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Abstract— Graph Edit Distance has been intensively used 
since its appearance in 1983. This distance is really useful if we 
want to compare a pair of attributed graph from any domain and 
obtain not only a distance, but also the best correspondence 
between nodes of the involved graphs. A lot of efforts have been 
made to define fast and accurate optimal or sub-optimal error-
tolerant graph matching algorithms, since it is known that the 
exact computation of the Graph Edit Distance has an exponential 
computational cost. In this paper, we want to analyse if the 
Graph Edit Distance can be really considered a distance or a 
pseudo-distance, since some restrictions of the distance function 
are not fulfilled. Distinguishing between both cases is important 
because being a distance is a restriction in some methods to 
return exact instead of approximate results. For instance, it 
happens in some graph retrieval techniques. Experimental 
validation shows us that in most of the cases, it is not correct to 
denominate it a distance, but a pseudo-distance instead, since the 
triangle inequality is not fulfilled. Therefore, in these cases, the 
graph retrieval techniques not always return the optimal graph. 

Keywords: Graph Edit Distance, Edit Cost, Distance function. 
 

I.  INTRODUCTION 

Attributed graphs have been of crucial importance in 
pattern recognition throughout more than four decades [1], [2]. 
They have been used to model several kinds of problems in 
some pattern recognition fields such as object recognition, 
scene view alignment, multiple object alignment, object 
characterization, among a great amount of other applications. 
Interesting reviews of techniques and applications are [3], [4] 
and [5]. If elements in pattern recognition are modelled 
through attributed graphs, error-tolerant graph-matching 
algorithms are needed that aim to compute a matching between 
nodes of two attributed graphs that minimizes some kind of 
objective function. To that aim, one of the most widely used 
methods to evaluate an error correcting graph isomorphism is 
the Graph Edit Distance [1], [2], [6]. 

Graph Edit Distance needs two main input parameters, 
which are the pair of attributed graphs to be compared and also 
other calibration parameters. These parameters have to be 
tuned to maximise a recognition ratio in a classification 
scenario or simply to minimise the Hamming distance between 
a ground-truth correspondence between nodes of both graphs 
and the obtained correspondence. It turns out that little research 
has been done to analyse if really the Graph Edit Distance is a 
distance or simply a similarity function that could be classified 
as a pseudo-distance, since some distance restrictions are not 

fulfilled. Reference [7] is the only paper related on this idea, 
and it shows in which conditions of these calibration 
parameters the Graph Edit Distance is really a distance. 

The importance to the Graph Edit Distance being a true 
distance has an influence on some applications. As an 
example, in [8], [9] and [10] they present a method to retrieve 
graphs in a database. They suppose that given three graphs, 
the triangle inequality is fulfilled and thanks to this 
assumption, some comparisons were not needed to be 
performed. It turns out that if the Graph Edit Distance is not a 
distance, then the triangle inequality is not guaranteed, and 
then some graphs that would have to be explored are not 
considered, making the method to become sub-optimal. 

The aim of this paper is to empirically analyse if the cases 
that the recognition ratio is maximised or the Hamming 
distance between the ground truth and the obtained 
correspondence are minimised are the ones in which the 
restrictions between parameters imposed by the distance 
definition are hold. 

The outline of the paper is as follows; in sections 2 and 3, 
we define the attributed graphs and the Graph Edit Distance. In 
sections 4 and 5, we explain the restrictions needed to be a 
function a distance and we relate these restrictions on the 
specific case of the Graph Edit Distance. In Section 5, we show 
the experimental validation to deduct the parameters that 
maximise the classification ratio or minimise the Hamming 
distance. Finally, Section 6 concludes the paper. 

