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lates from Fuzzy es 
tural Pattern 

Kwok-Ping Chan, Member IEEE 

Abstract-Fuzzy-Attribute Graph (FAG) was proposed to han- 
dle fuzziness in the pattern primitives in structural pattern 
recogni~~on [l]. FAG has the advantage that we can combine 
several possible definition into a single template, and hence only 
one matching is required instead of one for each definition. Also, 
each vertex or edge of the graph can contain fuzzy attributes 
to model real-life situation. However, in our previous approach, 
we need a human expert to define the templates for the fuzzy 
graph matching. This is usually tedious, time-consuming and 
error-prone. In this paper, we propose a learning algorithm that 
will, from a number of fuzzy examples, each of them being a 
FAG, find the smallest template that can be matched to the given 
patterns with respect to the matching metric. 

I. INTRODUCTION 

UZZY set theory was first introduced by Prof. L. A. Zadeh 
in 1965 [2].  It is used as a formal mathematical tool 

to investigate problems pertaining to uncertainty, ambiguity 
and vagueness. The concepts that are modelled has no exact 
boundary between membership and nonmembership and the 
change between them is gradual rather than abrupt. 

In classical set theory, an element either belongs to or does 
not belong to a set. This kind of precise knowledge provides 
us with rigor and completeness. However, in everyday life, 
we often do not want to deal with things precisely. For 
example, we would say “John is tall” rather than “John is 
1.82 meters high’ In fact, many features that are used for 
pattern recognition are fuzzy in nature, such as tallness of 
a man or hotness of an oven. Although these features can be 
expressed in precise measurement, human seldom use the exact 
values in decision making. Instead, abstraction is performed 
and these features are represented by fuzzy concepts, such as 
“tall”, “short”, “hot” and “cold” etc. They do not have an 
exact boundary between membership and nonmembership and 
the change is gradual. Hence fuzzy set theory provides us a 
rigorous mathematical tool to formally model these concepts. 
Moreover, an ordinary set can be represented as a special case 
of a fuzzy set. If A is the fuzzy set that represents the ordinary 
set A, and p ~ ( z )  denotes the membership of z in the fuzzy 
set A, then 

1 Y X E A  
0 otherwise. 
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Although fuzzy set theory and probability both take values 
between 0 and 1, there are subtle difference between them. 
Also there has been argument that fuzzy set theory can be 
modelled by subjective probability. However, if one thinks 
carefully, the statement “John is tall with fuzzy membership 
0.7” (fuzzy set theory) and “My belief that John is tall is 
0.7” (subjective probability) is actually quite different. In the 
former case, the concept “tall” is fuzzy (gradual and no abrupt 
change in membership) while in the latter, 0.7 is only my 
belief. Whether John is tall or not is still not fuzzy at all. Hence 
fuzzy set theory and probability serve difference purposes. 

There are two approaches in pattern recognition-the 
decision-theoretic and structural approach. In decision- 
theoretic approach, the pattern is represented by a set of 
“features”, or numerical values, which forms a feature vector. 
The classification is then performed in the feature space, using 
either a discriminant function, or Bayes classiJier [3], [41. 

In structural approach, the object is decomposed into a set 
of pattern primitives and a structure relating these primitives. 
There are two main structures that are commonly used in 
pattern recognition-phrase structured grammars and graphs. 
In the former case, a pattern is represented as a string of pattern 
primitives. For each pattern class, a phrase structured grammar, 
usually a context-free grammar, is constructed through a 
process of grammatical inference [5].  If the pattern string 
is in the language of the grammar, the pattern is recognized 
[6].  However, the string representation is essentially a linear 
structure. In order to represent a non-linear structure, one 
need resort to either a high-dimensional grammar, such as tree 
grammar or web grammar, or a Guarded Grammar [7], which 
can fulfill most function of the high dimensional grammar 
while retaining simplicity. 

