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ABSTRACT 

 

When attempting to introduce new subjects or characters to a motion database, 

generating or capturing motions is particularly cumbersome, especially if the subject has 

some medical issue. This thesis describes techniques in which motion capture analysis is 

used to isolate the components of canine gait that are the direct result of poor health. 

These components are then synthesized with the healthy motion of a new dog to create 

the appearance of the unhealthy motion in that breed. Given two captured motions, one 

healthy A and one unhealthy A’, the goal of this work is to determine a mathematical 

method for finding the difference between A and A’ and applying this difference to a 

third motion, B, to generate a new motion, B’, that carries the characteristics shown in 

A’. This motion analogy method is successfully implemented and validated using two 

case studies. This technique has applications in diagnosing the impact of treatments in 

medical studies and the development of training for veterinarians as it allows for 

multiple variations of motion to be applied to a new subject. 
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1. INTRODUCTION 

Current motion capture systems allow the richness of quadrupedal motion to be 

accurately recorded and analyzed. Current demand by the medical and entertainment 

industries for more precise data has lead to the creation of robust databases of motion, 

for many applications, including medical and computer graphics. Though these 

databases contain various subjects and their subsequent motions, constructing such 

databases is laborious, time consuming and, when dealing with various medical 

conditions, often impossible due to (production) budget or a limited number of 

examples. When attempting to introduce new subjects or characters into a database, 

generating or capturing motions can prove particularly cumbersome. This is partially due 

to the consistency required for the motion capture marker placements and the fact that it 

is often easier to recapture a motion than deal with problematic data is also a factor.  

However, discovering problems within the data is often impossible at the time of 

capture, leading to multiple sessions to get a workable piece of motion data. Also, some 

motions may or may not exist within the database already, particularly if the subject is 

undergoing medical intervention to improve their motion. To streamline this process, 

this thesis proposes a new method that uses existing motions and applies them to other 

motions, thereby creating a new motion with most of the characteristics of the source 

motions. 

Describing motions procedurally is challenging because of the complex subtleties 

within the motions, such as conveying the weight, rhythm, and balance of the subject 

accurately. The objective of this thesis is to infer user-desired motion from example 
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motions. A mathematical model is developed by providing matching motions in an input 

and output pair. To learn the translation of a normal to a limping gait, for example, one 

would pair three strides of a normal gait to three strides of a limping one. The overall 

content (three strides) is identical but the characteristics of the motions comprise spatial 

and temporal variation. 

Given two captured motions A (healthy) and A’ (unhealthy) the goal of this work 

is to develop a mathematical model to determine the difference between A and A’ and 

apply this difference to a third motion B to generate a new motion B’ that encapsulates 

the characteristics shown in A’. The representation of this motion analogy is provided 

below: 

 

A : A’ :: B : B’       (1) 

 

The goal of the motion analogies application is to synthesize new motions with 

the characteristics of the provided motions. By synthesizing abnormal gaits the user can 

use the synthesized gait for comparisons and predictions of health issues as they 

progress. For example, if starting out with a three-month progression of a disease and the 

subject goes on clinical trials to help with the diseases symptoms, at six months the user 

may want to compare what the subject would have been like without medical 

intervention compared to what that subject is now. By using previously captured data of 

the disease the system can synthesize a projection of how the disease would progress on 

the subject. 
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 However, this system of motion analogies is not limited to just a clinical setting. 

This model can be used for any type of similar motions. While this paper specifically 

concentrated on dogs walking and the differences between healthy and unhealthy, the 

system can handle any type of similar motions and skeletons. As such this system can be 

used to apply variations of motions between various subjects. For example, the system 

could eventually be used to include other digitigrade subjects. 

The key to this approach is to create a generic method that is anatomically 

apparent and can be easily transferred between morphologies. The generic algorithm 

used takes the two similar motions and establishes a correspondence between the two 

separate subjects. This correspondence along with an input motion for the first subject is 

optimized to create the new motion that exhibits the behavior of the input motion. 

Essentially, by treating motions as space-time signals and a problem of motion editing, 

the problem is converted to that of high-dimensional signal processing. The end result of 

this project is a mathematical system of motion analogies that can be implemented and 

validated by several synthesized example motions. 
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2. RELATED WORK 

2.1 MOTION SYNTHESIS 

Several approaches for synthesizing motion and motion characteristics exist. 

