596 research outputs found

    Optimal Service Time Windows

    Get PDF
    Because customers must usually arrange their schedules to be present for home services, they desire an accurate estimate of when the service will take place. However, even when firms quote large service time windows, they are often missed, leading to customer dissatisfaction. Wide time windows and frequent failures occur because time windows must be communicated to customers in the face of several uncertainties: future customer requests are unknown, final service plans are not yet determined, and when fulfillment is outsourced to a third party, the firm has limited control over routing procedures. Even when routing is performed in-house, time windows typically do not receive explicit consideration. In this paper, we show how companies can communicate reliable and narrow time windows to customers in the face of arrival time uncertainty. Under mild assumptions, our main result characterizes the optimal policy, identifying structure that reduces a high-dimensional stochastic non-linear optimization problem to a root-finding problem in one dimension. The result inspires a practice-ready heuristic for the more general case. Relative to the industry standard of communicating uniform time windows to all customers, and to other policies applied in practice, our method of quoting customer-specific time windows yields a substantial increase in customer convenience without sacrificing reliability of service, providing results that nearly achieve the lower bound on the optimal solution. Our results show that (i) time windows should be tailored to individual customers, (ii) time window sizes should be proportional to the service level, (iii) larger time windows should be assigned to earlier requests and smaller time windows to later requests, (iv) larger time windows should be assigned to customers further from the depot of operation and smaller time windows to closer customers, and (v) two time windows for one customer are helpful in some cases

    Flexible Time Window Management for Attended Home Deliveries

    Get PDF
    In the competitive world of online retail, customers can choose from a selection of delivery time windows on a retailer's website. Creating a set of suitable and cost-efficient delivery time windows is challenging, since customers want short time windows, but short time windows can increase delivery costs significantly. Furthermore, the acceptance of a request in a particular short time window can greatly restrict the ability to accommodate future requests. In this paper, we present customer acceptance mechanisms that enable flexible time window management in the booking of time-window based attended home deliveries. We build tentative delivery routes and check which time windows are feasible for each new customer request. We offer the feasible long delivery time windows as a standard and let our approaches decide when to offer short time windows. Our approaches differ in the comprehensiveness of information they consider with regard to customer characteristics as well as detailed characteristics of the evolving route plan. We perform a computational study to investigate the approaches' ability to offer short time windows and still allow for a large number of customers to be served. We consider various demand scenarios, partially derived from real order data from a German online supermarket

    Dynamic Time Window Adjustment

    Get PDF
    To improve customer satisfaction in a delivery network with uncertain travel times, we propose to communicate time window adjustments to the customers throughout the day. We refer to these updates as dynamic time window adjustments. Dynamic time window adjustments are often used in practice, but have not yet been considered in the scientific literature. We provide a general model and we present the Dynamic Time Window Adjustment Problem (DTWAP). The DTWAP is the problem of optimizing the dynamic time window adjustments to maximize the expected customer satisfaction for a given route. Instead of solving the DTWAP in a specific setting, we derive general properties and we present three different solution methods. We also introduce the simple DTWAP, which is a special case that we analyze in more detail. The use of our results is demonstrated with an illustrative example concerning attended home delivery

