
SERRATOSA, F., CORTÉS, X., and MORENO, C. 2016. Graph edit distance or graph edit pseudo-distance? In Robles-
Kelly, A., Loog, M., Biggio, B., Escolano, F. and Wilson, R. (eds.). Structural, syntactic, and statistical pattern

recognition: proceedings of the 2016 Joint International Association of Pattern Recognition (IAPR) International
workshops on Statistical techniques in pattern recognition (SPR) and Structural and syntactic pattern recognition

(SSPR) (S+SSPR 2020), 29 November - 2 December 2016, Merida, Mexico. Lecture notes in computer science, 10029.
Cham: Springer [online], pages 530-540. Available from: https://doi.org/10.1007/978-3-319-49055-7_47.

Graph edit distance or graph edit pseudo-
distance?

SERRATOSA, F., CORTÉS, X., and MORENO, C.

2016

This document was downloaded from
https://openair.rgu.ac.uk

The final authenticated version is available online at https://doi.org/10.1007/978-3-319-49055-7_47.
This pre-copyedited version is made available under the Springer terms of reuse for AAMs:
https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use

https://doi.org/10.1007/978-3-319-49055-7_47
https://doi.org/10.1007/978-3-319-49055-7_47
https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use

Graph Edit Distance or Graph Edit Pseudo-Distance?
Francesc Serratosa

Universitat Rovira i Virgili
Tarragona, Catalonia, Spain
francesc.serratosa@urv.cat

Carlos Francisco Moreno-García
Universitat Rovira i Virgili
Tarragona, Catalonia, Spain

carlsofrancisco.moreno@urv.cat

Xavier Cortés
Universitat Rovira I Virgili
Tarragona, Catalonia, Spain

xavier.cortes@.urv.cat

Abstract— Graph Edit Distance has been intensively used
since its appearance in 1983. This distance is really useful if we
want to compare a pair of attributed graph from any domain and
obtain not only a distance, but also the best correspondence
between nodes of the involved graphs. A lot of efforts have been
made to define fast and accurate optimal or sub-optimal error-
tolerant graph matching algorithms, since it is known that the
exact computation of the Graph Edit Distance has an exponential
computational cost. In this paper, we want to analyse if the
Graph Edit Distance can be really considered a distance or a
pseudo-distance, since some restrictions of the distance function
are not fulfilled. Distinguishing between both cases is important
because being a distance is a restriction in some methods to
return exact instead of approximate results. For instance, it
happens in some graph retrieval techniques. Experimental
validation shows us that in most of the cases, it is not correct to
denominate it a distance, but a pseudo-distance instead, since the
triangle inequality is not fulfilled. Therefore, in these cases, the
graph retrieval techniques not always return the optimal graph.

Keywords: Graph Edit Distance, Edit Cost, Distance function.

I. INTRODUCTION

Attributed graphs have been of crucial importance in
pattern recognition throughout more than four decades [1], [2].
They have been used to model several kinds of problems in
some pattern recognition fields such as object recognition,
scene view alignment, multiple object alignment, object
characterization, among a great amount of other applications.
Interesting reviews of techniques and applications are [3], [4]
and [5]. If elements in pattern recognition are modelled
through attributed graphs, error-tolerant graph-matching
algorithms are needed that aim to compute a matching between
nodes of two attributed graphs that minimizes some kind of
objective function. To that aim, one of the most widely used
methods to evaluate an error correcting graph isomorphism is
the Graph Edit Distance [1], [2], [6].

Graph Edit Distance needs two main input parameters,
which are the pair of attributed graphs to be compared and also
other calibration parameters. These parameters have to be
tuned to maximise a recognition ratio in a classification
scenario or simply to minimise the Hamming distance between
a ground-truth correspondence between nodes of both graphs
and the obtained correspondence. It turns out that little research
has been done to analyse if really the Graph Edit Distance is a
distance or simply a similarity function that could be classified
as a pseudo-distance, since some distance restrictions are not

fulfilled. Reference [7] is the only paper related on this idea,
and it shows in which conditions of these calibration
parameters the Graph Edit Distance is really a distance.

