6,419 research outputs found

    A multi-granularity locally optimal prototype-based approach for classification

    Get PDF
    Prototype-based approaches generally provide better explainability and are widely used for classification. However, the majority of them suffer from system obesity and lack transparency on complex problems. In this paper, a novel classification approach with a multi-layered system structure self-organized from data is proposed. This approach is able to identify local peaks of multi-modal density derived from static data and filter out more representative ones at multiple levels of granularity acting as prototypes. These prototypes are then optimized to their locally optimal positions in the data space and arranged in layers with meaningful dense links in-between to form pyramidal hierarchies based on the respective levels of granularity accordingly. After being primed offline, the constructed classification model is capable of self-developing continuously from streaming data to self-expend its knowledge base. The proposed approach offers higher transparency and is convenient for visualization thanks to the hierarchical nested architecture. Its system identification process is objective, data-driven and free from prior assumptions on data generation model with user- and problem- specific parameters. Its decision-making process follows the “nearest prototype” principle, and is highly explainable and traceable. Numerical examples on a wide range of benchmark problems demonstrate its high performance

    Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks

    Full text link
    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.Comment: Accepted in IEEE Transactions on Geoscience and Remote Sensing, 201

    Entropy and Energy in Characterizing the Organization of Concept Maps in Learning Science

    Get PDF
    The coherence and connectivity of such knowledge representations is known to be closely related to knowledge production, acquisition and processing. In this study we use network theory in making the clustering and cohesion of concept maps measurable, and show how the distribution of these properties can be interpreted through the Maximum Entropy (MaxEnt) method. This approach allows to introduce new concepts of the “energy of cognitive load” and the “entropy of knowledge organization” to describe the organization of knowledge in the concept mapsPeer reviewe

    Evaluation of the New York City Department of Youth and Community Development Out-of-School Time Programs for Youth Initiative: Implementation of Programs for High School Youth

    Get PDF
    Evaluates the Out-of-School Time Programs for Youth initiative's academic enhancement and recreational programs for high school youth, including enrollment, staff expertise, age-appropriate activities, and program partnerships to increase resources

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by Leveraging Lightweight All-ConvNet and Transfer Learning

    Full text link
    Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces. However, the data variability between inter-session and inter-subject scenarios presents a great challenge. The existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability. Hence, these methods also require learning over millions of training parameters and a large pre-trained and target domain dataset in both the pre-training and adaptation stages. As a result, it makes high-end resource-bounded and computationally very expensive for deployment in real-time applications. To overcome this problem, we propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition performance. The All-ConvNet+TL model consists solely of convolutional layers, a simple yet efficient framework for learning invariant and discriminative representations to address the distribution shifts caused by inter-session and inter-subject data variability. Experiments on four datasets demonstrate that our proposed methods outperform the most complex existing approaches by a large margin and achieve state-of-the-art results on inter-session and inter-subject scenarios and perform on par or competitively on intra-session gesture recognition. These performance gaps increase even more when a tiny amount (e.g., a single trial) of data is available on the target domain for adaptation. These outstanding experimental results provide evidence that the current state-of-the-art models may be overparameterized for sEMG-based inter-session and inter-subject gesture recognition tasks

    Hierarchical testing designs for pattern recognition

    Full text link
    We explore the theoretical foundations of a ``twenty questions'' approach to pattern recognition. The object of the analysis is the computational process itself rather than probability distributions (Bayesian inference) or decision boundaries (statistical learning). Our formulation is motivated by applications to scene interpretation in which there are a great many possible explanations for the data, one (``background'') is statistically dominant, and it is imperative to restrict intensive computation to genuinely ambiguous regions. The focus here is then on pattern filtering: Given a large set Y of possible patterns or explanations, narrow down the true one Y to a small (random) subset \hat Y\subsetY of ``detected'' patterns to be subjected to further, more intense, processing. To this end, we consider a family of hypothesis tests for Y\in A versus the nonspecific alternatives Y\in A^c. Each test has null type I error and the candidate sets A\subsetY are arranged in a hierarchy of nested partitions. These tests are then characterized by scope (|A|), power (or type II error) and algorithmic cost. We consider sequential testing strategies in which decisions are made iteratively, based on past outcomes, about which test to perform next and when to stop testing. The set \hat Y is then taken to be the set of patterns that have not been ruled out by the tests performed. The total cost of a strategy is the sum of the ``testing cost'' and the ``postprocessing cost'' (proportional to |\hat Y|) and the corresponding optimization problem is analyzed.Comment: Published at http://dx.doi.org/10.1214/009053605000000174 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore