (or loss) when per-

forming the split,

� continue splitting, while the sum of entropies of the child nodes is

smaller than that of the parent node.

Let H be one of the above entropy function. Let S = {s`, ` = 1, 2, . . . , L}

be a sequence of observations. Assume that

� the best bases associated with elements of S form a totally ordered

collection of bases B = (Bk)k=1,2,...,2K+1 with B1 � B2 � . . . � B2K+1,

with 2K+ 1 6 L.

� for every ` ∈ {1, 2, . . . , L}, the sequence E` of entropies of s` on B form

a convex set E` = (H{s`, Bk})k=1,2,...,2K+1, where quantity H{s`, Bk} is the
entropy of s` on basis Bk.

Then, when considering the sum of entropies as a joint criteria for best joint

basis selection, the basis Median B is expected to be the more relevant basis,

rather than an arbitrary basis B ∈ B for representing the set of observations

S.

Remark 3. The convexity assumption used above for entropies is com-

patible with the best basis selection: the node splitting continues while

entropies are decreasing and the best basis corresponds to the basis

below when entropies begin increasing. Note however that
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� the set of (marginal) best bases B is not totally ordered in general;

� the set of entropies E` for some ` ∈ {1, 2, . . . , L} is not guaranteed

to be convex4.

Despite these remarks, the following details highlight that the median

of the marginal best bases is relevant for practical applications involv-

ing joint representations of a distributed set of observations.

More precisely, given the semi-collaborative distribution scheme in-

troduced in Section 2.2 and an entropy cost function, terminal k, for

k ∈ {1, 2, . . . , K}, will compute the best basis B�
k ∈ B for the representation

of signal sk and will send the index of this marginal best basis to other

terminals (best marginal basis information exchange). Thus, a sequence

(B�
k)k=1,2,...,K is available at any terminal so as to make the computation of

the median of the best bases possible:

B�
Median = Median {B�

k, k = 1, 2, . . . , K} .

The following experimental results highlight the relevance of B�
Median for

the representation of the set (sk)k=1,2,...,K.

4.2. Experimental results

Experimental tests concern a simulated 9 sensors based distributed sys-

tem performing the \acquisition" of permutated versions (di�erent scenar-

ios of a spatial puzzle) of the 3 channels of a color Lena image.

In this system, 1) the Lena image with size 512×512 pixels given in

Figure 3-(a) is considered as a big scene, 2) this image (and thus every

channel) is split into K = 9 overlapping partial point of views of the scene

(subimages): a subimage Ik, for k ∈ {1, 2, . . . , K}, represents a squared

portion of the scene, where we have considered the same size, 256 × 256
pixels, for any subimage (see Figure 3-(b)).

4The best basis search stops when reaching the �rst local minimum in order to save

decomposition costs, when the set of entropies upon the ordered tree structured bases is

not convex.
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(a) Lena image

\full scene"

(b) Lena subimages issued from sensor:

\1" \2" \3"

\4" \5" \6"

\7" \8" \9"

Figure 3: Lena image imaged by a distributed set of sensors.
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Table 3: Entropies computed from the experimental setup described in Section 4.2. The

entropies of the marginal best bases express the cost of using the basis associated with a

partial observation of the bands Red (R), Green (G) and Blue (B) of the Lena image in a

distributed acquisition scheme. The mean entropy over the marginal bases represents the

expectation of using the best bases associated with an arbitrary terminal in a sequence of

distributed acquisitions consisting of random permutations of the 9 subimages composing