Another alternative to represent pattern structures is by 
the use of graphs. A graph consists of vertices representing 
pattern primitives, and edges representing relations between 
the primitives The graph representation provide much richer 
structural content than grammatical approach. In order to 
incorporate more information into the data structure, Tsai and 
Fu [8] proposed to use attributed graph. Each pattern is rep- 
resented by an attributed graph which is then matched against 
a template graph by either graph isomorphism [8] or graph 
monomorphism algorithms [9], [ lo]. Attributed graph was 
further extended to Random Graphs by including probabilistic 
information [ 1 11, [ 121. However, the attributed graph proposed 
do not contain any fuzzy information. Random Graphs only 
deal with probabilistic uncertainty and cannot cope with fuzzy 
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concepts which commonly appears in real-life applications. Each stroke may have, say, two different attributes STROKE- 
Hence the author proposed an extension, which is called Fuzzy- TYPE and LENGTH. The attributes for relations between 
Attribute Graph (FAG) [l]. Some nice properties of FAG has the nodes are JOINT-TYPE, VERT-REL and HORI-REL, for 
also been derived. illustration. The values that can be taken in each of the 

The method that was presented in [ 11 relies on the existence attributes are, 
of template graphs that is used for the matching. Instead 
of asking the user to provide these template graphs, we 
would like to have a learning algorithm that can derive the 
template graphs from a set of training patterns. This is parallel 
to the grammatical inference process in syntactical pattern 
recognition. In this paper, we provide an algorithm for learning 
templates from several example patterns, each of them are in 
the form of FAGS, and hence present a complete framework, 
including both training and recognizing phases, that can be 
used in structural pattern recognition. 

11. FUZZY-ATTRIBUTE GRAPH 

{ S T R O K E - T Y P E }  = {Vertical, Horizontal, 
Slant45, Slant135) 

{ L E N G T H }  = {Long, Short} 

Parallel} 
{ J O I N T - T Y P E }  = { T -  f rom, T-into,  H t ,  Cross, 

{ V E R T - R E L }  = {On-top-of, Below-of, 

{ H O R I - R E L }  = {Le f t -o f ,  Right-of,  
No-vert-relate} 

No-hori-relate}. 

Attributed graph was introduced by Tsai and Fu [8] for 

tation of structural patterns. The vertices of the graph represent 
pattern primitives describing the pattern while the arcs are the 

Using these attributes and values, we can construct a FAG to 

fuzzy arc set is given 
pattern analysis. It provides a more straightforward represen- represent a Chinese character. A vertex set and 

5, = {(STROKE-TYPE, {0.7/vertical, 
~ I\ , I  I 

0.851S1 ant45,0.01/ Horizontal, O/S1 ant 135}), 
( L E N G T H ,  {O.G/Long, OIShort})} 

relations between these primitives. However the pattern often 
possess properties that are fuzzy in nature and it has been 
extended to include such fuzzy information. 

In a fuzzy-attribute graph, each vertex may have attributes 
from the set 2 = {z,l i  = 1 , .  . . , I } .  For each attribute z,, it 
may take values from Sa = { sZJ! j  = 1, . . , 5,). The set of all 
possible attribute-value pairs is L, = { (z , ,  As,)li = 1 , .  . . , I }  
where As, is a fuzzy set on the attribute-value set S,. A valid 
pattern primitive is just a subset of 1, in which each attribute 
appears only once, and fi represent the set of all those valid 
pattern primitives. 

Similarly, each arc may have attributes from the set F = 
{ f , l i  = 1 , .  . e ,  1'} in which each f, may take values from 
T, = {ttJ1j = l , . . . , J , ' }  . Ea = {(f,,&$)li = l , . . . , I ' }  
denotes the set of all possible relational-attribute value pair, 
where &, is a fuzzy set on the relational attribute-value set T,. 
A valid relation is just a subset of La in which each attribute 
appears only once. The set of all valid relation is denoted 6. 

Each fuzzy-attribute graph contains an underlying graph 
structure H ,  represented by the vertices and edges, and the 
attributes for them, 2, and La. Hence we can define a FAG 
as follows: 

= 
( E , ,  Ea) with an underlying graph structure H = ( N ,  E )  is 
defined to be an ordered pair ( V ,  A),  where ? = ( N ,  8) is 
called a fuzzy vertex set and A = ( E ,  8) is called a fuzzy 
arc set and 

5: N -+ fi is called a fuzzy vertex interpreter, 

DeJnition I :  A Fuzzy-Attribute Graph (FAG), G over 

and, 

& = { ( J O I N T - T Y P E ,  {0.7/T- f rom, 0.65/Cross, 
OIT-into, OIHt, OIParallel)), 
( V E R T - R E L ,  {0.9/0n-top-of, OIBelow-of, 
0.25/No-vert-relate}), 
( H O R I - R E L ,  {0.2/Left-of ,  0.4/Right-of, 
0.77/No-hori-relate})}. 