Retargeting approaches transfer entire motions from one character to another at varying 

skeletal sizes and proportions. Gleicher [1998] defined this problem as adapting the 

animation to transfer between characters. In this work motion is retargeted to similar 

skeletal structures with different bone proportions by solving space-time optimization 

problems. Such solutions give an infinite number of possible motions, many not in the 

realm of reality. Graph based approaches, such as Parametric Motion Graphs presented 

by Heck and Gleicher [2007] or Motion Graphs presented by Kovar et al. [2002a], 

search short clips that satisfy user determined constraints from a motion database and 

assemble them to synthesize a new, extended motion sequence. As such no synthesized 

motion is a true motion, but rather a collage of preexisting data. Likewise, motion 

blending approaches interpolate and extrapolate from examples and linearly combine 

them to synthesize new motion sequences that consist of multiple styles (Park et al. 

[2004]). There are several approaches that proceed by cutting and pasting skeleton 

elements, and their subsequent motions, from different subjects to combine separate 

elements into a new whole skeleton (Ikemoto and Forsyth [2004]). Parametric 

approaches extend possible output motions to allow users to adjust the motion with 

various predefined parameters (Kovar and Gleicher [2004]). However, for the 

application of this project, adapting any of these existing methods is challenging. This is 

because results produced by these methods are not plausible due to the fact that: 
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• Resulting motions are often outside the realm of real world possibilities  
• There is the added challenge of acquiring new contents and 

characteristics effectively.  
• There is no way of extracting the subject from the motion, which is 

necessary to extract just the components of the unhealthy motion. 
 

2.2 WARPING MOTION CURVES 

The closest methodology to that presented in this thesis are works that seek to 

modify motions and their styles by warping motion curves. Witkin and Popovic [1995] 

adjusted motion curves to create a desired curve using displacement mapping at key 

user-defined frames of existing curves while Wu et al. [2008] used the entire motion 

curve to eliminate user input. Amaya et al. [1996] extracted emotion from motion by 

comparing neutral and “emotional” motions and applying this emotion component to a 

different neutral motion to generate a new sequence with the same “emotion” 

component. The method presented in this thesis not only encompasses “emotion” but 

also rhythm and the semantics of the original motions to the target motion. Straight 

displacement mapping is tends to be an inflexible form of finding the difference. The 

difference defined in this thesis is more flexible than straight displacement mapping. 

Several other methods have focused on extracting characteristics from one or 

more examples, similar to the method presented here. Bruderlin and Williams [1995] 

treated motion sequences as frequency bands and adjusted motion characteristics by 

adjusting those frequencies. Brand and Hertzmann [2000] based their approach on 

analyzing motion sequences with the Hidden Markov Model (HMM) to extract styles, 

which in turn can be interpolated, extrapolated and applied to new sequences. However, 
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each of these methods changes only the style of the motion rather than the content.  In 

this thesis the content is modified.  

 

2.3 EXAMPLE MOTIONS 

Previous works have described methods to map between input and output 

motions by examining the correspondence between them. Dontcheva et al [2003] 

mapped low-dimensional performance to a high-dimensional motion using the Canonical 

Correlation Analysis method, a statistical method for finding linear correlations between 

cross-covariance matrices. He then drove the character animation by manipulating 

“widgets” movements. Hsu et al. [2005] treated motion mapping as a Linear Time 

Invariable (LTI) system and transferred motion characteristics by estimating dynamic 

metrics. Their system was limited in that it required the example motions to exist inside 

the example database while the intent of this system is to generate motion sequences for 

new characters that do not currently exist in the motion database. 

 

2.4 VISUALIZATION IN CLINICAL GAIT ANALYSIS 

In clinical research, motion analysis systems, force plate technology and 

electromyography can provide a detailed picture of the quadrupedal gait. However, 

much of this technology is labor intensive, time-intensive and often too expensive for 

clinical use. As such, much research has been devoted to classifying and describing 

gaits, but little has been done to organize data into useful diagnostic or therapeutic 

regimes. Gillette and Angle [2008] provided a review of recent developments in canine 
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locomotion, focusing on human perception of gait analysis of canines and the captured 

analysis of canine locomotion. With reviews conducted in current analytical techniques 

and current biomechanical technologies it is noted that 2D computer assisted video-

graphic gait analysis systems were the most relevant to the general practitioner. This is 

due to the fact that 3D systems required more specialized laboratories. Current studies 

on biped and quadruped locomotion involve measurement and analysis of temporal 

characteristics, electromyographic signals, kinematics of limb segments and the 

kinematics of the foot-floor and joint resultants. Analysis of the latter half of these 

features require a voluminous amount of data with limited ability to process this data for 

later analysis, particularly when dealing with quadrupeds (Newton and Nunamaker 

[1985]).  

