255 research outputs found

    Splicing of concurrent upper-body motion spaces with locomotion

    Get PDF
    In this paper, we present a motion splicing technique for generating concurrent upper-body actions occurring simultaneously with the evolution of a lower-body locomotion sequence. Specifically, we show that a layered interpolation motion model generates upper-body poses while assigning different actions to each upper-body part. Hence, in the proposed motion splicing approach, it is possible to increase the number of generated motions as well as the number of desired actions that can be performed by virtual characters. Additionally, we propose an iterative motion blending solution, inverse pseudo-blending, to maintain a smooth and natural interaction between the virtual character and the virtual environment; inverse pseudo-blending is a constraint-based motion editing technique that blends the motions enclosed in a tetrahedron by minimising the distances between the end-effector positions of the actual and blended motions. Additionally, to evaluate the proposed solution, we implemented an example-based application for interactive motion splicing based on specified constraints. Finally, the generated results show that the proposed solution can be beneficially applied to interactive applications where concurrent actions of the upper-body are desired

    VIGOR: A Versatile, Individualized and Generative ORchestrator to Motivate the Movement of the People with Limited Mobility

    Get PDF
    Physical inactivity is a major national concern, particularly among individuals with chronic conditions and/or disabilities. There is an urgent need to devise practical and innovative fitness methods, designed and grounded in physical, psychological and social considerations that will effectively promote physical fitness participation among individuals of all age groups with chronic health condition(s) and/or disabilities. This research is dedicated to achieving Versatile, Individualized, and Generative ORchestrator (VIGOR) to motivate the movement of the people with limited mobility. Tai-Chi is a traditional mind–body wellness and healing art, and its clinical benefits have been well documented. This work presents a Tai-Chi based VIGOR under development. Through the use of Helping, Pushing and Coaching (HPC) functions by following Tai-Chi kinematics, the VIGOR system is designed to make engagement in physical activity an affordable, individually engaging, and enjoyable experience for individuals who live with mobility due to disease or injury. VIGOR consists of the following major modules: (1) seamless human-machine interaction based on the acquisition, transmission, and reconstruction of 4D data (XYZ plus somatosensory) using affordable I/O instruments such as Kinect, Sensor and Tactile actuator, and active-orthosis/exoskeleton; (2) processing and normalization of kinetic data; (3) Identification and grading of kinetics in real time; (4) adaptive virtual limb generation and its reconstruction on virtual reality (VR) or active-orthosis/exoskeleton; and (5) individualized physical activity choreography (i.e., creative movement design). Aiming at developing a deep-learning-enabled rehab and fitness modality through infusing the domain knowledge (physical therapy, medical anthropology, psychology, electrical engineering, bio-mechanics, and athletic aesthetics) into deep neural network, this work is transformative in that the technology can be applied to the broad research areas of intelligent systems, human-computer interaction, and cyber-physical human systems. The resulting VIGOR has significant potentials as both rehabilitative and fitness modalities and can be adapted to other movement modalities and chronic medical conditions (e.g., yoga and balance exercise; fibromyalgia, multiple sclerosis, Parkinson disease)

    Data-driven techniques for animating virtual characters

    Get PDF
    One of the key goals of current research in data-driven computer animation is the synthesis of new motion sequences from existing motion data. This thesis presents three novel techniques for synthesising the motion of a virtual character from existing motion data and develops a framework of solutions to key character animation problems. The first motion synthesis technique presented is based on the character’s locomotion composition process. This technique examines the ability of synthesising a variety of character’s locomotion behaviours while easily specified constraints (footprints) are placed in the three-dimensional space. This is achieved by analysing existing motion data, and by assigning the locomotion behaviour transition process to transition graphs that are responsible for providing information about this process. However, virtual characters should also be able to animate according to different style variations. Therefore, a second technique to synthesise real-time style variations of character’s motion. A novel technique is developed that uses correlation between two different motion styles, and by assigning the motion synthesis process to a parameterised maximum a posteriori (MAP) framework retrieves the desire style content of the input motion in real-time, enhancing the realism of the new synthesised motion sequence. The third technique presents the ability to synthesise the motion of the character’s fingers either o↵-line or in real-time during the performance capture process. The advantage of both techniques is their ability to assign the motion searching process to motion features. The presented technique is able to estimate and synthesise a valid motion of the character’s fingers, enhancing the realism of the input motion. To conclude, this thesis demonstrates that these three novel techniques combine in to a framework that enables the realistic synthesis of virtual character movements, eliminating the post processing, as well as enabling fast synthesis of the required motion