 

II. GRAPH & CORRESPONDENCE BETWEEN GRAPHS 

Let Δ! and Δ! denote the domains of possible values for 
attributed vertices and arcs, respectively. An attributed graph 
(over Δ! and Δ!) is defined by a tuple G = (Σ!, Σ!, γ!, γ!), 
where Σ! = {v! | k =  1,… ,R} is the set of vertices (or 
nodes), Σ! = e!" i, j ∈ 1,… ,R  is the set of edges (or arcs), 
γ!: Σ! → Δ! assigns attribute values to vertices and γ!: Σ! →
Δ! assigns attribute values to edges.  

Let G! = (Σ!
!, Σ!

!, γ!
!, γ!

!) and G! = (Σ!
!, Σ!

!, γ!
!, γ!

!) be two 
attributed graphs of order R! and R!. To allow maximum 
flexibility in the matching process, graphs can be extended 
with null nodes [1] to be of order R!  +  R!. We refer to null 
nodes of G! and G! by Σ!

! ⊆ Σ!
! and Σ!

! ⊆ Σ!
! respectively. Let 

T be a set of all possible correspondences between two vertex 
sets Σ!

! and Σ!
!. Correspondence 𝑓!,!: Σ!

! → Σ!
!, assigns each 

vertex of G! to only one vertex of G!. The correspondence 



between edges, denoted by 𝑓!
!,!, is defined accordingly to the 

correspondence of their terminal nodes. 
 
𝑓!
!,! 𝑒!"

! = 𝑒!"
! ⇒ 𝑓!,! 𝑣!

! = 𝑣!
! ∧ 𝑓!,! 𝑣!

! = 𝑣!
! 

𝑣!
!, 𝑣!

! ∈ Σ!
! − Σ!

! and 𝑣!
! , 𝑣!

! ∈ Σ!
! − Σ!

! 

(1) 

We define non-existent or null edges by Σ!
! ⊆ Σ!

! and 
Σ!
! ⊆ Σ!

!. 
 

III. GRAPH EDIT DISTANCE 

The basic idea behind the Graph Edit Distance is to define 
a dissimilarity measure between two graphs. This dissimilarity 
is defined as the minimum amount of distortion required to 
transform one graph into the other. To this end, a number of 
distortion or edit operations, consisting of insertion, deletion 
and substitution of both nodes and edges are defined. Then, 
for every pair of graphs (G! and G!), there is a sequence of 
edit operations, or an edit path editPath G!,G! = ε!,… , ε!  
(where each ε! denotes an edit operation) that transforms one 
graph into the other. In general, several edit paths may exist 
between two given graphs. This set of edit paths is denoted by 
ϑ. To quantitatively evaluate which edit path is the best, edit 
cost functions are introduced. The basic idea is to assign a 
penalty cost to each edit operation according to the amount of 
distortion that it introduces in the transformation.  

Each editPath G!,G! ∈ ϑ can be related to an univocal 
correspondence 𝑓!,! ∈ T between the involved graphs. This 
way, each edit operation assigns a node of the first graph to a 
node of the second graph. Deletion and insertion operations 
are transformed to assignations of a non-null node of the first 
or second graph to a null node of the second and first graph. 
Substitutions simply indicate node-to-node assignations. 
Using this transformation, given two graphs, G! and G!, and a 
correspondence between their nodes, 𝑓!,!, the graph edit cost 
is given by [1]: 

 
𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 𝐺!,𝐺! , 𝑓!,! = 

𝐶!" 𝑣!
!, 𝑣!

!

!!
!∈!!

!!!!
!

!!
!∈!!

!!!!
!

+ 𝐶!" 𝑒𝑎𝑏
𝑝 , 𝑒𝑖𝑗

𝑞

!!"
! ∈!!

!!!!
!

!!"
!∈!!

!!!!
!

+ 

𝐶!" 𝑣!
!, 𝑣!

!

!!
!∈!!

!!!!
!

!!
!∈!!

!

+ 𝐶!" 𝑣!
!, 𝑣!

!

!!
!∈!!

!

!!
!∈!!

!!!!
!
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𝐶!" 𝑒𝑎𝑏
𝑝 , 𝑒𝑖𝑗
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!!"
! ∈!!