The importance to the Graph Edit Distance being a true
distance has an influence on some applications. As an
example, in [8], [9] and [10] they present a method to retrieve
graphs in a database. They suppose that given three graphs,
the triangle inequality is fulfilled and thanks to this
assumption, some comparisons were not needed to be
performed. It turns out that if the Graph Edit Distance is not a
distance, then the triangle inequality is not guaranteed, and
then some graphs that would have to be explored are not
considered, making the method to become sub-optimal.

The aim of this paper is to empirically analyse if the cases
that the recognition ratio is maximised or the Hamming
distance between the ground truth and the obtained
correspondence are minimised are the ones in which the
restrictions between parameters imposed by the distance
definition are hold.

The outline of the paper is as follows; in sections 2 and 3,
we define the attributed graphs and the Graph Edit Distance. In
sections 4 and 5, we explain the restrictions needed to be a
function a distance and we relate these restrictions on the
specific case of the Graph Edit Distance. In Section 5, we show
the experimental validation to deduct the parameters that
maximise the classification ratio or minimise the Hamming
distance. Finally, Section 6 concludes the paper.

II. GRAPH & CORRESPONDENCE BETWEEN GRAPHS

Let Δ! and Δ! denote the domains of possible values for
attributed vertices and arcs, respectively. An attributed graph
(over Δ! and Δ!) is defined by a tuple G = (Σ!, Σ!, γ!, γ!),
where Σ! = {v! | k = 1,… ,R} is the set of vertices (or
nodes), Σ! = e!" i, j ∈ 1,… ,R is the set of edges (or arcs),
γ!: Σ! → Δ! assigns attribute values to vertices and γ!: Σ! →
Δ! assigns attribute values to edges.

Let G! = (Σ!
!, Σ!

!, γ!
!, γ!

!) and G! = (Σ!
!, Σ!

!, γ!
!, γ!

!) be two
attributed graphs of order R! and R!. To allow maximum
flexibility in the matching process, graphs can be extended
with null nodes [1] to be of order R! + R!. We refer to null
nodes of G! and G! by Σ!

! ⊆ Σ!
! and Σ!

! ⊆ Σ!
! respectively. Let

T be a set of all possible correspondences between two vertex
sets Σ!

! and Σ!
!. Correspondence 𝑓!,!: Σ!

! → Σ!
!, assigns each

vertex of G! to only one vertex of G!. The correspondence

between edges, denoted by 𝑓!
!,!, is defined accordingly to the

correspondence of their terminal nodes.

𝑓!
!,! 𝑒!"

! = 𝑒!"
! ⇒ 𝑓!,! 𝑣!

! = 𝑣!
! ∧ 𝑓!,! 𝑣!

! = 𝑣!
!

𝑣!
!, 𝑣!

! ∈ Σ!
! − Σ!

! and 𝑣!
! , 𝑣!

! ∈ Σ!
! − Σ!

!

(1)

We define non-existent or null edges by Σ!
! ⊆ Σ!

! and
Σ!
! ⊆ Σ!

!.

III. GRAPH EDIT DISTANCE

The basic idea behind the Graph Edit Distance is to define
a dissimilarity measure between two graphs. This dissimilarity
is defined as the minimum amount of distortion required to
transform one graph into the other. To this end, a number of
distortion or edit operations, consisting of insertion, deletion
and substitution of both nodes and edges are defined. Then,
for every pair of graphs (G! and G!), there is a sequence of
edit operations, or an edit path editPath G!,G! = ε!,… , ε!
(where each ε! denotes an edit operation) that transforms one
graph into the other. In general, several edit paths may exist
between two given graphs. This set of edit paths is denoted by
ϑ. To quantitatively evaluate which edit path is the best, edit
cost functions are introduced. The basic idea is to assign a
penalty cost to each edit operation according to the amount of
distortion that it introduces in the transformation.

Each editPath G!,G! ∈ ϑ can be related to an univocal
correspondence 𝑓!,! ∈ T between the involved graphs. This
way, each edit operation assigns a node of the first graph to a
node of the second graph. Deletion and insertion operations
are transformed to assignations of a non-null node of the first
or second graph to a null node of the second and first graph.
Substitutions simply indicate node-to-node assignations.
Using this transformation, given two graphs, G! and G!, and a
correspondence between their nodes, 𝑓!,!, the graph edit cost
is given by [1]:

𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 𝐺!,𝐺! , 𝑓!,! =

𝐶!" 𝑣!
!, 𝑣!

