2,083 research outputs found

    Optical measurement of shape and deformation fields on challenging surfaces

    Get PDF
    A multiple-sensor optical shape measurement system (SMS) based on the principle of white-light fringe projection has been developed and commercialised by Loughborough University and Phase Vision Ltd for over 10 years. The use of the temporal phase unwrapping technique allows precise and dense shape measurements of complex surfaces; and the photogrammetry-based calibration technique offers the ability to calibrate multiple sensors simultaneously in order to achieve 360° measurement coverage. Nevertheless, to enhance the applicability of the SMS in industrial environments, further developments are needed (i) to improve the calibration speed for quicker deployment, (ii) to broaden the application range from shape measurement to deformation field measurement, and (iii) to tackle practically-challenging surfaces of which specular components may disrupt the acquired data and result in spurious measurements. The calibration process typically requires manual positioning of an artefact (i.e., reference object) at many locations within the view of the sensors. This is not only timeconsuming but also complicated for an operator with average knowledge of metrology. This thesis introduces an automated artefact positioning system which enables automatic and optimised distribution of the artefacts, automatic prediction of their whereabouts to increase the artefact detection speed and robustness, and thereby greater overall calibration performance. This thesis also describes a novel technique that integrates the digital image correlation (DIC) technique into the present fringe projection SMS for the purpose of simultaneous shape and deformation field measurement. This combined technique offers three key advantages: (a) the ability to deal with geometrical discontinuities which are commonly present on mechanical surfaces and currently challenging to most deformation measurement methods, (b) the ability to measure 3D displacement fields with a basic single-camera single-projector SMS with no additional hardware components, and (c) the simple implementation on a multiple-sensor hardware platform to achieve complete coverage of large-scale and complex samples, with the resulting displacement fields automatically lying in a single global coordinate system. A displacement measurement iii accuracy of ≅1/12,000 of the measurement volume, which is comparable to that of an industry-standard DIC system, has been achieved. The applications of this novel technique to several structural tests of aircraft wing panels on-site at the research centre of Airbus UK in Filton are also presented. Mechanical components with shiny surface finish and complex geometry may introduce another challenge to present fringe projection techniques. In certain circumstances, multiple reflections of the projected fringes on an object surface may cause ambiguity in the phase estimation process and result in incorrect coordinate measurements. This thesis presents a new technique which adopts a Fourier domain ranging (FDR) method to correctly identifying multiple phase signals and enables unambiguous triangulation for a measured coordinate. Experiments of the new FDR technique on various types of surfaces have shown promising results as compared to the traditional phase unwrapping techniques

    Projector-Based Augmentation

    Get PDF
    Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces

    Development of a calibration pipeline for a monocular-view structured illumination 3D sensor utilizing an array projector

    Get PDF
    Commercial off-the-shelf digital projection systems are commonly used in active structured illumination photogrammetry of macro-scale surfaces due to their relatively low cost, accessibility, and ease of use. They can be described as inverse pinhole modelled. The calibration pipeline of a 3D sensor utilizing pinhole devices in a projector-camera setup configuration is already well-established. Recently, there have been advances in creating projection systems offering projection speeds greater than that available from conventional off-the-shelf digital projectors. However, they cannot be calibrated using well established techniques based on the pinole assumption. They are chip-less and without projection lens. This work is based on the utilization of unconventional projection systems known as array projectors which contain not one but multiple projection channels that project a temporal sequence of illumination patterns. None of the channels implement a digital projection chip or a projection lens. To workaround the calibration problem, previous realizations of a 3D sensor based on an array projector required a stereo-camera setup. Triangulation took place between the two pinhole modelled cameras instead. However, a monocular setup is desired as a single camera configuration results in decreased cost, weight, and form-factor. This study presents a novel calibration pipeline that realizes a single camera setup. A generalized intrinsic calibration process without model assumptions was developed that directly samples the illumination frustum of each array projection channel. An extrinsic calibration process was then created that determines the pose of the single camera through a downhill simplex optimization initialized by particle swarm. Lastly, a method to store the intrinsic calibration with the aid of an easily realizable calibration jig was developed for re-use in arbitrary measurement camera positions so that intrinsic calibration does not have to be repeated