 

2.4.1 EDUCATION 

Visualization of clinical data, such as 3D animations, is used to highlight relevant 

data and link specifics pieces of data together to allow users to quickly and easily 

identify underlying causes for health defects. These visualizations allow the clinician to 

give a more informed decision instead of being overwhelmed by the volumes of data. In 

education, 2D and 3D animations are used to supplement traditional teaching methods to 

allow for better understanding of injuries and procedures (Clements et al. [2013]). 

Scherzer et al. [2010] concluded that although interactive 3D media will never fully 

replace experimental learning, or learning by doing, it may prove as a useful tool in 
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aiding instructors to present complex material in a more understandable way, ultimately 

preparing students better. 

 

2.4.2 THERAPEUTIC 

Assessing the outcome of gait analysis is useful in the current evidence-based 

practice environment. There is a need to evaluate the effectiveness of rehabilitation 

interventions, such as therapeutic exercise, or drug studies (Steiss, [2007]). According to 

Steiss [2007], kinematics in a 2D/3D setting allows for detailed analysis of joint 

motions, such as joint angle differences, and analysis of various activities that can be 

tailored to specific areas of interest. 2D recordings are portable and can be sent 

elsewhere for a secondary opinion and there are numerous analytical tools already 

commercially available. However, these 2D analyses are often limited to the sagittal 

view of the recording camera, with 3D analysis being expensive in terms of motion 

capture and the equipment needed. Also, effective analysis requires breed specific 

normative data, e.g., a Greyhound varies greatly from a German Shepherd Dog.   
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3. APPROACH / METHOD 

Given two captured motions A and A’, the goal of this work is to determine a 

mathematical method for finding the difference between A and A’ and applying this 

difference to a third existing motion B to generate a new motion B’ that carries all 

characteristics shown in A’. When applying this to, for example, healthy and unhealthy 

motions, A becomes the healthy motion of a specific breed, A’ becomes the unhealthy 

motion of that breed, B is the healthy motion of a new different breed, thus B’ becomes 

the unhealthy motion of the new breed.  The process synthesizes the unhealthy motion of 

a new breed based on the difference characteristics found between the healthy and 

unhealthy versions of the measured/captured breed.  

 This work proceeds by first retargeting captured motions of A and A’ onto the 

target subject’s skeleton (B) to eliminate any motion that is driven by proportions and 

ensure that the skeletons have the same topology. The next step is to align the example 

motions to the reference motion using a procedure called time warping.  The method 

used is a linear model describing spatial differences between the aligned examples. This 

spatial estimation stage returns parameters that are then attached to the target motion B. 

This gives motion B the style of the example motions but not the timing. The procedure 

for finding the temporal estimation and adjusting the timing of the intermediate motion 

is done through the inverse time warping function. The resulting motion B’ may contain 

artifacts. These artifacts can be corrected by one or more standard processes for post 

processing of motion capture. 
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3.1 MOTION REPRESENTATION 

Animation curves, like the one shown in Figure 1 represent the x, y, and z 

position and/or rotation of a joint in Euclidian space as the positions or rotations change 

over time. Time is measured in sub-second measurements, typically 1/60th of a second 

for motion capture, called frames. For general use motions are represented as animation 

curves. 

 

 

Figure 1  Animation Curve 
 

 A motion sequence 𝑀   =    {  𝑀(𝑡𝑖)  } is a set of frames which contains a motion 

curve in the time domain. 𝑀 𝑡𝑖 =    𝑝𝑖
0 𝑞𝑖

0 𝑞𝑖
1 … 𝑞𝑖

𝑛 − 1   represents the 

configuration of joints at the 𝑖!! frame where 𝑝𝑖
0 is the global position of the root and 𝑞𝑖

0 

is the orientation of the root in world space and 𝑞𝑖
1is the orientation of the child joint in 

relation to its parent, in this case the root. Each component of 𝑀 is one Degree Of 
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Freedom (DOF). A table of some of the symbols used throughout this paper is shown 

below.  

 

In this paper joints are defined as objects that can be translated and rotated in 3D 

space. They can also be linked together to form a hierarchy. The first joint in a hierarchy 

is known as the root joint. A skeleton is a complete hierarchy of joints in the form of an 

organism, in this case a canine, with joints that placed in their correct anatomical 

positions. 
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3.2 SUBJECT NORMALIZATION 

 Before aligning the motions and finding the differences between them it is 

necessary to normalize the skeleton proportions and topologies to the target motion. 