!

!!
!∈!!

!!!!
!

!!
!∈!!

!!!!
!

+ 𝐶!" 𝑒𝑎𝑏
𝑝 , 𝑒𝑖𝑗

𝑞

!!"
! ∈!!

!!!!
!

!!"
!∈!!

!!!!
!

+

𝐶!" 𝑣!
!, 𝑣!

!

!!
!∈!!

!!!!
!

!!
!∈!!

!

+ 𝐶!" 𝑣!
!, 𝑣!

!

!!
!∈!!

!

!!
!∈!!

!!!!
!

+

𝐶!" 𝑒𝑎𝑏
𝑝 , 𝑒𝑖𝑗

𝑞

!!"
! ∈!!

!!!!
!

!!"
!∈!!

!

+ 𝐶!" 𝑒𝑎𝑏
𝑝 , 𝑒𝑖𝑗

𝑞

!!"
! ∈!!

!

!!"
!∈!!

!!!!
!

being 𝑓!,! 𝑣!
! = 𝑣!

! and 𝑓!
!,! 𝑒!"

! = 𝑒!!
!

(2)

where C!" is the cost of substituting node v!
! of G! by node

f!,! v!
! of G!, C!" is the cost of deleting node v!

! of G! and
C!" is the cost of inserting node v!

! of G!. Equivalently for
edges, C!" is the cost of substituting edge e!"

! of graph G! by

edge f!
!,! e!"

! of G!, C!" is the cost of assigning edge e!"
! of

G! to a non-existing edge of G! and C!" is the cost of
assigning edge e!"

! of G! to a non-existing edge of G!.
Finally, the Graph Edit Distance is defined as the

minimum cost under any correspondence in T:
𝐺𝐸𝐷 𝐺!,𝐺! = min

!!,!∈!
𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 𝐺!,𝐺! , 𝑓!,! (3)

Using this definition, the Graph Edit Distance essentially
depends on C!", C!", C!", C!", C!" and C!" functions. Several
definitions of these functions exist. Table 1 summarises the
five different configurations presented until today.

The first option [11], [12], [13], [14] are the ones where
the whole costs are defined as functions that depend on the
involved attributes and also on other learned or general
knowledge. Attributes are density functions instead of vectors
of attributes. The second option makes the Graph Edit
Distance to be directly related to the maximal common sub-
graph. That is, in [15], authors demonstrate that computing the
Graph Edit Distance is exactly the same than deducting the
maximal common sub-graph. In the third option, [16], authors
assume that the graphs are complete, and a non-existing edge
is an edge with a “null” attribute. In this case, the cost of
deleting and inserting an edge is encoded in the edge
substitution cost. Inserting and deleting nodes have a constant
cost, 𝐾!. With this definition, authors describe several classes
of costs that equation 3 deducts the same correspondence. The
fourth option might be the most used one [1], [17], [18].
Substitution costs are defined as distances between vectors of
attributes, usually the Euclidean distance. Insertion and
deletion costs are constants, 𝐾! and 𝐾!, that have been
manually tested or automatically learned [19], [20]. Finally,
the last option is used in fingerprint recognition [21]. It is
similar to the previous option, except from the substitution
costs that are constants. Nodes represent minutiae and edges
are the relations between them. If a specific distance between
minutiae is lower than a threshold, then a zero is imposed as a
substitution cost. Otherwise, this cost takes a constant value
𝐾!". The same happens with the edges that take a constant
value 𝐾!".

TABLE I. EXAMPLES OF GRAPH EDIT COSTS

Ref. 𝐶!" 𝐶!" 𝐶!" 𝐶!" 𝐶!" 𝐶!"
[11]
[12]
[13]
[14]

𝑑!(𝑣!
! , 𝑣!

!) 𝑓!"(𝑣!
!) 𝑓!"(𝑣!

!) 𝑑!(𝑒!"
! , 𝑒!"

!) 𝑓!"(𝑒!"
!) 𝑓!"(𝑒!"

