28 research outputs found

    Structural Data Recognition with Graph Model Boosting

    Get PDF
    This paper presents a novel method for structural data recognition using a large number of graph models. In general, prevalent methods for structural data recognition have two shortcomings: 1) Only a single model is used to capture structural variation. 2) Naive recognition methods are used, such as the nearest neighbor method. In this paper, we propose strengthening the recognition performance of these models as well as their ability to capture structural variation. The proposed method constructs a large number of graph models and trains decision trees using the models. This paper makes two main contributions. The first is a novel graph model that can quickly perform calculations, which allows us to construct several models in a feasible amount of time. The second contribution is a novel approach to structural data recognition: graph model boosting. Comprehensive structural variations can be captured with a large number of graph models constructed in a boosting framework, and a sophisticated classifier can be formed by aggregating the decision trees. Consequently, we can carry out structural data recognition with powerful recognition capability in the face of comprehensive structural variation. The experiments shows that the proposed method achieves impressive results and outperforms existing methods on datasets of IAM graph database repository.Comment: 8 page

    An off-line large vocabulary hand-written Chinese character recognizer

    Get PDF
    An off-line hand-written Chinese character recognizer based on contextual vector quantization (CVQ) supporting a vocabulary of 4616 Chinese characters, alphanumerics and punctuation symbols has been reported. Trained with a sample for each character from each of 100 writers and tested on texts of 160000 characters written by another 200 writers, the average recognition rate is 77.2%. Two statistical language models have been investigated in this study. Their performance in terms of their capabilities in upgrading the recognition rate by 8.8% and 12.0% respectively when used as post-processors of the recognizer are reported.published_or_final_versio

    A comparison between two representatives of a set of graphs: median vs barycenter graph

    Get PDF
    Trabajo presentado al Joint IAPR International Workshop on Structural, Syntactic and Statistical Pattern Recognition (SSPR&SPR) celebrado en Esmirna (Turquía) del 18 al 20 de agosto de 2010.In this paper we consider two existing methods to generate a representative of a given set of graphs, that satisfy the following two conditions. On the one hand, that they are applicable to graphs with any kind of labels in nodes and edges and on the other hand, that they can handle relatively large amount of data. Namely, the approximated algorithms to compute the Median Graph via graph embedding and a new method to compute the Barycenter Graph. Our contribution is to give a new algorithm for the barycenter computation and to compare it to the median Graph. To compare these two representatives, we take into account algorithmic considerations and experimental results on the quality of the representative and its robustness, on several datasets.This work was supported by projects: 'CONSOLIDER-INGENIO 2010 Multimodal interaction in pattern recognition and computer vision' (V-00069), 'Robotica ubicua para entornos urbanos' (J-01225).Peer Reviewe

    Learning templates from fuzzy examples in structural pattern recognition

    Get PDF
    Fuzzy-Attribute Graph (FAG) was proposed to handle fuzziness in the pattern primitives in structural pattern recognition. FAG has the advantage that we can combine several possible definition into a single template. However, the template require a human expert to define. In this paper, we propose an algorithm that can; from a number of fuzzy instances, find a template that can be matched to the patterns by the original matching metric.published_or_final_versio

    Graph edit distance or graph edit pseudo-distance?

    Get PDF
    Graph Edit Distance has been intensively used since its appearance in 1983. This distance is very appropriate if we want to compare a pair of attributed graphs from any domain and obtain not only a distance, but also the best correspondence between nodes of the involved graphs. In this paper, we want to analyse if the Graph Edit Distance can be really considered a distance or a pseudo-distance, since some restrictions of the distance function are not fulfilled. Distinguishing between both cases is important because the use of a distance is a restriction in some methods to return exact instead of approximate results. This occurs, for instance, in some graph retrieval techniques. Experimental validation shows that in most of the cases, it is not appropriate to denominate the Graph Edit Distance as a distance, but a pseudo-distance instead, since the triangle inequality is not fulfilled. Therefore, in these cases, the graph retrieval techniques not always return the optimal graph

    Properties of Classical and Quantum Jensen-Shannon Divergence

    Full text link
    Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha is the square of a metric for alpha lies in the interval (0,2], and that the resulting metric space of probability distributions can be isometrically embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed version of quantum relative entropy and can be extended to a family of quantum Jensen divergences of order alpha (QJD_alpha). We strengthen results by Lamberti et al. by proving that for qubits and pure states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in a real Hilbert space when alpha lies in the interval (0,2]. In analogy with Burbea and Rao's generalization of JD, we also define general QJD by associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of quantities introduced are discussed and bounds are derived in terms of the total variation and trace distance.Comment: 13 pages, LaTeX, expanded contents, added references and corrected typo

    Group-wise sparse correspondences between images based on a common labelling approach

    Get PDF
    Presentado al VISAPP 2012 celebrado en Roma del 24 al 26 de febrero.Finding sparse correspondences between two images is a usual process needed for several higher-level computer vision tasks. For instance, in robot positioning, it is frequent to make use of images that the robot captures from their cameras to guide the localisation or reduce the intrinsic ambiguity of a specific localisation obtained by other methods. Nevertheless, obtaining good correspondence between two images with a high degree of dissimilarity is a complex task that may lead to important positioning errors. With the aim of increasing the accuracy with respect to the pair-wise image matching approaches, we present a new method to compute group-wise correspondences among a set of images. Thus, pair-wise errors are compensated and better correspondences between images are obtained. These correspondences can be used as a less-noisy input for the localisation process. Group-wise correspondences are computed by finding the common labelling of a set of salient points obtained from the images. Results show a clear increase in effectiveness with respect to methods that use only two images.This research is supported by “Consolider Ingenio 2010”: project CSD2007-00018, by the CICYT project DPI2010-17112 and by the Universitat Rovira I Virgili through a PhD research grant.Peer Reviewe
    corecore