First, the position vectors are scaled and rotation vectors are directly transferred. The 

method presented in Kovar et al. [2002b] is used to cleanup any artifacts that may occur. 

Kovar’s method uses defined footplant constraints assigned using an identifier algorithm 

to find the exact frames the foot is on the ground. Inverse kinematic solvers are used to 

reposition the leg joints to keep the foot in a single place.  

 

Figure 2  Example of Footskate on the Left and the Result of Kovar et al. [2002b] 
Algorithm on the Right 

 

3.3 TIME ALIGNMENT 

 With the skeletons of the same topology and proportion, a frame by 

correspondence action is performed to temporally align the example motions 𝑀𝐴 and 

𝑀𝐴′ to 𝑀𝐵. Linear blending can fail if motions have different timing, i.e. when 

corresponding events, like foot plants, occur at different frames in the sequence. To 

overcome this issue a time warp solution is used to correctly align corresponding events. 
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To align two motions, a time-alignment curve is constructed, which maps frames from 

one motion to corresponding frames in another motion. This curve is represented as: 

 

𝑺𝑨 → 𝑩   ≜ { 𝒕𝒊, 𝒕𝒋 :  the  𝒊𝒕𝒉  frame  of  𝑨  corresponds  to  the  𝒋𝒕𝒉  frame  of  𝑩}  (2)  

  

To obtain the most optimal alignment, the user selects appropriate starting and 

ending frames of each sequence to ensure good alignment exists at the boundaries. The 

time-alignment curve must also satisfy the constraints of continuity, causality and slope 

limitations, as seen in Kovar et al. [2003].  

With the time-alignment curves and the subsequent correspondence the example 

motion can be warped to align with the target. Assuming that 𝑀𝐴 corresponds to 𝑀𝐵, as 

shown below in Figure 2, I can warp the motion 𝑀𝐴, represented as 𝑀𝐴, based on three 

different correspondence criteria. The first is that one 𝑀𝐴(𝑡𝑖) corresponds to one 

𝑀𝐵(𝑡𝑗), so 𝑀𝐴(𝑡𝑗)  = 𝑀𝐴(𝑡𝑖). The second is that multiple 𝑀𝐴(𝑡𝑖) correspond to one 

𝑀𝐵(𝑡𝑗), so 𝑀𝐴 𝑡𝑗 =    !
!!!

   𝑀𝐴(𝑡𝑖)
!!!
!!!!! . The last case is that one 𝑀𝐴(𝑡𝑖) 

corresponds to multiple 𝑀𝐵(𝑡𝑗).  In this case a spline interpolation of 𝑀𝐴(𝑡𝑖) and its 

nearest before and after neighbors determines the values for 𝑀𝐴 𝑡𝑗 .  This warping 

procedure is performed on each DOF independently. A diagram of this process can be 

found in Figure 3 below. 
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Figure 3  Time Alignment of 𝑀𝐴 to 𝑀𝐵 

 

 

3.4 ANALOGIES ALGORITHM 

 After 𝑀𝐴 and 𝑀𝐴′ are warped and aligned to 𝑀𝐵, the three motions are of the 

same temporal length, eliminating any rhythm differences in the motions. The provided 

motions are then used to estimate parameters for the transformation from 𝑀𝐵 to 𝑀𝐵′. 

Note that 𝑀𝐴 and 𝑀𝐴′ are represented as the alignment motions and the alignment 

curves 𝑺𝑨 → 𝑩 and 𝑺𝑨! → 𝑩  are respectively represented as well. 

 A motion sequence is treated as a space-time curve in motion-space. Since 

handling the entire motion sequence as an analogy problem is difficult due to the high-

dimensionality of the entire motion sequence, projecting each DOF and processing them 

independently simplifies this issue. While some synchronization is lost there is greater 
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accuracy for the overall resulting motion. For each DOF the transformation is computed 

as: 

 

𝑴𝑨′ 𝒕𝒊 = 𝒂 𝒕𝒊 𝑴𝑨 𝒕𝒊 +   𝒃 𝒕𝒊      (3) 

 

where 𝑡𝑖 is the frame index and the parameters 𝒂 and  𝒃 are vectors that measure scale 

and offset of a linear transformation. These two parameters are used to discover the 

differences between the two motions. 

 The original representation of this algorithm is from Witkin and Popovic [1995]. 