!)

[15] 0,∞ 1 1 0,∞ 0 0
[16] 𝑑!(𝑣!

! , 𝑣!
!) 𝐾! 𝐾! 𝑑!(𝑒!"

! , 𝑒!"
!) 0 0

[1]
[17]
[18]

𝑑!(𝑣!
! , 𝑣!

!) 𝐾! 𝐾! 𝑑!(𝑒!"
! , 𝑒!"

!) 𝐾! 𝐾!

[21] 0,𝐾!" 𝐾! 𝐾! 0,𝐾!" 𝐾! 𝐾!

It is worth noting that all of the cases, except for the first

one, the insertion and deletion costs on nodes are considered
to be the same, 𝐾!. The same happens for edges, 𝐾!.
Nevertheless, in the string edit distance, also known as
Levenshtein distance [22], insertion and deletion costs might

be considered different depending on the application. The
most usual application is an automatic writing correction, in
which the possibility of missing a character is different than
accidentally adding an extra character [23].

The optimal computation of the Graph Edit Distance is
usually carried out by means of a tree search algorithm, which
explores the space of all possible mappings of the nodes and
edges of the first graph to the nodes and edges of the second
graph. A widely used method is based on the A* algorithm,
for instance [18]. Unfortunately, the computational complexity
of this algorithm, although a heuristic function can be used to
reduce the space search, is exponential in the number of nodes
of the involved graphs. This means that the running time may
be non-admissible in some applications, even for reasonably
small graphs. This is why Bipartite graph matching [24], [25]
has appeared o be one of the newest methods presented to
solve the Graph Edit Distance in a sub-optimal way.
Experimental validation shows that, nowadays, it is one of the
best sub-optimal algorithms since it obtains a good
approximation of the distance in cubic computational cost.
Interesting surveys on graph matching are [3], [4] and [5].

IV. DEFINING THE GRAPH EDIT DISTANCE AS A TRUE
DISTANCE

A distance, also called a metric, is a function that defines a
dissimilarity between elements of a set. The domain is [0,∞)
and it holds the following restrictions for all elements in the
set [26]:

 1) Non-negativity: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 ≥ 0.
 2) Identity of indiscernibles: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 = 0 ⇔ 𝑥 = 𝑦.
 3) Symmetry: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 = 𝑑𝑖𝑠𝑡 𝑦, 𝑥 (4)
 4) Triangle inequality: 𝑑𝑖𝑠𝑡 𝑥, 𝑦 ≤ 𝑑𝑖𝑠𝑡 𝑥, 𝑧 + 𝑑𝑖𝑠𝑡 𝑥, 𝑧

In some cases, it is needed to relax these restrictions and the

resulting functions are not called distance but pseudo-distance,
quasi-distance, meta-distance or semi-distance, depending on
which restriction is violated and how it is violated [26].

All in all, and independently of the definition of the edit
costs, it was demonstrated in [7] that if we wish the Graph
Edit Distance to be defined as a true distance function, it is
needed to assure the whole edit operations in the edit path
used to deduct the final distance (equation 3) fulfil the four
properties in the following equation 5. In these equations, we
suppose that the edit path generates correspondence 𝑓!,! such
that 𝑓!,! 𝑣!

! = 𝑣!
! and 𝑓!,! 𝑣!

! = 𝑣!
!.

 1) Non-negativity: C!" ≥ 0 and C!" ≥ 0 .
 2) Identity of indiscernibles:
 𝐶!" 𝑣!

!, 𝑣!
! = 0 ⇔ γ! 𝑣!

! = γ! 𝑣!
!

 𝐶!" 𝑒!"
! , 𝑒!"

! = 0 ⇔ γ! 𝑒!"
! = γ! 𝑒!"

!
3) Symmetry:
 C!" 𝑣!

!, 𝑣!
! = C!" 𝑣!!

! , 𝑣!!
! ⇔ γ! 𝑣!

! = γ! 𝑣!!
! (5)

where 𝑣!
! ∈ 𝛴!

! − Σ!
!, 𝑣!

! ∈ Σ!
!, 𝑣!!

! ∈ Σ!
! and 𝑣!!

! ∈ 𝛴!
! − Σ!

!