!!!!
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!!"
!∈!!
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𝑝 , 𝑒𝑖𝑗

𝑞

!!"
! ∈!!

!

!!"
!∈!!

!!!!
!

 

being 𝑓!,! 𝑣!
! = 𝑣!

! and 𝑓!
!,! 𝑒!"

! = 𝑒!!
!  

 

 

(2) 

where C!" is the cost of substituting node v!
! of G! by node 

f!,! v!
!  of G!, C!" is the cost of deleting node v!

! of G! and 
C!" is the cost of inserting node v!

! of G!. Equivalently for 
edges, C!" is the cost of substituting edge e!"

!  of graph G! by 

edge f!
!,! e!"

!  of G!, C!" is the cost of assigning edge e!"
!  of 

G! to a non-existing edge of G! and C!" is the cost of 
assigning edge e!"

!  of G! to a non-existing edge of G!. 
Finally, the Graph Edit Distance is defined as the 

minimum cost under any correspondence in T: 
𝐺𝐸𝐷 𝐺!,𝐺! = min

!!,!∈!
𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 𝐺!,𝐺! , 𝑓!,!  (3) 

Using this definition, the Graph Edit Distance essentially 
depends on C!", C!", C!", C!", C!" and C!" functions. Several 
definitions of these functions exist. Table 1 summarises the 
five different configurations presented until today. 

The first option [11], [12], [13], [14] are the ones where 
the whole costs are defined as functions that depend on the 
involved attributes and also on other learned or general 
knowledge. Attributes are density functions instead of vectors 
of attributes. The second option makes the Graph Edit 
Distance to be directly related to the maximal common sub-
graph. That is, in [15], authors demonstrate that computing the 
Graph Edit Distance is exactly the same than deducting the 
maximal common sub-graph. In the third option, [16], authors 
assume that the graphs are complete, and a non-existing edge 
is an edge with a “null” attribute. In this case, the cost of 
deleting and inserting an edge is encoded in the edge 
substitution cost. Inserting and deleting nodes have a constant 
cost, 𝐾!. With this definition, authors describe several classes 
of costs that equation 3 deducts the same correspondence. The 
fourth option might be the most used one [1], [17], [18]. 
Substitution costs are defined as distances between vectors of 
attributes, usually the Euclidean distance. Insertion and 
deletion costs are constants, 𝐾! and 𝐾!, that have been 
manually tested or automatically learned [19], [20]. Finally, 
the last option is used in fingerprint recognition [21]. It is 
similar to the previous option, except from the substitution 
costs that are constants. Nodes represent minutiae and edges 
are the relations between them. If a specific distance between 
minutiae is lower than a threshold, then a zero is imposed as a 
substitution cost. Otherwise, this cost takes a constant value 
𝐾!". The same happens with the edges that take a constant 
value 𝐾!". 

TABLE I.  EXAMPLES OF GRAPH EDIT COSTS 

Ref. 𝐶!" 𝐶!"  𝐶!"  𝐶!" 𝐶!"  𝐶!"  
[11] 
[12] 
[13] 
[14] 

𝑑!(𝑣!
! , 𝑣!

!) 𝑓!"(𝑣!
!) 𝑓!"(𝑣!

!) 𝑑!(𝑒!"
! , 𝑒!"

! ) 𝑓!"(𝑒!"
! ) 𝑓!"(𝑒!"

! ) 

[15] 0,∞ 1 1 0,∞ 0 0 
[16] 𝑑!(𝑣!

! , 𝑣!
!) 𝐾! 𝐾! 𝑑!(𝑒!"

! , 𝑒!"
! ) 0 0 

[1] 
[17] 
[18] 

𝑑!(𝑣!
! , 𝑣!

!) 𝐾! 𝐾! 𝑑!(𝑒!"
! , 𝑒!"

! ) 𝐾!  𝐾!  

[21] 0,𝐾!" 𝐾! 𝐾! 0,𝐾!" 𝐾!  𝐾!  
 