The main differences between their algorithm and the one presented in this paper is that 

the motions have been warped, so there is no need to include this warp factor into the 

equation at this time, and that they sample a few key poses defined by the user, while in 

this paper the entire motion is sampled.  

 

3.5 ESTIMATION 

 Equation 3 can be solved directly, however 𝒂 and  𝒃 are sensitive to noise, 

resulting in a naïve solution. To improve the distributions of 𝒂 and  𝒃, the following 

objective function (4) is minimized: 

 

𝑬 𝒂,𝒃 =    𝒂   ∗   𝑴𝑨!   +   𝒃  –   𝑴𝑨
𝟐
  +   𝝎𝒂   ∗    𝑺𝒂 𝟐 +   𝝎𝒃   ∗    𝑺𝒃 𝟐    (4) 

 



 

 16 

where 𝑴𝑨! is the diag.(  𝑀!!) and S is a diagonal matrix that approximates first 

derivatives as shown below.  

 

S   = 𝟏
𝟐

−𝟐 𝟐         
−𝟏 𝟎 𝟏      
   ⋱ ⋱ ⋱   
      −𝟏 𝟎 𝟏
         −𝟐 𝟐

    (5) 

 

The smoothness terms 𝑆𝑎 2
 and 𝑆𝑏 2

are normalized by the constants 𝜔𝑎 and 𝜔𝑏. 

There is a tradeoff between the accuracy of the linear approximation and the smoothness 

of the two parameters. A higher 𝜔𝑎 means more smoothness in the scale factor over 

time. This means that the difference function is sampled more for a better fit, making the 

resulting motion curve more accurate. A higher 𝜔𝑏 means more smoothness in the 

overall gait, flattening the motion curve, and resulting in a loss of fidelity but filtering 

out any outliers in the data. In this thesis setting 𝜔𝑎   = 2×106  and  𝜔𝑏   =   2 allows for 

a high level of fidelity while filtering out data noise. These parameter values were 

iteratively searched for and the above values were found to be the best fit for the system. 

To solve Eq. 4 setting 𝛿𝐸/𝛿𝑎   =   𝛿𝐸/𝛿𝑏   =   0 reformulates the equation to: 

 

𝑴𝑨!
𝑻𝑴𝑨! +   𝝎𝒂  𝑺𝑻𝑺 𝑴𝑨!

𝑻

𝑴𝑨!
𝑻 𝑰+   𝝎𝒃𝑺𝑻𝑺

𝒂
𝒃 =    𝑴𝑨!

𝑻𝑴𝑨

𝑴𝑨
  (6) 
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 Using Gaussian Elimination, the above linear system can be solved for 𝒂 and  𝒃. 

The above equation is identical to that used in Wu et al. [2008]. 

 

3.6 TRANSFORMATIONS ALGORITHM 

 In Section 3.5, transformation parameters 𝒂 and  𝒃 were found. Those parameters 

can then be applied directly to 𝑴𝑩 to generate a new motion. However, since the 

sequences are all aligned it is assumed that 𝑴𝑩′’ has also been aligned to  𝑴𝑩 as well 

and therefore is actually a warped motion, 𝑴𝑩′. Again, each DOF is processed 

independently. 

 

𝑴𝑩′ 𝒕𝒊 = 𝒂 𝒕𝒊 𝑴𝑩 𝒕𝒊 +   𝒃 𝒕𝒊     (7) 

 

3.7 INVERSE TIME ALIGNMENT 

Similar to the process described in Wu et al. [2008], the target motion 𝑀𝐵′ is not 

the final desired result. As 𝑀𝐵′ is aligned to motion 𝑀𝐵 like all other sequences, it is 

necessary to invert this alignment to get 𝑀𝐵′.  

 The key to recovering the timing is in the time-alignment curve 𝑆𝐵 → 𝐵′ which 

aligns 𝑀𝐵 to 𝑀𝐵′.  However, such curve does not exist as it is impossible to find 

without first knowing 𝑀𝐵′.  By treating the time-alignment curves as an extra DOF of 

the motion, this problem can be solved. As earlier, 𝒂  and  𝒃 are solved for however this 

time replacing  𝑆𝐴′ → 𝐵 for 𝑀𝐴′ and 𝑆𝐴 → 𝐵 for 𝑀𝐴 such that: 
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𝑺𝑨′ → 𝑩 𝒕𝒊 = 𝒂 𝒕𝒊 𝑺𝑨 → 𝑩 𝒕𝒊 +   𝒃 𝒕𝒊        (8) 

and 

𝑺𝑩′ → 𝑩 𝒕𝒊 = 𝒂 𝒕𝒊 𝑺𝑩 → 𝑩 𝒕𝒊 +   𝒃 𝒕𝒊        (9) 

