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Chapter 1

Introduction

Supply chain and operations management decisions are important in the transition

from fossil-based energy sources to renewable energy. They form the basis for

infrastructural designs that need to be able to efficiently handle the increased

complexity associated with intermittent and decentralized renewable energy

production. These infrastructural designs encompass the challenging interplay

between production, storage, and distribution to avoid excess installed capacity,

losses related to curtailment and conversion, inefficient transportation of energy, and

grid congestion.

This thesis addresses decision-making problems related to balancing and

organizing the storage and distribution of biogas, solar energy, and wind energy for

energy producers. The decisions aim at balancing and operating storage, production,

and transportation in rural areas to avoid excess production or storage capacity,

electricity grid congestion, and curtailment. They further aim at the efficient

distribution of energy, to determine the shares of different renewable sources in

the energy mix, and to provide a stable supply of renewable energy to rural

communities. This thesis also addresses the use of LNG in the transportation

sector, by showing under which conditions LNG-fueled ships are more economically

viable than conventional ships. We employ a wide variety of methods that

include Mixed-Integer and Linear Programming, simulation, and Markov-Decision

Processes.

In introducing this thesis, we first provide an overview of the logistics challenges

related to renewable energy supply in general, followed by discussions of solution
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directions. The solutions that are studied in this thesis combine a decentralized

approach with the application of energy storage to adapt to the energy transition.

Finally, we specify the three domains of the energy transition to which this thesis will

contribute, including the research questions that will be addressed in each chapter.

These domains include transportation logistics, seasonal matching of supply and

demand, and the operation of storage facilities.

1.1 Logistics challenges of renewable energy supply

The need for a more sustainable energy system and the shift to renewable energy and

less-polluting fuels causes logistics problems related to the renewable energy supply.

In particular, the transition towards more renewables creates problems related to

supply-driven energy generation, location differences between energy production

and energy demand, and the mismatch in production and demand profiles over

time.

Major logistics challenges arise from the supply-driven production of renewable

energy, the location of production, and different profiles of supply and demand.

Renewable energy is supply-driven because the production levels cannot be flexibly

adjusted. Solar and wind energy are dependent on weather. Biogas is dependent on

organic processes related to digestion.

Renewable energy is also generated at different locations than demand. For

example, large solar fields are placed in rural areas in which land is more abundant

and less expensive than in urban regions. Wind energy production tends to be

located in rural areas and large offshore wind parks at sea. Biogas production

facilities are also commonly located in rural areas near farms that have the

availability of manure which can be fed to a digester.

The production of renewable energy follows a different pattern than energy

demand. For example, the electricity demand of households fluctuates during the

day, whereas biogas production is relatively constant as a result of biochemical

processes and solar energy typically peaks during noon. Wind energy is more

volatile as a result of weather changes.

The production profiles of solar and wind energy potentially create electricity

grid congestion as a result of peak levels sent to the grid. At these times,

the generated power becomes confined to the direct environment in which it is
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produced. Grid congestion is a result of network constraints that threaten grid

balance and cause outages (Vargas et al., 2014; Kumar et al., 2005). Electricity grids

in terms of distribution networks that comprise the low to medium voltage grids,

ranging between 0.4 to 2.3 kiloVolt (kV), are highly affected by increasing shares

of renewables. Designing effective logistics systems which consider both storage

and distribution of electricity is key in addressing the increasing need for congestion

management.

1.2 Solution directions

The solutions to adapt to the new logistic challenges that are explored in this thesis

combine a decentralized approach with the application of energy storage.

1.2.1 Decentralized approach

From both a logistics and societal standpoint, the production-related logistics

problems should be addressed based on a decentralized approach, in which energy

that is produced locally is consumed locally as much as possible. We refer to a

decentralized approach as an approach in which energy production is relatively

geographically dispersed and in which the supply is used as much as possible

to satisfy energy demand that is close to production. While connecting energy

systems on a large scale enables spatial smoothing of differences in supply and

demand (Lund et al., 2015), it is also generally considered that unnecessary energy

transportation over long distances should be avoided, if possible. This avoids

both transmission losses, curtailment, conversion, and high requirements, and peak

utilization of the scarce distribution infrastructure. This helps to avoid increasing

congestion issues related to connecting renewable energy to energy grids.

From a societal perspective, a decentralized approach also addresses the desires

of local communities that reside close to renewable energy production facilities.

Increasingly, residents of local communities resist the establishment of renewable

energy sources in nearby areas. Residents want to have a stable supply of green

energy with a transparent origin but are reluctant to have windmills, digesters, and

solar fields nearby when that energy is mostly consumed elsewhere.
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1.2.2 Transportation systems

Even though production and consumption can both occur locally, a decentralized

approach still requires efficient transportation systems to connect the supply to the

demand elsewhere. This is because local small-scale and (partly) self-sufficient

energy systems with fewer participants create fewer opportunities to smooth out

renewable power generation and consumption over a wider area compared to large

spatially-integrated energy systems. Fewer participants which supply and consume

energy also lead to reduced opportunities for flexibility, because fewer actors are

available to provide flexibility services. Therefore, the organization of logistics

in these systems becomes increasingly important. Solar and wind energy need

sufficient electricity distribution infrastructure in terms of the electricity grid, while

transportation of gases such as hydrogen or biogas can be done employing either

pipeline grids or ships and trucks with tube trailers.