 C!" 𝑒!"
! , 𝑒!"

! = C!" 𝑒!!!!
! , 𝑒!!!!

! ⇔ γ! 𝑒!"
! = γ! 𝑒!!!!

!
where 𝑒!"

! ∈ 𝛴!
! − Σ!

!, 𝑒!"
! ∈ Σ!

!, 𝑒!!!!
! ∈ Σ!

! and 𝑒!!!!
! ∈ 𝛴!

! − Σ!
!

4) Triangle inequality:
 C!" 𝑣!

!, 𝑣!
! ≤ C!" 𝑣!

!, 𝑣!!
! + C!" 𝑣!!

! , 𝑣!
!

where 𝑣!
! ∈ 𝛴!

! − Σ!
!, 𝑣!

! ∈ 𝛴!
! − Σ!

! 𝑣!!
! ∈ Σ!

! and 𝑣!!
! ∈ Σ!

!
 C!" 𝑒!"

! , 𝑒!"
! ≤ C!" 𝑒!!

! , 𝑒!!!!
! + C!" 𝑒!!!!

! , 𝑒!"
!

where 𝑒!"
! ∈ 𝛴!

! − Σ!
!, 𝑒!"

! ∈ 𝛴!
! − Σ!

! 𝑒!!!!
! ∈ Σ!

! and 𝑒!!!!
! ∈ Σ!

!
For all cited references, functions in table 1 are defined as

distances, and constants as real positive numbers. For this
reason, if the Graph Edit Distance cannot be defined as a true
distance, it is due to the relations between these functions and
constants. Considering the five options proposed in table 1, we
realise that the second and third ones do not hold the triangle
inequality and therefore cannot be considered as distances. It
is really difficult to analyse the first option since being a
distance or not depends on the specific distance values. The
fourth option is a distance only if it is guaranteed that the
whole substitution operations in the edit path hold:

𝑑! 𝑣!

!, 𝑣!
! ≤ 2 · 𝐾! and 𝑑!(𝑒!"

! , 𝑒!"
!) ≤ 2 · 𝐾! (6)

That is, we only have to analyse if the triangle inequality
of equation 5 is fulfilled. Finally, the last option is almost the
same than the third one and it is a true distance if constant
costs are defined such that,

𝐾!" ≤ 2 · 𝐾! and 𝐾!" ≤ 2 · 𝐾! (7)

Since the fourth option is both the most used and the one
that can be defined as distance or not, depending on the costs,
from now on, we concretise on this specific case.

V. DEDUCTING THE EDIT COSTS THROUGH A GROUND
TRUTH CORRESPONDENCE

Note that given a pair of graphs and an optimal
correspondence (the one that minimise 𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡 in equation
3), we can analyse if the used edit costs make the Graph Edit
Disstance to be a true distance or not. Moreover, each
combination of edit costs generates a different optimal
correspondence and a Graph Edit Distance value. For this
reason, the problem of knowing which are the edit costs that
make the Graph Edit Distance to be a true distance is a
chicken egg problem. Given some edit costs, we need to
compute the optimal correspondence to deduct if the four
distance restrictions are violated (equation 5), but to deduct
the proper edit costs, we need the optimal correspondence.

To solve this problem, we propose to use a ground truth
correspondence. That is, given a pair of attributed graphs, and
independently of the edit costs, a human or another method
deducts which is the “best” correspondence. Thus, we
consider that the Graph Edit Distance is a true distance if the
four properties in equation 5 are fulfilled assuming that 𝑓!,! in
equation 5 is the ground truth correspondence.

Given an application that involves an attributed graph
database of 𝑀 graphs in which the computation of the Graph
Edit Distance is needed, the same edit costs have to be used in
the whole process and graphs. Thus, we generalise equation 6
considering that we have several graphs and also introducing
the ground truth concept. We conclude that the Graph Edit
Distance is a true distance given some specific insertion and
deletion costs for nodes if the following equation holds,

∀ 𝑣!

! ∈ 𝛴!
! − Σ!

! given 𝑝: 1. .𝑀 and 𝑎: 1. . (R! + R!)

such that 𝑓!,! 𝑣!
! = 𝑣!

! & 𝑣!
! ∈ 𝛴!