It is worth noting that all of the cases, except for the first 

one, the insertion and deletion costs on nodes are considered 
to be the same, 𝐾!. The same happens for edges, 𝐾!. 
Nevertheless, in the string edit distance, also known as 
Levenshtein distance [22], insertion and deletion costs might 



be considered different depending on the application. The 
most usual application is an automatic writing correction, in 
which the possibility of missing a character is different than 
accidentally adding an extra character [23]. 

The optimal computation of the Graph Edit Distance is 
usually carried out by means of a tree search algorithm, which 
explores the space of all possible mappings of the nodes and 
edges of the first graph to the nodes and edges of the second 
graph. A widely used method is based on the A* algorithm, 
for instance [18]. Unfortunately, the computational complexity 
of this algorithm, although a heuristic function can be used to 
reduce the space search, is exponential in the number of nodes 
of the involved graphs. This means that the running time may 
be non-admissible in some applications, even for reasonably 
small graphs. This is why Bipartite graph matching [24], [25] 
has appeared o be one of the newest methods presented to 
solve the Graph Edit Distance in a sub-optimal way. 
Experimental validation shows that, nowadays, it is one of the 
best sub-optimal algorithms since it obtains a good 
approximation of the distance in cubic computational cost. 
Interesting surveys on graph matching are [3], [4] and [5]. 

 

IV. DEFINING THE GRAPH EDIT DISTANCE AS A TRUE 
DISTANCE 

A distance, also called a metric, is a function that defines a 
dissimilarity between elements of a set. The domain is [0,∞) 
and it holds the following restrictions for all elements in the 
set [26]: 

 
 1) Non-negativity: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 ≥ 0. 
 2) Identity of indiscernibles: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 = 0 ⇔ 𝑥 = 𝑦. 
 3) Symmetry: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 =  𝑑𝑖𝑠𝑡 𝑦, 𝑥            (4) 
 4) Triangle inequality: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 ≤  𝑑𝑖𝑠𝑡 𝑥, 𝑧 + 𝑑𝑖𝑠𝑡 𝑥, 𝑧  

 
In some cases, it is needed to relax these restrictions and the 

resulting functions are not called distance but pseudo-distance, 
quasi-distance, meta-distance or semi-distance, depending on 
which restriction is violated and how it is violated [26]. 

All in all, and independently of the definition of the edit 
costs, it was demonstrated in [7] that if we wish the Graph 
Edit Distance to be defined as a true distance function, it is 
needed to assure the whole edit operations in the edit path 
used to deduct the final distance (equation 3) fulfil the four 
properties in the following equation 5. In these equations, we 
suppose that the edit path generates correspondence 𝑓!,! such 
that 𝑓!,! 𝑣!

! = 𝑣!
! and 𝑓!,! 𝑣!

! = 𝑣!
!. 

 
 1) Non-negativity:  C!" ≥ 0 and C!" ≥ 0 . 
 2) Identity of indiscernibles: 
       𝐶!" 𝑣!

!, 𝑣!
! = 0 ⇔  γ! 𝑣!

! = γ! 𝑣!
!  

       𝐶!" 𝑒!"
! , 𝑒!"

! = 0 ⇔  γ! 𝑒!"
! = γ! 𝑒!"

!  
3) Symmetry: 
      C!" 𝑣!

!, 𝑣!
! = C!" 𝑣!!

! , 𝑣!!
!  ⇔  γ! 𝑣!

! = γ! 𝑣!!
!          (5) 

where 𝑣!
! ∈ 𝛴!

! − Σ!
!, 𝑣!

! ∈ Σ!
!, 𝑣!!

! ∈ Σ!
! and 𝑣!!

! ∈ 𝛴!
! − Σ!

! 

      C!" 𝑒!"
! , 𝑒!"

! = C!" 𝑒!!!!
! , 𝑒!!!!

!  ⇔  γ! 𝑒!"
! = γ! 𝑒!!!!