 

𝑆𝐵′ → 𝐵 𝑡𝑖 ≡    𝑡𝑖 because there is a one to one ratio. By using the equations 

defined previously, (8) and (9), it is possible to solve for 𝑆𝐵′ → 𝐵. However, 

𝑆𝐴 → 𝐵 𝑡𝑖  and 𝑆𝐴′ → 𝐵 𝑡𝑖  may not be uniformly sampled, or may have different 

lengths. To overcome this, 𝑆𝐴 → 𝐵 𝑡𝑖  is first aligned to  𝑆𝐴′ → 𝐵 𝑡𝑖  before 

determining the temporal transformation. 

With 𝑆𝐵 → 𝐵′ found the inverse alignment curve can be obtained according to 

the following: 

 

𝑺𝑩 → 𝑩′   =    {(𝒕𝒊, 𝒕𝒋):  where  (𝒕𝒋, 𝒕𝒊)  is  an  element  of  𝑺𝑩′ → 𝑩}  (10) 

 

It is also important to ensure that the curve 𝑆𝐵 → 𝐵′ satisfies the constraints of 

continuity, causality, and slope limitation, similar to the constraints determined by Kovar 

et al. [2003]. By warping 𝑀𝐵′ with the inverse of 𝑆𝐵 → 𝐵′, 𝑀𝐵′ is produced.  
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3.8 POST PROCESSING 

Given motions without any marker errors, occlusions or identity switching, and 

neutral gaits, a stylistic motion can be created. However, there may be a few artifacts 

that do not satisfy kinematic, or physical, constraints. The most common of these 

artifacts is foot skate, where the foot slides or skates around on the ground instead of 

staying in one place during a footplant. Kovar et al. [2002b] provided an efficient 

method to clean up this problem. Using his method any artifacts in the synthesized 

motion can be cleaned. 
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4. IMPLEMENTATION 

4.1 MOTION CAPTURE 

 The motion analogy system described in this thesis is implemented in Python 

programming language and Autodesk Maya 2012, a 3D software package. Motion 

Capture data was obtained using Vicon Nexus, a motion capture system, and Autodesk 

MotionBuilder, an accompanying software package (Autodesk Inc.). These specfic 

programming languages and software were used due to their ease of use and availability, 

but other choices of software could be substituted. The motion analogy method is 

designed such that it can be adapted to a variety of programming languages and 

implemented with most commercial 3D animation software packages. For more details, 

reference the program architecture and process in Appendix A. 

 The marker placement used in this thesis is only one of many possible 

combinations. However, for the use of this work and others a standard placement was 

developed. A marker placement for bipeds can be found in the Vicon 512 manual. 

Modifications to the placement and marker names were made to standardize the marker 

placement for canines (Woolard, 1995). A diagram of the marker set used in this thesis is 

available in Appendix B.  

Markers (63) were necessary on each joint so that all three rotational DOFs were 

obtained and to compensate for occlusions that occur naturally during capturing. Certain 

physical attributes, such as the width of the stifle, were measured as well. These 

measurements serve as input to calculate the actual joint centers, as the markers 
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themselves were only placed on the skin. A complete list of these attributes can in 

Appendix B. 

Vicon Nexus and Autodesk MotionBuilder enabled the extraction of raw motion 

capture data. This data came in the form of marker trajectories through 3D space, or x, y, 

and z positional values. Vicon Nexus allows for the capture and cleaning, of filling 

occlusions and assigning identities to the markers, of the marker trajectories, which are 

then exported as a .C3D file, a binary file format .C3D cannot be parsed so 

MotionBuilder converts the .C3D file to a .FBX file format, which can be read natively 

into Maya (Autodesk Inc.). 

 Once the marker trajectories are imported into Maya, a representation of the 

subject’s skeleton is constructed using a python script.  Using the measured attributes 

from before, mathematical approximations of the joint centers could be calculated. With 

these joint centers, the approximate skeleton and motion was constructed using built in 

Maya joint definitions and solvers. An example of the constructed skeleton is shown 

below in Figure 4. 