! − Σ!
!

leads to 𝑑! 𝑣!
!, 𝑣!

! ≤ 2 · 𝐾!

being 𝑓!,! the ground-truth correspondence

(8)

Similarly happens for the edges,

∀ 𝑒!"

! ∈ 𝛴!
! − Σ!

! given 𝑝: 1. .𝑀 and 𝑎, 𝑏: 1. . (R! +

 R!) such that f!
!,! 𝑒!"

! = 𝑒!"
! & 𝑒!

!" ∈ 𝛴!
! − Σ!

!

leads to 𝑑! 𝑒!"
! , 𝑒!"

! ≤ 2 · 𝐾!

being f!
!,! the edge correspondence deducted from the

ground-truth correspondence 𝑓!,!.

(9)

In the next section we empirically test if the costs that
obtain the best recognition ration and the minimum Hamming
distance between the ground truth correspondence and the
obtained correspondence make the Graph Edit Distance a true
distance or only a pseudo-distance since the triangle inequality
is not hold.

VI. EXPERIMENTATION

We used five graph databases that are organised in
registers such that each register is composed of a pair of
graphs and a ground truth correspondence between their
nodes. These databases were initially used to automatically
learn insertion and deletion edit costs in [19] and [20], and are
publically available in [27]. These databases do not have
attributes on the edges and therefore, we only analyse the
insertion and deletion costs on nodes. Nonetheless, what can
be deducted on nodes could be easily extrapolated to edges.
Graphs in the first three databases, Letter Low, Letter Med and
Letter High, represent hand written characters, which nodes
have as only attribute the (x,y) position of the junctions of
strokes in the character, and edges being the strokes. Graphs in
House-Hotel database and Tarragona RotationZoom database
have been extracted from images. Their nodes represent
salient points in the images with their attributes being the

features obtained by the point extractor. Edges have been
deducted by Delaunay triangulation.

Table 2 shows the position of the quartiles, the mean and
also half of the maximum values of the node substitution costs
𝑑! 𝑣!

!, 𝑣!
! given the whole correspondences. Clearly, if we

want to hold equation 8, the insertion and deletion costs have
to be defined such that 𝐾! ≥

!
!
𝑀𝑎𝑥.

TABLE II. NODE SUBSTITUTION COSTS

 Q1 Q2 Q3 Mean ½ Max
Letter low 0.08 0.12 0.17 0.20 1.68
Letter med 0.38 0.58 0.84 0.64 1.98
Letter high 0.28 0.48 0.71 0.55 1.98
House Hotel 2.82 4.00 5.29 4.08 5.75

Rotation Zoom 0 0 0.0021 0.0145 0.5

For the sake of clarification, Figure 1 shows the histogram

of 𝑑! 𝑣!
!, 𝑣!

! given the whole databases with the quartiles
and the mean values.

Figure 1. Histogram of node substitution costs in the five

databases. In greed, we show the first three quartiles and in red
the mean values.

We have used an error-tolerant graph-matching algorithm

called Fast Bipartite [25] available in [28] to compute the
optimal correspondence and the distance between the
attributed graphs.

Table 3 shows the Hamming distance between the ground-
truth correspondence and the automatically obtained
correspondence when 𝐾! = 𝑄1, 𝐾! = 𝑄2, 𝐾! = 𝑄3, 𝐾! =
𝑀𝑒𝑎𝑛, and 𝐾! =

!
!
𝑀𝑎𝑥. Specific values are shown in table 2.

The Hamming distance is computed as the number of node
mappings that are different between both correspondences.
Therefore, the lower these values, the better the performance.

We realise that the lowest Hamming distances are achieved
in the positions of the insertion and deletion edit costs such
that the triangle inequality is not hold, since these lowest
Hamming distances are achieved in the first three quartiles,
which are always smaller than !

!
𝑀𝑎𝑥.