    PEV Charging Infrastructure Integration into Smart Grid

    Get PDF
    Plug-in electric vehicles (PEVs) represent a huge step forward in a green transportation system, contribute to the reduction of greenhouse gas emission, and reduce the dependence on fossil fuel. With the increasing popularity of PEVs, public electric-vehicle charging infrastructure (EVCI) becomes indispensable to meet the PEV user requirements. EVCI can consist of various types of charging technologies, offering multiple charging services for PEV users. Proper integration of the charging infrastructure into smart grid is key to promote widespread adoption of PEVs. Planning and operation of EVCI are technically challenging, since PEVs are characterized by their limited driving range, long charging duration, and high charging power, in addition to the randomness in driving patterns and charging decisions of PEV users. EVCI planning involves both the siting and capacity planning of charging facilities. Charging facility siting must ensure not only a satisfactory charging service for PEV users but also a high utilization and profitability for the chosen facility locations. Thus, the various types of charging facilities should be located based on an accurate location estimation of the potential PEV charging demand. Capacity planning of charging facilities must ensure a satisfactory charging service for PEV users in addition to a reliable operation of the power grid. During the operation of EVCI, price-based coordination mechanisms can be leveraged to dynamically preserve the quality-of-service (QoS) requirements of charging facilities and ensure the profitability of the charging service. This research is to investigate and develop solutions for integrating the EVCI into the smart grid. It consists of three research topics: First, we investigate PEV charging infrastructure siting. We propose a spatial-temporal flow capturing location model. This model determines the locations of various types of charging facilities based on the spatial-temporal distribution of traffic flows. In the proposed model, we consider transportation network dynamics and congestion, in addition to different characteristics and usage patterns of each charging facility type. Second, we propose a QoS aware capacity planning of EVCI. The proposed framework accounts for the link between the charging QoS and the power distribution network (PDN) capability. Towards this end, we firstly optimize charging facility sizes to achieve a targeted QoS level. Then, we minimize the integration cost for the PDN by attaining the most cost-effective allocation of the energy storage systems and/or upgrading the PDN substation and feeders. Additionally, we capture the correlation between the occupation levels of neighboring charging facilities and the blocked PEV user behaviors. Lastly, we investigate the coordination of PEV charging demands. We develop a differentiated pricing mechanism for a multiservice EVCI using deep reinforcement learning (RL). The proposed framework enhances the performance of charging facilities by motivating PEV users to avoid over-usage of particular service classes. Since customer-side information is stochastic, non-stationary, and expensive to collect at scale, the proposed pricing mechanism utilizes the model-free deep RL approach. In the proposed RL approach, deep neural networks are trained to determine a pricing policy while interacting with the dynamically changing environment. The neural networks take the current EVCI state as input and generate pricing signals that coordinate the anticipated PEV charging demand

    Supply chain decisions for an adaptive, decentralized renewable energy system

    Get PDF
    The need for a more sustainable energy system and the shift to renewable energy and less-polluting fuels causes logistics problems related to the renewable energy supply. In particular, the transition towards more renewables creates problems related to supply-driven energy generation, location differences between energy production and energy demand, and the mismatch in production and demand profiles over time. This leads to curtailment of energy, irregular feed-in to the electricity grid, and transportation challenges related to the distribution of biogas. This thesis is based on the research project entitled “ADAPNER” (Adaptive logistics in a circular economy) which aims to "Determine optimized adaptable and sustainable configurations for different distribution alternatives regarding biomass and biogas in a circular economy”. The objective of this thesis is to determine these configurations for different decentralized renewable energy production, storage, and distribution alternatives. These include wind, photovoltaic (PV), biogas, LNG, and hydrogen.This thesis shows how challenges related to these domains are interrelated and should not be addressed in isolation. By addressing these issues, the results of this thesis contribute to the scientific literature and provide insights on designing the decentralized energy infrastructure in rural areas

    Unterbrechungstolerante Fahrzeugkommunikation im öffentlichen Personennahverkehr

    Get PDF
    Communication systems play an important role in the efficient operation of public transport networks. Recently, traditional voice-centric real-time communication is complemented and often replaced by data-centric asynchronous machine-to-machine communication. Disruption tolerant networking in combination with license-exempt high bandwidth technologies have the potential to reduce infrastructure investments and operating costs for such applications, because a continuous end-to-end connectivity is no longer required. In this thesis the feasibility of such a system is investigated and confirmed. First, realistic use-cases are introduced and the requirements to the communication system are analyzed. Then the channel characteristics of several WLAN-based technologies are experimentally evaluated in real public transport scenarios. Since the results are promising, the next step is gaining a deeper understanding of the special mobility properties in public transport networks. Therefore, we analyze existing traces as well as our own newly acquired trace. Our trace features additional operator meta-data that is not available for existing traces, and we report on unexpected properties that have not been quantified before. Then the trace is combined with the experimentally obtained channel parameters in order to analyze the characteristics of inter-vehicle contacts. We present the statistical distribution of situation-specific contact events and the impact of radio range on contact capacity. Then results of all steps above are used to propose a routing scheme that is optimized for public transport networks. In the final simulation-based evaluation we show that this router outperforms previously proposed algorithms.Kommunikationssysteme leisten einen wichtigen Beitrag zum effizienten Betrieb des öffentlichen Personennahverkehrs. Seit einigen Jahren wird dabei der Sprechfunk zunehmend durch asynchronen M2M-Datenfunk ergänzt und in vielen Anwendungsgebieten sogar vollständig ersetzt. Die Kombination aus unterbrechungstoleranten Netzwerken und lizenzfreien Drahtlostechnologien birgt ein erhebliches Potential zur Reduzierung von Infrastrukturinvestitionen und Betriebskosten, da für diese Anwendungen eine dauerhafte Ende-zu-Ende Verbindung nicht mehr erforderlich ist. In dieser Arbeit wird die Machbarkeit eines solchen Systems untersucht und belegt. Zunächst werden dazu Anwendungsfälle vorgestellt und deren Anforderungen an das Kommunikationssystem analysiert. Dann werden die Kanalcharakteristika mehrerer WLAN-Technologien im realen ÖPNV-Umfeld experimentell ermittelt und bewertet. Auf Grundlage der erfolgversprechenden Ergebnisse werden im nächsten Schritt die besonderen Mobilitätseigenschaften von ÖPNV-Netzen untersucht. Zu diesen Zweck analysieren wir existierende und eigene, neu aufgezeichnete Bewegungsdaten von ÖPNV-Fahrzeugen. Unsere Daten enthalten dabei zusätzliche Metadaten der Verkehrsbetriebe, die zuvor nicht verfügbar waren, so dass wir unerwartete Effekte beschreiben und erstmals quantifizieren können. Anschließend werden die Bewegungsdaten mit den zuvor experimentell erfassten Kanaleigenschaften kombiniert, um so die Kommunikationskontakte zwischen den Fahrzeugen genauer zu betrachten. Wir stellen die statistische Verteilung der situationsabhängigen Kontaktereignisse vor, sowie den Einfluss der Funkreichweite auf die Kontaktkapazität. Dann werden die Ergebnisse aller vorhergehenden Schritte verwendet, um ein neues, optimiertes Routingverfahren für ÖPNV-Netze vorzuschlagen. In der simulationsbasierten Evaluation belegen wir, dass dieser Router die Leistung bisher bekannter Verfahren übertrifft