    Multiview Projectors/Cameras System for 3D Reconstruction of Dynamic Scenes

    Get PDF
    International audienceActive vision systems are usually limited to either partial or static scene reconstructions. In this paper, we propose to acquire the entire 3D shape of a dynamic scene. This is performed using a multiple projectors and cameras system, that allows to recover the entire shape of the object within a single scan at each frame. Like previous approaches, a static and simple pattern is used to avoid interferences of multiple patterns projected on the same object. In this paper, we extend the technique to capture a dense entire shape of a moving object with accuracy and high video frame rate. To achieve this, we mainly propose two additional steps; one is checking the consistency between the multiple cameras and projectors, and the other is an algorithm for light sectioning based on a plane parameter optimization. In addition, we also propose efficient noise reduction and mesh generation algorithm which are necessary for practical applications. In the experiments, we show that we can successfully reconstruct dense entire shapes of moving objects. Results are illustrated on real data from a system composed of six projectors and six cameras that was actually built

    INFORMATION TECHNOLOGY FOR NEXT-GENERATION OF SURGICAL ENVIRONMENTS

    Get PDF
    Minimally invasive surgeries (MIS) are fundamentally constrained by image quality,access to the operative field, and the visualization environment on which thesurgeon relies for real-time information. Although invasive access benefits the patient,it also leads to more challenging procedures, which require better skills andtraining. Endoscopic surgeries rely heavily on 2D interfaces, introducing additionalchallenges due to the loss of depth perception, the lack of 3-Dimensional imaging,and the reduction of degrees of freedom.By using state-of-the-art technology within a distributed computational architecture,it is possible to incorporate multiple sensors, hybrid display devices, and3D visualization algorithms within a exible surgical environment. Such environmentscan assist the surgeon with valuable information that goes far beyond what iscurrently available. In this thesis, we will discuss how 3D visualization and reconstruction,stereo displays, high-resolution display devices, and tracking techniques arekey elements in the next-generation of surgical environments

    State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]

    Get PDF
    This paper reviews recent developments of non-contact three-dimensional (3D) surface metrology using an active structured optical probe. We focus primarily on those active non-contact 3D surface measurement techniques that could be applicable to the manufacturing industry. We discuss principles of each technology, and its advantageous characteristics as well as limitations. Towards the end, we discuss our perspectives on the current technological challenges in designing and implementing these methods in practical applications.Purdue Universit