TABLE III. HAMMING DISTANCE

 Q1 Q2 Q3 Mean ½ Max
Letter low 0.6 0.6 0.6 0.6 0.7
Letter med 0.9 0.9 1.0 0.9 1.0
Letter high 0.9 0.8 0.9 0.9 1.2
House Hotel 0.61 0.71 0.78 0.72 0.80

Rotation Zoom 0.46 0.46 0.27 0.34 0.39

Table 4 shows the classification ratio using the same

conditions than the previous experiments. To compute the
classification ratio, we have used the reference and test set of
each database and the 1-Nearest Neighbour classification
algorithm. Recall that the House Hotel database does not have
classes. It seems as the classification ratio performs similar to
the Hamming distance. That is, the best values are achieved
when the insertion and deletion edit costs are smaller than
!
!
𝑀𝑎𝑥.

The dependence between the recognition ratio and the
Hamming distance between the ground truth and the obtained
correspondences was explored in [20] while learning the edit
costs. In that paper, it was empirically demonstrated that
decreasing the Hamming distance leads the recognition ratio
to increase. We have validated this dependence again.
Moreover, the experimental validation in that paper shows that
the optimisation method they presented converged to some
negative insertion and deletion costs. Again, these values
make the Graph Edit Distance not to be a truly defined
distance.

TABLE IV. CLASSIFICATION RATIO

 Q1 Q2 Q3 Mean ½ Max
Letter low 0.97 0.97 0.97 0.97 0.93
Letter med 0.83 0.86 0.86 0.86 0.84
Letter high 0.74 0.82 0.83 0.82 0.74
House Hotel - - - - -

Rotation Zoom 0.2 0.2 0.35 0.3 0.1

Finally, in table 5 we show the average runtime (in

milliseconds) to compute one graph-to-graph comparison. We
appreciate there is no relation, in general, between the
insertion and deletion edit costs and the runtime.

TABLE V. AVERAGE RUNTIME TO MATCH A PAIR OF GRAPHS

 Q1 Q2 Q3 Mean ½ Max
Letter low 0.61 0.60 0.59 0.58 0.60
Letter med 0.63 0.59 0.60 0.59 0.63
Letter high 0.63 0.59 0.59 0.59 0.64
House Hotel 4.8 5.1 5.4 5.1 5.5

Rotation Zoom 15 15 10 8 7

VII. CONCLUSIONS

Graph Edit Distance is nowadays the most widely used
function to compare two graphs and to obtain a distance and a
node correspondence. This function does not only depend on a
pair of graphs, but also on the insertion and deletion edit costs
on nodes and edges. These costs are usually defined as
constants, and depending on their definition, we can consider
the Graph Edit Distance is a true distance or not. The fact of
not being a true distance can influence on the performance in
some applications. Experimental validation has shown us that
the insertion and deletion costs that obtains the lowest
Hamming distances and the highest classification ratios are the
ones where the triangle inequality is not hold and therefore,
we conclude the Graph Edit Distance is not truly a distance.
Therefore, some assumptions are not valid any more, for
instance that 𝐺𝐸𝐷 𝐺!,𝐺! ≥ 𝐺𝐸𝐷 𝐺!,𝐺! + 𝐺𝐸𝐷 𝐺! ,𝐺! ,
which are commonly assumed on some applications such as
graph retrieval.

ACKNOWLEDGEMENTS
This research is supported by project DPI2013-42458-P

and TIN2013-47245-C2-2-R, and by Consejo Nacional de
Ciencia y Tecnología (CONACyT México).

REFERENCES
[1] A. Solé, F. Serratosa & A. Sanfeliu, On the Graph Edit Distance cost:

Properties and Applications, International Journal of Pattern Recognition
and Artificial Intelligence 26 (5), 1260004 [21 pages], 2012.

[2] Sanfeliu, A. and K.-S. Fu, A Distance measure between attributed
relational graphs for pattern recognition. IEEE transactions on systems,
man, and cybernetics, 1983. 13(3): p. 353-362.

[3] Donatello Conte, Pasquale Foggia, Carlo Sansone, Mario Vento: Thirty
Years Of Graph Matching In Pattern Recognition. IJPRAI 18(3): 265-
298 (2004).

[4] Mario Vento, “A long trip in the charming world of graphs for Pattern
Recognition, Pattern Recognition”, Available online 15 January 2014.

[5] P. Foggia, G. Percannella and M. Vento, Graph matching and learning in
Pattern Recognition in the last 10 years, International Journal of Pattern
Recognition and Artificial Intelligence, 2013.