    Gait Synthesis of Abnormal Gaits in Canines

    Get PDF
    When attempting to introduce new subjects or characters to a motion database, generating or capturing motions is particularly cumbersome, especially if the subject has some medical issue. This thesis describes techniques in which motion capture analysis is used to isolate the components of canine gait that are the direct result of poor health. These components are then synthesized with the healthy motion of a new dog to create the appearance of the unhealthy motion in that breed. Given two captured motions, one healthy A and one unhealthy A’, the goal of this work is to determine a mathematical method for finding the difference between A and A’ and applying this difference to a third motion, B, to generate a new motion, B’, that carries the characteristics shown in A’. This motion analogy method is successfully implemented and validated using two case studies. This technique has applications in diagnosing the impact of treatments in medical studies and the development of training for veterinarians as it allows for multiple variations of motion to be applied to a new subject

    Texas Parks & Wildlife

    Get PDF
    Magazine discussing natural resources, parks, hunting and fishing, and other information related to the outdoors in Texas

    Horticulture Group Therapy with Mentally Ill Older Adults

    Get PDF
    With a greatly increasing number of older adults due to advances in medical care, aU baby boomers in the United States will be 65 or older by 2029. As the number of older adults grows, so does the number of those with severe mental illness. Treatments are needed to address older adults with severe mental illness that include the negative side effects of medications. Due to the nature of severe mental illness, lower levels of required cognitive processing allows for those admitted to inpatient psychiatric settings to participate, including those with dementia. Horticulture therapy has proven useful to address severe mental illness and improve quality of life among older adults. However, an approach addressing both is not available. This doctoral project addresses severe mental illness in the older adult population utilizing Naomi Feil\u27s validation therapy and horticulture group therapy as a framework for a 10 session treatment program

    Doctor of Philosophy

    Get PDF
    dissertationPercutaneous osseointegrated prosthetics are a promising limb prosthetic alternative for amputees. Similar to other percutaneous devices that have permanent residence in host tissue, their success is dependent on an impassable attachment between skin and the device. An incomplete attachment greatly increases risk of infection and subsequent device removal. A common failure mechanism of percutaneous devices is the epidermis migrating internally, called "epidermal downgrowth," creating a pocket between the skin and the device. This pocket serves as an access point for microorganisms, contributing to infection and device failure. Thus, there is a need to improve the skin integration with the percutaneous device such that microbial access and infection is prevented. This first portion of this dissertation work sought to investigate infection vulnerability of porous titanium and smooth titanium percutaneous implants with subcutaneous flanges. In this work, a more relevant small animal model of percutaneous device infection was established. It was demonstrated that porous surfaces significantly decreased risk of infection of percutaneous implants. However, due to epidermal downgrowth in the majority of implants, there was an absence of skin integration with the percutaneous component, thus contributing to increased infection susceptibility and device failure

    Smart and Pervasive Healthcare

    Get PDF
    Smart and pervasive healthcare aims at facilitating better healthcare access, provision, and delivery by overcoming spatial and temporal barriers. It represents a shift toward understanding what patients and clinicians really need when placed within a specific context, where traditional face-to-face encounters may not be possible or sufficient. As such, technological innovation is a necessary facilitating conduit. This book is a collection of chapters written by prominent researchers and academics worldwide that provide insights into the design and adoption of new platforms in smart and pervasive healthcare. With the COVID-19 pandemic necessitating changes to the traditional model of healthcare access and its delivery around the world, this book is a timely contribution

    Southern planter

    Get PDF
    LYRASIS Members and Sloan FoundationCollege of William and Mary, Earl Gregg Swem Librar
    • …
    corecore