    Portal-s: High-resolution real-time 3D video telepresence

    Get PDF
    The goal of telepresence is to allow a person to feel as if they are present in a location other than their true location; a common application of telepresence is video conferencing in which live video of a user is transmitted to a remote location for viewing. In conventional two-dimensional (2D) video conferencing, loss of correct eye gaze commonly occurs, due to a disparity between the capture and display optical axes. Newer systems are being developed which allow for three-dimensional (3D) video conferencing, circumventing issues with this disparity, but new challenges are arising in the capture, delivery, and redisplay of 3D contents across existing infrastructure. To address these challenges, a novel system is proposed which allows for 3D video conferencing across existing networks while delivering full resolution 3D video and establishing correct eye gaze. During the development of Portal-s, many innovations to the field of 3D scanning and its applications were made; specifically, this dissertation research has achieved the following innovations: a technique to realize 3D video processing entirely on a graphics processing unit (GPU), methods to compress 3D videos on a GPU, and combination of the aforementioned innovations with a special holographic display hardware system to enable the novel 3D telepresence system entitled Portal-s. The first challenge this dissertation addresses is the cost of real-time 3D scanning technology, both from a monetary and computing power perspective. New advancements in 3D scanning and computation technology are continuing to increase, simplifying the acquisition and display of 3D data. These advancements are allowing users new methods of interaction and analysis of the 3D world around them. Although the acquisition of static 3D geometry is becoming easy, the same cannot be said of dynamic geometry, since all aspects of the 3D processing pipeline, capture, processing, and display, must be realized in real-time simultaneously. Conventional approaches to solve these problems utilize workstation computers with powerful central processing units (CPUs) and GPUs to accomplish the large amounts of processing power required for a single 3D frame. A challenge arises when trying to realize real-time 3D scanning on commodity hardware such as a laptop computer. To address the cost of a real-time 3D scanning system, an entirely parallel 3D data processing pipeline that makes use of a multi-frequency phase-shifting technique is presented. This novel processing pipeline can achieve simultaneous 3D data capturing, processing, and display at 30 frames per second (fps) on a laptop computer. By implementing the pipeline within the OpenGL Shading Language (GLSL), nearly any modern computer with a dedicated graphics device can run the pipeline. Making use of multiple threads sharing GPU resources and direct memory access transfers, high frame rates on low compute power devices can be achieved. Although these advancements allow for low compute power devices such as a laptop to achieve real-time 3D scanning, this technique is not without challenges. The main challenge being selecting frequencies that allow for high quality phase, yet do not include phase jumps in equivalent frequencies. To address this issue, a new modified multi-frequency phase shifting technique was developed that allows phase jumps to be introduced in equivalent frequencies yet unwrapped in parallel, increasing phase quality and reducing reconstruction error. Utilizing these techniques, a real-time 3D scanner was developed that captures 3D geometry at 30 fps with a root mean square error (RMSE) of 0:00081 mm for a measurement area of 100 mm X 75 mm at a resolution of 800 X 600 on a laptop computer. With the above mentioned pipeline the CPU is nearly idle, freeing it to perform additional tasks such as image processing and analysis. The second challenge this dissertation addresses is associated with delivering huge amounts of 3D video data in real-time across existing network infrastructure. As the speed of 3D scanning continues to increase, and real-time scanning is achieved on low compute power devices, a way of compressing the massive amounts of 3D data being generated is needed. At a scan resolution of 800 X 600, streaming a 3D point cloud at 30 frames per second (FPS) would require a throughput of over 1.3 Gbps. This amount of throughput is large for a PCIe bus, and too much for most commodity network cards. Conventional approaches involve serializing the data into a compressible state such as a polygon file format (PLY) or Wavefront object (OBJ) file. While this technique works well for structured 3D geometry, such as that created with computer aided drafting (CAD) or 3D modeling software, this does not hold true for 3D scanned data as it is inherently unstructured. A challenge arises when trying to compress this unstructured 3D information in such a way that it can be easily utilized with existing infrastructure. To address the need for real-time 3D video compression, new techniques entitled Holoimage and Holovideo are presented, which have the ability to compress, respectively, 3D geometry and 3D video into 2D counterparts and apply both lossless and lossy encoding. Similar to the aforementioned 3D scanning pipeline, these techniques make use of a completely parallel pipeline for encoding and decoding; this affords high speed processing on the GPU, as well as compression before streaming the data over the PCIe bus. Once in the compressed 2D state, the information can be streamed and saved until the 3D information is needed, at which point 3D geometry can be reconstructed while maintaining a low amount of reconstruction error. Further enhancements of the technique have allowed additional information, such as texture information, to be encoded by reducing the bit rate of the data through image dithering. This allows both the 3D video and associated 2D texture information to be interlaced and compressed into 2D video, synchronizing the streams automatically. The third challenge this dissertation addresses is achieving correct eye gaze in video conferencing. In 2D video conferencing, loss of correct eye gaze commonly occurs, due to a disparity between the capture and display optical axes. Conventional approaches to mitigate this issue involve either reducing the angle of disparity between the axes by increasing the distance of the user to the system, or merging the axes through the use of beam splitters. Newer approaches to this issue make use of 3D capture and display technology, as the angle of disparity can be corrected through transforms of the 3D data. Challenges arise when trying to create such novel systems, as all aspects of the pipeline, capture, transmission, and redisplay must be simultaneously achieved in real-time with the massive amounts of 3D data. Finally, the Portal-s system is presented, which is an integration of all the aforementioned technologies into a holistic software and hardware system that enables real-time 3D video conferencing with correct mutual eye gaze. To overcome the loss of eye contact in conventional video conferencing, Portal-s makes use of dual structured-light scanners that capture through the same optical axis as the display. The real-time 3D video frames generated on the GPU are then compressed using the Holovideo technique. This allows the 3D video to be streamed across a conventional network or the Internet, and redisplayed at a remote node for another user on the Holographic display glass. Utilizing two connected Portal-s nodes, users of the systems can engage in 3D video conferencing with natural eye gaze established. In conclusion, this dissertation research substantially advances the field of real-time 3D scanning and its applications. Contributions of this research span into both academic and industrial practices, where the use of this information has allowed users new methods of interaction and analysis of the 3D world around them

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1
    • …
    corecore