    RĂ©seaux de capteurs ubiquitous dans l'environnement NGN

    Get PDF
    Ubiquités Sensor Network (USN) is a conceptual network built over existing physical networks. It makes use of sensed data and provides knowledge services to anyone, anywhere and at anytime, and where the information is generated by using context awareness. Smart wearable devices and USNs are emerging rapidly providing many reliable services facilitating people life. Those very useful small end terminals and devices require a global communication substrate to provide a comprehensive global end user service. In 2010, the ITU-T provided the requirements to support USN applications and services in the Next Génération Network (NGN) environment to exploit the advantages of the core network. One of the main promising markets for the USN application and services is the e-Health. It provides continuous patients’ monitoring and enables a great improvement in medical services. On the other hand, Vehicular Ad-Hoc NETwork (VANET) is an emerging technology, which provides intelligent communication between mobile vehicles. Integrating VANET with USN has a great potential to improve road safety and traffic efficiency. Most VANET applications are applied in real time and they are sensitive to delay, especially those related to safety and health. In this work, we propose to use IP Multimedia Subsystem (IMS) as a service controller sub-layer in the USN environment providing a global substrate for a comprehensive end-to-end service. Moreover, we propose to integrate VANETs with USN for more rich applications and facilities, which will ease the life of humans. We started studying the challenges on the road to achieve this goalUbiquitous Sensor Network (USN) est un réseau conceptuel construit sur des réseaux physiques existantes. Il se sert des données détectées et fournit des services de connaissances à quiconque, n'importe où et à tout moment, et où l'information est générée en utilisant la sensibilité au contexte. Dispositifs et USN portables intelligents émergent rapidement en offrant de nombreux services fiables facilitant la vie des gens. Ces petits terminaux et terminaux très utiles besoin d'un substrat de communication globale pour fournir un service complet de l'utilisateur final global. En 2010, ITU -T a fourni les exigences pour supporter des applications et services USN dans le Next Generation Network (NGN) de l'environnement d'exploiter les avantages du réseau de base. L'un des principaux marchés prometteurs pour l'application et les services USN est la e- santé. Il fournit le suivi des patients en continu et permet une grande amélioration dans les services médicaux. D'autre part, des Véhicules Ad-hoc NETwork (VANET) est une technologie émergente qui permet une communication intelligente entre les véhicules mobiles. Intégrer VANET avec USN a un grand potentiel pour améliorer la sécurité routière et la fluidité du trafic. La plupart des applications VANET sont appliqués en temps réel et ils sont sensibles à retarder, en particulier ceux liés à la sécurité et à la santé. Dans ce travail, nous proposons d'utiliser l'IP Multimédia Subsystem (IMS) comme une sous- couche de contrôle de service dans l'environnement USN fournir un substrat mondiale pour un service complet de bout en bout. De plus, nous vous proposons d'intégrer VANETs avec USN pour des applications et des installations riches plus, ce qui facilitera la vie des humains. Nous avons commencé à étudier les défis sur la route pour atteindre cet objecti
    • …
    corecore