the scene.
Entropy: L1-Norm Threshold SURE

Basis

B�
1

B�
2

B�
3

B�
4

B�
5

B�
6

B�
7

B�
8

B�
9

B�
Med

B�
Inf

B�
Sup(
B�

k

)9

k=1

R

107×
1.0914

1.0877

1.0894

1.0896

1.0886

1.0876

1.0894

1.0875

1.0881

1.0875

1.0895

1.0922

1.0888

G

106×
9.2834

9.2706

9.2717

9.2677

9.2743

9.2669

9.2748

9.2721

9.2936

9.2707

9.2717

9.3249

9.2750

B

106×
8.9089

8.8949

8.8893

8.8912

8.8921

8.8944

8.8913

8.8917

8.9156

8.8907

8.8893

8.9322

8.8966

RGB

106×
19.2837

19.2532

19.2504

19.2485

19.2550

19.2489

19.2555

19.2513

19.2973

19.2489

19.2505

19.3493

19.2604

R

104×
2.9510

2.8857

2.9155

2.9631

2.8834

2.9179

2.9621

2.8897

2.8862

2.8866

2.9510

3.0301

2.9172

G

104×
3.9374

3.9313

3.9493

3.9700

3.9195

3.9835

4.0205

3.9638

3.9845

3.9196

3.9499

4.0966

3.9622

B

104×
3.3207

3.3240

3.2823

3.2853

3.2872

3.3326

3.3639

3.2987

3.3468

3.2807

3.3207

3.4285

3.3157

RGB

104×
10.2091

10.1410

10.1471

10.2184

10.0901

10.2340

10.3465

10.1522

10.2175

10.0869

10.2216

10.5552

10.1951

R

107×
3.5438

3.4936

3.5434

3.4957

3.4957

3.4941

3.5197

3.5068

3.4941

3.4941

3.5438

3.5197

3.5096

V

107×
4.8832

4.8822

4.8832

4.8499

4.8499

4.8662

4.8830

4.8467

4.8652

4.8467

4.8832

4.8862

4.8677

B

107×
4.7886

4.7886

4.7886

4.7842

4.7842

4.8042

4.7973

4.7911

4.8042

4.7842

4.7886

4.8173

4.7923

RGB

107×
13.2156

13.1644

13.2152

13.1298

13.1298

13.1645

13.2000

13.1446

13.1635

13.1250

13.2156

13.2232

13.1696

Any of the above subimages is considered as an instantaneous obser-

vation from a given sensor, the 9 sensors providing the full scene for any

experiment, an experiment consisting of the following operations:

� Computation of the marginal best bases (B�
k = B�[Ik])1,2,...,K with

respect to the entropy functions given in De�nitions 2, 3, 4.

� Evaluation of the cost of using the most relevant basis, among the

marginal best bases, by computing the entropies of any given subim-

age I`, ` ∈ {k = 1, 2, . . . , K} on the marginal best bases (B�
k)k=1,2,...,K.

Note that this evaluation assumes that all the data are available at a

central node (experimental setup in order to assess performance). We

compute this basis, instead of the best joint basis, since computing

the latter is combinatorial over a signi�cant number of wavelet packet

subtree con�gurations.

� Computation of

B�
Median = Median {B�

k, k = 1, 2, . . . , K} ,

20



as well as the extremal bases:

B�
Inf = Inf {B�

k, k = 1, 2, . . . , K} ,

B�
Sup = Sup {B�

k, k = 1, 2, . . . , K} .

Table 3 provides the costs spent in using an arbitrary marginal best

basis and the most relevant marginal best basis, as well as the cost of using

the median of the marginal best bases. It follows from this table that the

entropy of the median basis is more relevant than any marginal best bases.

This median basis outperforms the more relevant marginal best basis which

is computable only in a fully collaborative distribution scheme.

From the results given in Table 3, the in�mum and supremum bases

have large entropies in general: this is reasonable since these bases repre-

sent extremal trees (smallest and largest) observed from the set of signals.

However, these bases provide information on the dispersion of the set of

marginal best bases. In particular, when the `1 concentration norm is used

with the Haar wavelet, the in�mum and the median bases are very close to

each other (they di�er by the splitting of a unique node) and this shows that

most of the observed bases have approximately the same tree structure.

Table 4: Structural dissimilarity indices L(B) =
∑K

q=1M(B,B�
q) where B is either one

among the best bases {B�
1,B

�
2, . . . ,B

�
K} or the median/in�mum/supremum of this set of

best basis. Dissimilarity indices have been computed in the experiment setup of Section

4.2 (see also Table 3).
Entropy: L1-Norm Threshold SURE
Basis
L(B�

1)
L(B�

2)
L(B�

3)
L(B�

4)
L(B�

5)
L(B�

6)
L(B�

7)
L(B�

8)
L(B�

9)

L(B�
Med)

L(B�
Inf)

L(B�
Sup)