.iil represents a stroke which is quite long, and can be 
interpreted as either a vertical stroke or a upward slant stroke 
with the respective membership values. Similarly, 61 repre- 
sents either a cross relation or a T-joint relation between the 
corresponding strokes (uncertainty exists because for example, 
if a user writes down the vertical stroke of a T-joint a little 
bit longer, it becomes a cross joint). 

The FAG data structure is general enough to be applied 
to most patterns in typical recognition problems. The fuzzy 
attributes are used to handle those fuzzy properties as well 
as non-fuzzy enumerable attributes. For those attributes with 
continuous values, such as height of a man, we can easily 
abstract out the fuzzy concepts such as tall and short, and 
represent them in fuzzy sets. This is what is usually performed 
by human being. 

8: E ---f 6 is called a fuzzy arc interpreter. 111. A RECOGNITION FRAMEWORK BASED ON FAG 

This definition also applies when there are non-fuzzy at- 
tributes, since a crisp (non-fuzzy) set can always be repre- 
sented as a special case of a fuzzy set. 

Example 1: When we use FAG to represent Chinese char- 
acters, each vertex of the graph will represent a stroke, and 
the relation between the vertices are represented by the edges. 

In this section, we will describe a framework of general 
pattern recognition system based on the FAG. Before going 
further, the author would like to reiterate his view that human 
perception is based on recognizing certain identifiable parts 
from a complex scene. Based on these identified parts, he can 
then reconstruct the whole picture. Also, the ideal patterns, or 
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the definition of the pattern is not fuzzy at all. It is an instance 
of this definition that is fuzzy. The whole approach is based 
on these views and assumptions. 

The following is a generalization of the approach from the 
author’s original application on Chinese character recognition 
[ 11. First of all, we define a set of small subpatterns (similar to 
syntactic pattern recognition). The definition of these subpat- 
tern is represented in a Hard (non-fuzzy) FAG or HFAG, which 
is a FAG with all fuzzy set crisped, i.e. with membership of 
either 0 or 1. These are the “ideal” patterns and are used as the 
matching templates. The pattern to be matched is represented 
as a FAG because each instance of the pattern is fuzzy. The 
fuzzy graph is then matched against the non-fuzzy graph to 
determine whether a matching is found. One problem that 
immediately follows is the way to define a matching. 

To derive the matching formula, we first notice that the 
FAG representation has some meaning behind it. Actually, 
the membership value of a fuzzy set can be interpreted as 
the compatibility of an object and its attributes. Consider the 
following examples of a fuzzy vertex set, 

Al, = {PAlS, (SZ , ) /S~3 IS~ ,  E sz> 
where S, is the ith attribute and s,, are the attribute values. 
This can be interpreted as 

vertex w, possesses property s,, 
with truth value p ~ ~ ,  (s,,). 

To match between the template graph and the pattern graph, 
one would like to check the truth value of the following 
statement: 

template H possesses property s,, A N D  
pattern G possesses property sz3 

and this can be obtained by the following fuzzy expression 

PHsz ( S Z J  A PGSt (s.3). 

For the same attribute S,, we would like to take disjunction 
over all attribute values. 

template B possesses property s,1 A N D  
pattern G possesses property s,1 O R  

template B possesses property sZ2AND 
pattern G possesses property s,2 O R .  . . 