!  
where 𝑒!"

! ∈ 𝛴!
! − Σ!

!, 𝑒!"
! ∈ Σ!

!, 𝑒!!!!
! ∈ Σ!

! and 𝑒!!!!
! ∈ 𝛴!

! − Σ!
! 

4) Triangle inequality: 
     C!" 𝑣!

!, 𝑣!
! ≤ C!" 𝑣!

!, 𝑣!!
! + C!" 𝑣!!

! , 𝑣!
!  

where 𝑣!
! ∈ 𝛴!

! − Σ!
!, 𝑣!

! ∈ 𝛴!
! − Σ!

!  𝑣!!
! ∈ Σ!

! and 𝑣!!
! ∈ Σ!

! 
     C!" 𝑒!"

! , 𝑒!"
! ≤ C!" 𝑒!!

! , 𝑒!!!!
! + C!" 𝑒!!!!

! , 𝑒!"
!  

where 𝑒!"
! ∈ 𝛴!

! − Σ!
!, 𝑒!"

! ∈ 𝛴!
! − Σ!

!  𝑒!!!!
! ∈ Σ!

! and 𝑒!!!!
! ∈ Σ!

! 
For all cited references, functions in table 1 are defined as 

distances, and constants as real positive numbers. For this 
reason, if the Graph Edit Distance cannot be defined as a true 
distance, it is due to the relations between these functions and 
constants. Considering the five options proposed in table 1, we 
realise that the second and third ones do not hold the triangle 
inequality and therefore cannot be considered as distances. It 
is really difficult to analyse the first option since being a 
distance or not depends on the specific distance values. The 
fourth option is a distance only if it is guaranteed that the 
whole substitution operations in the edit path hold: 

 
𝑑! 𝑣!

!, 𝑣!
! ≤ 2 · 𝐾! and 𝑑!(𝑒!"

! , 𝑒!"
! ) ≤ 2 · 𝐾! (6) 

That is, we only have to analyse if the triangle inequality 
of equation 5 is fulfilled. Finally, the last option is almost the 
same than the third one and it is a true distance if constant 
costs are defined such that, 
 

𝐾!" ≤ 2 · 𝐾! and 𝐾!" ≤ 2 · 𝐾! (7) 

Since the fourth option is both the most used and the one 
that can be defined as distance or not, depending on the costs, 
from now on, we concretise on this specific case. 

 

V. DEDUCTING THE EDIT COSTS THROUGH A GROUND 
TRUTH CORRESPONDENCE 

Note that given a pair of graphs and an optimal 
correspondence (the one that minimise 𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 in equation 
3), we can analyse if the used edit costs make the Graph Edit 
Disstance to be a true distance or not. Moreover, each 
combination of edit costs generates a different optimal 
correspondence and a Graph Edit Distance value. For this 
reason, the problem of knowing which are the edit costs that 
make the Graph Edit Distance to be a true distance is a 
chicken egg problem. Given some edit costs, we need to 
compute the optimal correspondence to deduct if the four 
distance restrictions are violated (equation 5), but to deduct 
the proper edit costs, we need the optimal correspondence. 

To solve this problem, we propose to use a ground truth 
correspondence. That is, given a pair of attributed graphs, and 
independently of the edit costs, a human or another method 
deducts which is the “best” correspondence. Thus, we 
consider that the Graph Edit Distance is a true distance if the 
four properties in equation 5 are fulfilled assuming that 𝑓!,! in 
equation 5 is the ground truth correspondence. 



Given an application that involves an attributed graph 
database of 𝑀 graphs in which the computation of the Graph 
Edit Distance is needed, the same edit costs have to be used in 
the whole process and graphs. Thus, we generalise equation 6 
considering that we have several graphs and also introducing 
the ground truth concept. We conclude that the Graph Edit 
Distance is a true distance given some specific insertion and 
deletion costs for nodes if the following equation holds, 

 
∀ 𝑣!