 

 

Figure 4  Skeleton Construction from Marker Trajectories 
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4.2 MOTION ANALOGY 

Once the animation data is extracted it is assembled for the analogies operations, 

performed using Python in Autodesk Maya. Three full strides of data are ideal for 

comparison.  Three strides are necessary to ensure that the middle stride is completely 

clean of any boundary noise. This middle stride can then be used for further analysis 

without fear of noise contamination. Sometimes it is impossible to get three full strides 

due to factors like immature subjects or compromising actions, such as transitioning 

gaits. When this is the case, the best solution is to overshoot the boundaries of a single 

stride to allow for an elimination of boundary noise and provide a single clean complete 

stride for comparison. 
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5. RESULTS 

Motion capture data was collected and provided by the College of Veterinary 

Medicine at Texas A&M University using the capture method described in Section 4 

Each canine skeleton comprises of 23 joints with 78 DOFs. Two sample cases of the 

differences between the healthy motion of a single breed (A) and an unhealthy motion of 

that same breed (A’) are compared. The system developed in this thesis then allows the 

application those differences to the healthy motion of a new breed (B). The components 

of the motions differ in many ways, including style, speed and path. Full videos are 

provided as supplemental files to this paper. 

Say we look at two case studies.  

 

5.1  CASE STUDY 1: HIP DYSPLASIA  

 This case study demonstrates the application of motion analogies between a 

healthy Labrador, a Labrador with hip dysplasia, and a healthy German Shepherd to 

synthesize a German Shepherd with hip dysplasia.  Clinical signs of hip dysplasia vary 

from dog to dog and may include hind limb lameness, “bunny hopping,” a swaying gait, 

a narrow stance, hip pain, atrophy of the thigh muscles, hypertrophy of the shoulder 

muscles and reduced hip joint motion (Demko and McLaughlin [2005]). This case study 

has a single subject for each motion, therefore the system operates on the assumption 

that each motion given is the standard for that motion, i.e. the hip dysplasia motion is the 

standard of hip dysplasia.  
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Figure 5  Hip Dysplasia Comparison 

 

Figure 5 illustrates single motion capture frames of a normal Labrador dog, a Labrador  

(Lab) afflicted with hip dysplasia, a healthy German Shepherd dog (GSD) and a 

synthesized motion for a German Shepherd with hip dysplasia. Notice the common 

characteristics between the measured Labrador with hip dysplasia compared with the 

synthesized German Shepherd with hip dysplasia.   For example the Labrador with hip 

dysplasia elevates the pelvis and lowers the front end. These characteristics are reflected 

in the synthesized German Shepherd with hip dysplasia.  
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The hip dysplasia synthesized is not the same as that on the Labrador because the 

analogies model only extracts the differences and eliminates the common features that 

appears in both the Labrador and the German Shepherd dog.  Figure 6 shows the motion 

curves of a single DOF, in this case the left femur rotation x, or twist, DOF. As shown, 

the synthesized motion curve is not a copy of the Labrador’s motion, but characterized 

by the differences between the healthy motion and the motion with hip dysplasia. 

 

 

 

Figure 6  Left Femur Twist Animation Curve Diagram 
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5.2 CASE STUDY 2: MUSCULAR DYSTROPHY 

 Demonstrated here is a sample of analogies between a healthy Golden Retriever, 

a Golden Retriever with muscular dystrophy (MD), and a different Golden Retriever to 

synthesize that Golden Retriever with muscular dystrophy as if they follow the 

progression of the standard. MD is not diagnosed on an orthopedic level but some 

symptoms exhibit physically. Those include, but are not limited to, a slower gait, smaller 

stride length, increased stifle joint extension and decreased hock flexion with the hock 

joint being overall less mobile than healthy canines [Barthélémy et al., 2011]. This 

sample has multiple subjects for each motion or multiple motions for each subject and as 

such there is an assumption that each motion given is the standard of that motion.  There 

are two healthy motions and three unhealthy motions for this sample. Since there is more 

than one motion the analogy is performed on all possible combinations. 
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Figure 7  Muscular Dystrophy Comparison 

 

Figure 7 above shows a single analogy combination. Notice that not only are the 

physical characteristics shown but that rhythm and temporal aspects are also prevalent.  

The lengths of the motion curves of the dogs with MD are longer than those without, 

however, the two MD motions, captured and synthesized, are not the same length. Figure 

8 below shows this effect in the motion curves of a single rotation Z DOF. 