This is for one attribute and we can repeat this for all attnbutes 
by taking conjunction over them. Hence we have the following 
definition: 

Definition 2: Let GI and G2 be two FAGs with underlying 
graph N1 = (NI, E l )  of G1 being monomorphic to the 
underlying graph H2 = (Nz,  E2) of G2. The degree of 
matching y is defined as 

? ( G l , G Z )  = A .(i,h(z)) 
%EN1 

. A P(e1(z, j ) ,ez(h(z) ,  h ( j ) ) )  
( , , 3  1 €E1 

where h(i)  is the vertex in G z  that matches vertex i in GI ,  
and e k ( i , j )  is the arc joining vertices z and j in Gk.The value 
cr ( i , j )  is the matching between vertex i and vertex j and is 
obtained as 

I J I  

44j) = A v {(PAlS, ( smn)  A PAzs, ( S m n ) ) )  
m=l n=l 

where A ~ s ,  is the fuzzy set of the attribute S, of graph 

Similarly, the value P(e,, e,) is the matching between arc 
k ) k  = 1 ) 2 .  

e, and arc e, and is obtained as 

I‘ J L  
P(el>e2) = A v (tmn) A PLB,, (tmn))> 

m=l  n=l 

where BAT, is the fuzzy set of the attribute T, of graph 

Dejinition 3: Let GI and G 2  be two FAGs. GI is X- 

1) the underlying graph H I  of GI is monomorphic to the 

2) the degree of matching y(G1, G z )  2 A. 
The degree of matching so defined has its physical meaning 

which corresponds to the logical expression above. This logical 
expression is both intuitive and understandable and in fact it 
has some very nice property that makes it very useful in pattern 
recognition. Please refer to [1] for more detail. 

k , k  = 1,2 .  

monomorphic to G2 if 

underlying graph HZ of G z ,  and 

IV. LEARNING FROM EXAMPLES OF FAGS 

In the previous section, we have discussed how matching 
can be achieved between a fuzzy instance and the non-fuzzy 
definition. This definition (the “ideal” pattern) was provided by 
human experts. However, we would like to develop a training 
algorithm such that the definition templates can be derived 
from a set of fuzzy examples automatically by computer. In 
this section, we will try to describe such an algorithm. This is 
not a trivial “learning from example” problem as the examples 
are fuzzy in nature, and the result should be A-monomorphic 
with all the fuzzy examples. 

Theorem 1: Given a FAG G, and a HFAG H ,  G is A- 
monomorphic with H iff for each nodal attribute z,, 3 distinct 
sz3 E S, such that pes ( ~ , , ) ~ p ~ ~ ~ ( s , , )  2 A and for 
each relational attribute ],,3 distinct t,, E T, such that 

This follows directly from the definition of A-monomorphic. 
This theorem, although simple, allows us to consider each 

attribute (whether it is nodal or relational) individually. Hence 
the following discussion will be concentrated on the learning 
of a single attribute, and the result can then be combine 
together back to form the template graph. 

Definition 4: Consider a set X = {z,li = 1, . . .  ,n} .  The 
extended product 0 between two fuzzy subset and Y2 of 
X is defined as 

PGT, (tv) A PHT: ( t z J  L 

n 

P10Yz=V(p-( y1 5%) A PPz (4). 
z=1 
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Definition 5: Y1 and Y 2  are said to be A-matched if Yl 0 

With the help of Theorem 1 we can now rephrase the 
problem to a simpler form: Consider a set X = {zili = 
1, . . . , n}. Given a set of fuzzy subset of X ,  E, i = 1, . . . , m,  
we are going to find the smallest set 2 C X (i.e. 121 is 
smallest) such that 2, the fuzzy set representation of 2, is 
A-matched with , i = 1, . . . , m .  This is for one attribute and 
we repeat this for all nodal and relational attributes. 

Definition 6: Given a universe X = ( 2 ,  Ii = 1, . . . , n}. A 
polynomial form P is a summation of the form 

Y 2  2 A. 

m 

P = aI,XI, 
k=l 

where XI, is a product of any number of xi’s, and U I ,  are 
constants. 

For each fuzzy set ? on the universe X, we can rewrite Y 
in the polynomial form 

i=l 

where each Xi’s is a singleton. 
Definition 7: The f-product between two polynomial form 

PI and P2 is another polynomial form Q = PI @I P2 such that 
if PI = Errl akXI, and Pz = E e l  U ~ X ; ,  then 

m m’ 

Proof: Note that PI and Pz, the polynomial form of 
and Y 2  contain only singleton 2,’s in the summation. Let 
PI = Er=, UJ, and PZ = E;==, aiz,. Then for a term 
containing x,x, in the product (note that 2 1  = ~ 1 x 1 )  with 
a coefficient b,,, 

b,, = max(min(a,, U;), min(a,, a’,)). 