! ∈ 𝛴!
! − Σ!

!  given 𝑝: 1. .𝑀 and 𝑎: 1. . (R!  +  R!) 

such that  𝑓!,! 𝑣!
! = 𝑣!

! & 𝑣!
! ∈ 𝛴!

! − Σ!
!  

leads to 𝑑! 𝑣!
!, 𝑣!

! ≤ 2 · 𝐾! 

being 𝑓!,! the ground-truth correspondence 

 

(8) 

 
Similarly happens for the edges, 
 
∀ 𝑒!"

! ∈ 𝛴!
! − Σ!

!  given 𝑝: 1. .𝑀 and 𝑎, 𝑏: 1. . (R!  +

 R!) such that  f!
!,! 𝑒!"

! = 𝑒!"
!  & 𝑒!

!" ∈ 𝛴!
! − Σ!

!  

leads to 𝑑! 𝑒!"
! , 𝑒!"

! ≤ 2 · 𝐾! 

being f!
!,! the edge correspondence deducted from the 

ground-truth correspondence 𝑓!,!. 

 

(9) 

In the next section we empirically test if the costs that 
obtain the best recognition ration and the minimum Hamming 
distance between the ground truth correspondence and the 
obtained correspondence make the Graph Edit Distance a true 
distance or only a pseudo-distance since the triangle inequality 
is not hold. 

 

VI. EXPERIMENTATION 

We used five graph databases that are organised in 
registers such that each register is composed of a pair of 
graphs and a ground truth correspondence between their 
nodes. These databases were initially used to automatically 
learn insertion and deletion edit costs in [19] and [20], and are 
publically available in [27]. These databases do not have 
attributes on the edges and therefore, we only analyse the 
insertion and deletion costs on nodes. Nonetheless, what can 
be deducted on nodes could be easily extrapolated to edges. 
Graphs in the first three databases, Letter Low, Letter Med and 
Letter High, represent hand written characters, which nodes 
have as only attribute the (x,y) position of the junctions of 
strokes in the character, and edges being the strokes. Graphs in 
House-Hotel database and Tarragona RotationZoom database 
have been extracted from images. Their nodes represent 
salient points in the images with their attributes being the 

features obtained by the point extractor. Edges have been 
deducted by Delaunay triangulation. 

Table 2 shows the position of the quartiles, the mean and 
also half of the maximum values of the node substitution costs 
𝑑! 𝑣!

!, 𝑣!
!  given the whole correspondences. Clearly, if we 

want to hold equation 8, the insertion and deletion costs have 
to be defined such that 𝐾! ≥

!
!
𝑀𝑎𝑥.  

TABLE II.  NODE SUBSTITUTION COSTS 

 Q1 Q2 Q3 Mean ½ Max 
Letter low 0.08 0.12 0.17 0.20 1.68 
Letter med 0.38 0.58 0.84 0.64 1.98 
Letter high 0.28 0.48 0.71 0.55 1.98 
House Hotel 2.82 4.00 5.29 4.08 5.75 

Rotation Zoom 0 0 0.0021 0.0145 0.5 
 
 
For the sake of clarification, Figure 1 shows the histogram 

of 𝑑! 𝑣!
!, 𝑣!

!  given the whole databases with the quartiles 
and the mean values. 

 
Figure 1. Histogram of node substitution costs in the five 

databases. In greed, we show the first three quartiles and in red 
the mean values. 

 

 

 



 

 

 
We have used an error-tolerant graph-matching algorithm 

called Fast Bipartite [25] available in [28] to compute the 
optimal correspondence and the distance between the 
attributed graphs. 

Table 3 shows the Hamming distance between the ground-
truth correspondence and the automatically obtained 
correspondence when 𝐾! = 𝑄1, 𝐾! = 𝑄2, 𝐾! = 𝑄3, 𝐾! =
𝑀𝑒𝑎𝑛, and 𝐾! =

!
!
𝑀𝑎𝑥. Specific values are shown in table 2. 

