51 research outputs found

    GQL-Based Bound-Preserving and Locally Divergence-Free Central Discontinuous Galerkin Schemes for Relativistic Magnetohydrodynamics

    Full text link
    This paper develops novel and robust central discontinuous Galerkin (CDG) schemes of arbitrarily high-order accuracy for special relativistic magnetohydrodynamics (RMHD) with a general equation of state (EOS). These schemes are provably bound-preserving (BP), i.e., consistently preserve the upper bound for subluminal fluid velocity and the positivity of density and pressure, while also (locally) maintaining the divergence-free (DF) constraint for the magnetic field. For 1D RMHD, the standard CDG method is exactly DF, and its BP property is proven under a condition achievable by BP limiter. For 2D RMHD, we design provably BP and locally DF CDG schemes based on the suitable discretization of a modified RMHD system. A key novelty in our schemes is the discretization of additional source terms in the modified RMHD equations, so as to precisely counteract the influence of divergence errors on the BP property across overlapping meshes. We provide rigorous proofs of the BP property for our CDG schemes and first establish the theoretical connection between BP and discrete DF properties on overlapping meshes for RMHD. Owing to the absence of explicit expressions for primitive variables in terms of conserved variables, the constraints of physical bounds are strongly nonlinear, making the BP proofs highly nontrivial. We overcome these challenges through technical estimates within the geometric quasilinearization (GQL) framework, which converts the nonlinear constraints into linear ones. Furthermore, we introduce a new 2D cell average decomposition on overlapping meshes, which relaxes the theoretical BP CFL constraint and reduces the number of internal nodes, thereby enhancing the efficiency of the 2D BP CDG method. We implement the proposed CDG schemes for extensive RMHD problems with various EOSs, demonstrating their robustness and effectiveness in challenging scenarios.Comment: 47 pages, 14 figure

    Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier-Stokes Equations

    Full text link
    Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.Comment: 85 pages, 2 figures, book chapte

    A Physical-Constraint-Preserving Finite Volume WENO Method for Special Relativistic Hydrodynamics on Unstructured Meshes

    Full text link
    This paper presents a highly robust third-order accurate finite volume weighted essentially non-oscillatory (WENO) method for special relativistic hydrodynamics on unstructured triangular meshes. We rigorously prove that the proposed method is physical-constraint-preserving (PCP), namely, always preserves the positivity of the pressure and the rest-mass density as well as the subluminal constraint on the fluid velocity. The method is built on a highly efficient compact WENO reconstruction on unstructured meshes, a simple PCP limiter, the provably PCP property of the Harten--Lax--van Leer flux, and third-order strong-stability-preserving time discretization. Due to the relativistic effects, the primitive variables (namely, the rest-mass density, velocity, and pressure) are highly nonlinear implicit functions in terms of the conservative variables, making the design and analysis of our method nontrivial. To address the difficulties arising from the strong nonlinearity, we adopt a novel quasilinear technique for the theoretical proof of the PCP property. Three provable convergence-guaranteed iterative algorithms are also introduced for the robust recovery of primitive quantities from admissible conservative variables. We also propose a slight modification to an existing WENO reconstruction to ensure the scaling invariance of the nonlinear weights and thus to accommodate the homogeneity of the evolution operator, leading to the advantages of the modified WENO reconstruction in resolving multi-scale wave structures. Extensive numerical examples are presented to demonstrate the robustness, expected accuracy, and high resolution of the proposed method.Comment: 56 pages, 18 figure
    corecore