Hence, 

(P& (2%)  A PPI ( 2 % ) )  V ( P l j h  ( $ 3 )  A PP1 (4) 
= PPl (2%) ” PLY, (4 
= m=(a,,a,) 2 h,. 

The same argument applies to p2. Hence the result. 
It can easily be seen that the above argument can be 

extended to more than two Y ’ s .  From Theorem 1 we can 
separate the learning into individual attributes for nodes and 
relations. Theorem 2 allows us to find the attribute values for 
individual attribute. It can further be noted that we can delete 
intermediate terms which has a value <A. 

Definition 8: The A-cut of a polynomial form P = 
Er==, a,X, is another polynomial form PA = Er==, b,X, 
such that 

if a, 2 A b, = { 
0 otherwise. 

Theorem 3: The A-cut operation is distributive with respect 
to fproduct, i.e. 

PlX c3 pzx = (Pl c3 P2)x. 

From Definition 7, it can be seen that any term that contains 
a coefficient <A will produce another term which is <A in the 
summation. This will be discarded after the A-cut operation. 
Hence we can ignore any terms that contain coefficients <A. 

With this theorem, we can delete all intermediate terms with 
coefficient < A during the multiplication process. This will 
prune off all those unpromising terms. Taking this into account, 
we have the following algorithm for finding the “smallest” 
templates. 

= (0.321 f 0.222 -k 0.723) -k (0.22122 f 0.32122) 

+ (0.52123 + 0.32123) + (0.35223 + 0 . 2 ~ ~ 2 ~ )  Algorithm. 

attributes. 
= 0.321 + 0.222 4- 0.723 + 0.32122 + 0.52123 Repeat the following steps for each nodal and relational 

1) Represent the fuzzy set of the attribute of all training 
samples in a polynomial form, namely, PI ,  P2, . . . , P,. 

2, Assign A-cut Of 

3) Find thef-product Q c A-cut of (Q 8 Pz). 
4) Repeat step 3 until all input samples exhausted. 
5) Find the term with smallest number of 2;’s and with 

f 0.32223. 

Theorem 2: Let Y 1  and YZ be two fuzzy sets with polyno- 
mial forms PI and P2 respectively, and Q be the f-product to Q. 

m 

Q =Pi  @I P2 = CU~XI,. 
k=l coefficient 2 A. 

Finally, construct a HFAG from these term. 
The complexity of this algorithm is 0(,,2m) for each 

attribute where n is the number of examples and m is the 
number of attribute-values within the attribute. For each mul- 
tiplication, one of them is originally a FAG and its polynomial 
form contain only m terms. The other have at most 2” terms. 
Hence each step take no more than m2m. Also note that the 

Then the HFAG H k  constructed form the kth term akxk such 
that 

l if 2; is in XI, 
P H & 4  = { 0 otherwise 

is ak-matched with both Yl and Y 2 .  



122 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 1, FEBRUARY 1996 

value of m is fixed and is usually very small, for example 
5 10. In our previous example, the STROKE-TYPE attribute 
actually contain only 4 values, i.e. m = 4 and m2” = 64. 
Hence the algorithm is essentially linear with respect to the 
number of training examples. Finding the smallest term is also 
constant (in this case O(2”)). 

V. AN ILLUSTRATIVE EXAMPLE 
Chinese character recognition is a typical example that 

require fuzziness in the description of the pattern primitives. 
Each stroke and their relations can have fuzzy attribute as 
described in Example 1 of Section 11. To test the effectiveness 
of the algorithm we try the approach on the character 5.  Fig. 1 
shows 10 samples of the character f. For simplicity, we only 
use 1 attribute-the stroke type, for illustration. The stroke 
type may take four values-Horizontal, Vertical, Slant45 and 
Slant135, which are the main direction of strokes in a Chinese 
characters (two in horizontal and vertical and two in the 
diagonals). They are represented as a fuzzy set. Table I shows 
the membership values of the fuzzy set STROKE-TYPE. 