The Hamming distance is computed as the number of node 
mappings that are different between both correspondences. 
Therefore, the lower these values, the better the performance. 

We realise that the lowest Hamming distances are achieved 
in the positions of the insertion and deletion edit costs such 
that the triangle inequality is not hold, since these lowest 
Hamming distances are achieved in the first three quartiles, 
which are always smaller than !

!
𝑀𝑎𝑥. 

 

TABLE III.  HAMMING DISTANCE  

 Q1 Q2 Q3 Mean ½ Max 
Letter low 0.6 0.6 0.6 0.6 0.7 
Letter med 0.9 0.9 1.0 0.9 1.0 
Letter high 0.9 0.8 0.9 0.9 1.2 
House Hotel 0.61 0.71 0.78 0.72 0.80 

Rotation Zoom 0.46 0.46 0.27 0.34 0.39 
 
Table 4 shows the classification ratio using the same 

conditions than the previous experiments. To compute the 
classification ratio, we have used the reference and test set of 
each database and the 1-Nearest Neighbour classification 
algorithm. Recall that the House Hotel database does not have 
classes. It seems as the classification ratio performs similar to 
the Hamming distance. That is, the best values are achieved 
when the insertion and deletion edit costs are smaller than 
!
!
𝑀𝑎𝑥. 

The dependence between the recognition ratio and the 
Hamming distance between the ground truth and the obtained 
correspondences was explored in [20] while learning the edit 
costs. In that paper, it was empirically demonstrated that 
decreasing the Hamming distance leads the recognition ratio 
to increase. We have validated this dependence again. 
Moreover, the experimental validation in that paper shows that 
the optimisation method they presented converged to some 
negative insertion and deletion costs. Again, these values 
make the Graph Edit Distance not to be a truly defined 
distance. 

 

TABLE IV.  CLASSIFICATION RATIO 

 Q1 Q2 Q3 Mean ½ Max 
Letter low 0.97 0.97 0.97 0.97 0.93 
Letter med 0.83 0.86 0.86 0.86 0.84 
Letter high 0.74 0.82 0.83 0.82 0.74 
House Hotel - - - - - 

Rotation Zoom 0.2 0.2 0.35 0.3 0.1 
 
Finally, in table 5 we show the average runtime (in 

milliseconds) to compute one graph-to-graph comparison. We 
appreciate there is no relation, in general, between the 
insertion and deletion edit costs and the runtime. 

 

TABLE V.  AVERAGE RUNTIME TO MATCH A PAIR OF GRAPHS  

 Q1 Q2 Q3 Mean ½ Max 
Letter low 0.61 0.60 0.59 0.58 0.60 
Letter med 0.63 0.59 0.60 0.59 0.63 
Letter high 0.63 0.59 0.59 0.59 0.64 
House Hotel 4.8 5.1 5.4 5.1 5.5 

Rotation Zoom 15 15 10 8 7 
 
 
 



VII. CONCLUSIONS 

Graph Edit Distance is nowadays the most widely used 
function to compare two graphs and to obtain a distance and a 
node correspondence. This function does not only depend on a 
pair of graphs, but also on the insertion and deletion edit costs 
on nodes and edges. These costs are usually defined as 
constants, and depending on their definition, we can consider 
the Graph Edit Distance is a true distance or not. The fact of 
not being a true distance can influence on the performance in 
some applications. Experimental validation has shown us that 
the insertion and deletion costs that obtains the lowest 
Hamming distances and the highest classification ratios are the 
ones where the triangle inequality is not hold and therefore, 
we conclude the Graph Edit Distance is not truly a distance. 
Therefore, some assumptions are not valid any more, for 
instance that 𝐺𝐸𝐷 𝐺!,𝐺! ≥ 𝐺𝐸𝐷 𝐺!,𝐺! + 𝐺𝐸𝐷 𝐺! ,𝐺! , 
which are commonly assumed on some applications such as 
graph retrieval. 
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