R
588
217
211
242
184
196
277
174
227

171

232
700

G
380
271
210
186
193
212
211
176
305

173

210
506

B
247
179
158
140
178
212
151
143
244

134

158
393

RGB
1215
667
579
568
555
620
639
493
776

478

600
1599

R
318
262
408
468
312
441
648
337
278

279

318
966

G
354
357
409
403
344
450
615
450
450

322

380
841

B
305
294
282
401
272
372
601
439
482

263

305
829

RGB
977
913

1099
1272
928

1263
1864
1226
1210

864

1003
2636

R
129
105
134
106
106
86

201
99
86

86

129
201

G
98
83
98
79
79

109
188
80
94

80

98
187

B
55
55
55
40
40
65

100
65
65

40

55
125

RGB
282
243
287
225
225
260
489
244
245

206

282
513

Furthermore, if we denote by NB the set of terminal node indices of

basis B in tree T:

NB = Terminal nodes(B)
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and de�ne the structural dissimilarity index of basis Bp and basis Bq by

(by counting the nodes that do not pertain to two basis trees):

M(Bp,Bq) = #NBp +#NBq − 2#NBp ∩NBq ,

then Table 4 provides cumulative structural dissimilarity indices associated

with a basis B with respect to the set {B�
1,B

�
2, . . . ,B

�
K}:

L(B) =

K∑
q=1

M(B,B�
q)

These results of Table 4 shows that the median of the best basis is

the basis that minimizes almost surely, the structural dissimilarity with

respect to the set of observed bases. Experimental results with other images

con�rm the same remark.

To end this section, one may question the payo� of choosing a system

with 1) no-collaboration (coding/compressing independently the signals

with respect to the di�erent marginal best bases) 2) a light collaboration

(median of marginal best bases discussed in this paper) or 3) a full collab-

oration (distributed Karhunen-Lo�eve transform for instance, see [9], [1]).

Such a choice may strongly depend on the application, since for real-time

monitoring by using onboard systems, the sensor architecture is required

to be very light, whereas this sensor architecture has no consequence on

permanently �xed systems.

5. Conclusion

The paper has presented some algorithmic tools that make basis order-

ing and order statistics on a set of bases possible. The set of basis under

consideration is assumed to be tree structured, with node inclusion prop-

erties and an additive information cost is associated with the tree nodes.

The partial ordering associated with such a set of bases facilitates the

de�nition of the median, in�mum and supremum of a set of bases. Further-

more, the paper has shown that the median of the marginal best bases is

suitable for coding and compression problems since this median basis out-

performs the best marginal basis, whereas computing the latter requires

more energy than computing the former.
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The paper has also provided two particular bases which relate the dis-

persion of the observed set of marginal acquisitions: the in�mum and supre-

mum bases. These bases can be used for example in change detection

problems, for instance when seeking an acquisition outlier. In addition,

these bases can be helpful in information fusion when mutual information

is considered.

Some prospects with respect to the work concern both distributed com-

pression (high dimensional imaging such as 3D and/or video imposes ad-

ditional constraints) and distributed fusion from compressive acquisitions.

For a distributed compressive acquisition, recent prospective works on the

topic, in particular [8], have shown that exploiting common sparse supports

and correlation structures can lead to a more relevant joint source coding

of piecewise regular signals, when the latter are assumed to have Gaussian

independent and identically distributed sparse descriptions in some bases.

This paper has considered the set of suitable bases as a tree structured

library and has provided a (non-parametric) solution for selecting a basis

that approaches the performances of the best joint basis, for a given joint

information cost (sparsity, concentration, Shannon, etc.). Thus, when con-

sidering joint sparsity information cost, one can expect that the present

paper has also provided a non-parametric answer (in terms of the median

of best sparsifying marginal bases) to the selection of a best basis for dis-

tributed compressive sensing. The relevancy of the median basis in such a

distributed compressive sensing can probably be highlighted theoretically,

by analyzing the properties of the median basis with respect to the joint

sparsity information and, practically, by simulating several compressive ac-

quisitions associated with di�erent bases, including the median of the best

marginal bases.

Other prospects concern establishing the performance of the median

of marginal best bases in multiview joint coding and compression prob-

lems: the issue regards capturing in this basis, the redundancy (due to the

overlapping) of certain types of acquisitions (this overlap can be �xed a

priori from the sensor location and con�gurations or estimated by using

correlation structures).
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