The method of finding the membership values can be found 
in [13]. First of all, each character is represented by a FAG. 
The FAGs are first matched against each other to find vertex 
correspondence. This can be achieved by a graph matching 
algorithm, such as that proposed by A. K. C. Wong [9]. After 
the vertex correspondence are found, the algorithm can then be 
applied. When applying the above algorithm, taking X = 0.25, 
we will get the following result: 

Let H ,  V, S and X represent the attribute-values Horizontal, 
Vertical, Slant45 and Slant135 respectively, and &I, Qz and 
Q3 be the resultant polynomial form for the three strokes in 
the character f.. We get 

&I 10.37H + 0.49HX + 0.37HS + 0.39HSX 
Qz = 0.3V + 0.39VS 
Q3 = 0.31H + 0.31HS + 0.61HX + 0.61HSX. 

Taking the term with the smallest number of attributes, then 

Stroke 1 =Horizontal 
Stroke 2 = Vertical 
Stroke 3 =Horizontal. 

This definition is the same to what we would expect. 
When we matched this template with the original 8 patterns, 

the degree of matching are respectively 0.85, 0.83, 0.37, 0.43, 
0.3 1, 0.84, 0.8 1, and 0.30, all exceed our threshold X = 0.25. 
Hence correct result is produced by the algorithm. 

VI. CONCLUSION 
In this paper, we have discussed a learning algorithm that 

can derive a representation of pattern templates from a set 
of fuzzy examples. This can be applied in pattern recognition 
approach based on the Fuzzy-Attribute Graph. It is the author’s 
belief that human perception is performed by looking for 
identifiable subpatterns in a complex scene and based on 
these subpatterns, make decision about the scene. Hence we 

Character 1 

Character 3 

I 

Character 5 

Character 7 

A set of training samples used. Fig. 1. 

Character 2 

Character 4 

Character 6 

Character 8 

approach the problem by finding subpatterns using matching of 
FAGs and then combine the matched ones to form the pattern. 

Also the template used for matching is a kind of definition 
which should not contain any fuzziness, while any “instance” 
of the template is fuzzy. Hence we define the matching 
between a fuzzy instance and a non-fuzzy template. However, 
we do not want to define the template by the users. This will 
be very tedious and error prone, especially when we have huge 
number of templates to define, such as in Chinese character 
recognition. We would like to have an automatic mechanism 
to do this instead. 

The algorithm that is proposed can find the smallest template 
from a set of training samples based on the matching metric. 
We have proved that the resultant FAG from the algorithm 
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7 
8 

123 

0.00 0.95 0.08 0.00 
0.10 0.30 0.39 0.00 

TABLE I 
MEMBERSHIP VALUES OF THE FUZZY SET STROKETYPE 

Sample No. 
1 
2 
3 
4 

I Sample No. 11 Horizontal I Vertical I Slant45 I Slant135 I 

Horizontal Vertical Slant45 Slant135 
0.96 0.00 0.09 0.00 
0.86 0.00 0.94 0.00 
0.89 0.00 0.25 0.00 
0.85 0.00 0.22 0.00 

5 
6 
7 

I 2 11 0.83 I 0.00 I 0.19 I 0.00 I 

0.31 0.00 0.00 0.61 
0.84 0.00 0.18 0.00 
0.81 0.00 0.00 0.20 

1 3 11 0.37 I 0.00 I 0.00 I 0.49 I 

0.03 
0.94 0.00 

(a) Stroke 1 

(c) Stroke 3 

an efficient algorithm has been developed for the learning of 
HFAG from a set of examples of FAGS. 
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is in fact A-monomorphic to all the learning pattern. As an 
illustration, the algorithm was applied to 8 character f. and 
the above verified. The learned result also matches with our 
daily experience. and 1989, respectively. 

Finally, the algorithm is linear on the number of training 
samples. Although it is exponential with respect to the number 
of values in each attribute, this is usually very small. In 
our application on Chinese character recognition, the largest 
number is 6.  Hence this can be assumed to be a constant. Thus, 

Kwok-Ping Chan (M’88) received the B.Sc. (Eng.) 
and Ph.D. degrees in electrical and electronic engi- 
neering from the University of Hong Kong in 1984 

He has taught at Hong Kong Polytechnic, Univer- 
sity of Hong Kong and City Polytechnic of Hong 
Kong. He is currently a lecturer in the Department 
of Computer Science, University of Hong Kong. His 
current research interest is in pattern recognition, 
image processing, and fuzzy set theory. 