[6] Gao, X., et al., A survey of graph edit distance. Pattern Analysis and
applications, 2010. 13(1): p. 113-129.

[7] Bunke, H., Allermann ,G., “Inexact graph matching for structural pattern
recognition”, Pattern Recognition Letters, 1983. 1(4): p. 245–253.

[8] He, L., et al., Graph matching for object recognition and recovery.
Pattern Recognition Letters, 2004. 37(7).

[9] F. Serratosa, X. Cortés & A. Solé, Component Retrieval based on a
Database of Graphs for Hand-Written Electronic-Scheme Digitalisation,
Expert Systems With Applications 40, pp: 2493 -2502, 2013.

[10] Berretti, S., Del Bimbo, A., Vicario, E.: Efficient Matching and Indexing
of Graph Models in Content-Based Retrieval. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1089-
1105, 2001.

[11] Wong, A. and M. You, Entropy and Distance of Random Graphs with
Application to Structural Pattern Recognition. Transaction on Pattern
Analysis and Machine Intelligence, 1985. PAMI-7(5): p. 599-609.

[12] Neuhaus, M. and H. Bunke, Automatic learning of cost functions for
graph edit distance. Information Sciences, 2006. 177(1): p. 239-247.

[13] Serratosa, F., R. Alquézar, and A. Sanfeliu, Function-Described Graphs
for modelling objects represented by attributed graphs. Pattern
Recognition, 2003. 36(3): p. 781-798.

[14] Sanfeliu, A., F. Serratosa, and R. Alquézar, Second-Order Random
Graphs for modelling sets of Attributed Graphs and their application to
object learning and recognition. International Journal of Pattern
Recognition and Artificial Intelligence, 2004. 18(3): p. 375-396.

[15] Bunke, H., On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters, 1998. 18(8): p. 689-694.

[16] Bunke, H., Error Correcting Graph Matching: On the Influence of the
Underlying Cost Function. Transactions on Pattern Analysis and
Machine Intelligence, 1999. 21(9): p. 917-922.

[17] Caetano, T., et al., Learning Graph Matching. Transaction on Pattern
Analysis and Machine Intelligence, 2009. 31(6): p. 1048-1058.

[18] M. Ferrer, F. Serratosa & K. Riesen, Improving Bipartite Graph
Matching by Assessing the Assignment Confidence, Pattern Recognition
Letters, 65, pp: 29-36, 2015.

[19] X. Cortés & F. Serratosa, Learning Graph Matching Substitution
Weights based on the Ground Truth Node Correspondence, International
Journal of Pattern Recognition and Artificial Intelligence, 30(2), pp:
1650005 [22 pages], 2016.

[20] X. Cortés & F. Serratosa, Learning Graph-Matching Edit-Costs based on
the Optimality of the Oracle's Node Correspondences, Pattern
Recognition Letters, 56, pp: 22 - 29, 2015.

[21] Jain, A.K. and D. Maltoni, Handbook of Fingerprint Recognition. 2003,
Springer-Verlag New York.

[22] V.I. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals”, Soviet Physics Doklady, Cybernetics and
Control Theory, vol. 10, pp. 707-710, 1966.

[23] F. Serratosa, A. Sanfeliu, Signatures versus histograms: Definitions,
distances and algorithms. Pattern Recognition 39 (5), pp: 921-934, 2006.

[24] Kaspar Riesen, Horst Bunke: Approximate graph edit distance
computation by means of bipartite graph matching. Image Vision
Comput. 27(7): 950-959 (2009).

[25] F. Serratosa, Fast Computation of Bipartite Graph Matching, Pattern
Recognition Letters 45, pp: 244 - 250, 2014.

[26] Arkhangel'skii, A. V.; Pontryagin, L. S. (1990), General Topology I:
Basic Concepts and Constructions Dimension Theory, Encyclopaedia of
Mathematical Sciences, Springer, ISBN 3-540-18178-4.

[27] http://deim.urv.cat/~francesc.serratosa/databases/
[28] http://deim.urv.cat/~francesc.serratosa/SW

	coversheet_conference_single_paper
	SERRATOSA 2016 Graph edit