 



 

 28 

 

Figure 8  Left Femur Extension/Flexion (Rotation Z) Animation Curve 

 

5.3 LIMITATIONS AND FUTURE WORK  

The system has limitations. For example, motion analogies are dependent on 

providing accurate input data free of noise. This means that the captured data needs to be 

of good quality otherwise more and more artifacts appear. Also the current system is 

limited to performing analogies between similar motions and motions that have a 

common footfall pattern. For example, the system cannot perform an analogy between a 
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diagonal symmetrical gait and a transverse asymmetrical gait because the diagonal 

symmetrical gait has a footfall pattern of LH/LF/RH/RF while the transverse 

asymmetrical gait has a footfall pattern of LH/RH/LF/RF as shown below in Figure 9. 

 

 

Figure 9  Diagonal Symmetric and Transverse Asymmetric Gait Footfall Pattern 

 

This system also only takes a single motion for each of the healthy and unhealthy 

motions. With only a single motion per input it is difficult to get an accurate 

representation of the orthopedic disease or injury. However, if the goal is to compare a 

subject to multiple motions, the input motions of that disease or injury need to be 

normalized first. Further work is needed integrating an algorithm that could take 

multiple motions for a single input and output the standard.  

Also, there is currently no user interface or easy access to this system for 

veterinarians as the system is currently implemented in Autodesk MAYA 2012. Making 

this system available and building a larger database of motions would serve as a good 

next step. While these extensions would result in a more robust system, they are out of 

the scope of the current project and are left for future work. 
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6. CONCLUSION 

In this thesis, a motion analogy system was developed that specializes in 

synthesizing abnormal gaits and applying them to virtual canines. The methods 

developed are intended to be applicable to a wide range of abnormal gaits and breeds of 

dogs and eventually could be applied to other quadruped digitigrades. With the addition 

of new subjects and with a limited amount of capture work, this new system has the 

capability to generate new motions for that subject. The system successfully separated 

the characteristics of each motion in a just a few test cases and such parameters can be 

further analyzed. 

This model is abstract enough that it can be used for any type of similar motions. 

While this thesis specifically concentrated on dogs walking and the differences between 

healthy and unhealthy, the system can handle any type of similar motions and skeletons. 

As such this system can be used to apply variations of motions between various subjects 

and with further work become even more robust. 
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APPENDIX A: PROCESS DIAGRAM AND SAMPLE CODE 
 

 
 
 
 

Time Alignment

Spatial Estimate

Temporal Estimate

Spatial Transform

Temporal Transform

Inverse Time Alignment

A A’ B

Retarget

B’

Footskate Cleanup

Analogy

Final Motion

spatial a and b parameters

temporal a and b parameters
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APPENDIX B: MARKER SET AND MEASUREMENTS 

 

Marker Diameter: 9.5 mm 

Markers: 

Medial   Pelvic Limb           Thoracic Limb 

Physical Measurements (mm): 
Elbow Width 
Carpus Width 
Paw Width (Front and Back) 
Stifle Width 
Tarsus Width 
Paw Length (Front and Back) 

12
3

4 5
6

7
9

10
11

12

13

14

15
16

17

1819
20

8

21

22 23

2425
26

27
28 29

30

31
32

3334

35

1. EOP 
2. CRAN 
3. L_EYE (R_EYE) 
4. WITH 
5. TL 
6. SCRM 
7. ASYM 
8. MANU 

9. L_ILI (R_ILI) 
10. L_GRTRO (R_GRTRO) 
11. L_ISCH (R_ISCH) 
12. L_MFEM (R_MFEM) 
13. L_LEPIF (R_LEPIF) 
14. L_TIBCR (R_TIBCR) 
15. L_MTIB (R_MTIB) 
16. L_LMAL (R_LMAL) 
17. L_MTAR (R_MTAR) 
18. L_L5MT (R_L5MT) 
19. L_DRPAW (R_DRPAW) 
20. L_LRDIG (R_LRDIG) 

21. L_DSCAP (R_DSCAP) 
22. L_CLAV (R_CLAV) 
23. L_MSCAP (R_MSCAP) 
24. L_TRIC (R_TRIC) 
25. L_ACRO (R_ACRO) 
26. L_GRTUB (R_GRTUB) 
27. L_MHUM (R_MHUM) 
28. L_LEPIH (R_LEPIH) 
29. L_OLE (R_OLE) 
30. L_MRAD (R_MRAD) 
31. L_STYL (R_STYL) 
32. L_MCARP (R_MCARP) 
33. L_L5MC (R_L5MC) 
34. L_DFPAW (R_DFPAW) 
35. L_LFDIG (R_LFDIG) 