Particularly in the transition period, transportation by truck or ship may be

expected. To avoid diesel trucks or ships nullifying the gains of the renewable

energy sources, also the transport sector itself should adapt, by making use of the

multitude of cleaner fuels that become available, which include electricity, hydrogen,

and LNG. While electric propulsion becomes increasingly more prevalent for road

vehicles, the transition to future fuels for ships is less evident. For example, bio-LNG

is the biofuel counterpart of Liquefied Natural Gas (LNG), which is held at extremely

low temperatures. LNG is a promising fuel in both truck transportation (Post et al.,

2018) and ships (Wang and Notteboom, 2014). However, the application of biogas as

LNG and the adoption of LNG, in general, creates decision problems for the users

of such fuels related to the investment in both infrastructure and ships (Wang and

Notteboom, 2014).

Shipowners need to adapt to more tightening International Maritime

Organization (IMO) regulations that prevent the usage of polluting fuels. These

regulations dictate that ships cannot pass through Emission Controlled Areas

(ECA) using high-pollution fuels (IMO, 2019). This creates challenges related to

the economic viability of choosing future fuels to comply with regulations in the

transportation sector that aim to migrate to cleaner fuels. Accordingly, ship owners

need to decide whether or not to migrate to cleaner fuels such as (bio-) LNG or

hydrogen. Unfortunately, these fuels are associated with higher investment costs.

Shipowners decide to either use the more expensive and cleaner, but still polluting
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oil blends such as Marine Gasoil (MGO) with conventional engines, or invest in

newly-built ships that employ LNG-compliant engines.

When gas transport in a transition period is done by trucks or ships rather

than pipelines, the non-continuous flow will require temporary storage of gasses.

Traditionally, storage has also played a role in the grid-based gas supply chain to

balance gas supply and demand. But this role extends due to the supply-driven

character of a large part of the biogas production, which reduces the opportunities

to adapt supply to demand. Storage has generally played a smaller role in electricity

supply, where supply adjustments and market mechanisms resolved fluctuations in

demand.

1.2.3 Short-term and long-term storage

Storage enables the adaptation to the intermittent and different production profiles

of different sources and demands. The variable production levels can be stored,

while the output of the storage facility can reflect the variable profile of demand

levels. To reduce storage required, supply from multiple energy sources such

as biogas, solar, and wind energy can be combined, which takes advantage of

the different production profiles in matching supply and demand and uses the

storage capacity more effectively. Also, biogas can be converted to electricity using

a Combined Heat and Power (CHP) engine and can complement the electricity

generated from solar and wind energy.

Storage may play an increasingly important role when adapting to the logistic

challenges of the energy transition. It is a flexibility option that enables control over

the time at which energy is provided to a consumer or a transportation system.

Particularly when storing electricity, we have to distinguish between short-term

storage and long-term storage.

Short-term storage of electricity can be realized with batteries to mitigate

intra-day fluctuations in electricity production and consumption. They have limited

conversion losses (Telaretti et al., 2016), but they are relatively heavy and expensive

in large capacities, in which benefits related to economies of scale are limited.

Moreover, batteries are associated with losses when energy is stored for longer

periods.

Long-term storage can be realized using, for example, cleaned biogas in case of

biogas or hydrogen in case of electricity supply. Storing biogas for longer periods
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requires cleaning, compressing, and storing the biogas in cylinders. The biogas

must first be cleaned by removing hydrogen sulfide and must then be compressed

(SUSCON, 2005). Accordingly, long-term storage of biogas in cylinders is relatively

expensive. Hydrogen is suitable for long-term storage of electricity in a gaseous

form, due to limited time-related losses, a relatively high energy density, and

economies of scale related to production and storage. Therefore, hydrogen can

be used to bridge seasonal mismatches in production and demand. Electricity

is then used in electrolysis to split water into hydrogen and oxygen, while fuel

cells can reconvert hydrogen into electricity. This makes hydrogen suitable as a

storage medium of electricity and it can play an important role in the congestion

management, balancing, and load leveling of electricity grids (Lund et al., 2015).

Hydrogen is associated with relatively high round-trip conversion losses when

reconverting hydrogen back to electricity. Still, conversion to electricity might be

sensible during periods of high electricity prices or to provide flexibility services to

the electricity grid (Lund et al., 2015).

Hydrogen can be stored inside underground salt caverns which enable

large-scale storage(HyUnder, 2014). This may enable supplying industrial

consumers in the future with large amounts of hydrogen when needed. It is

important to note that the reduced quality of hydrogen stored in salt caverns

makes it less suitable for conversion to electricity using fuel cells since fuel cells

require hydrogen with high purity (Andersson and Grönkvist, 2019). Hydrogen

can also be stored inside cylinders with a maximum capacity of 16.5 MWh (Bünger

et al., 2016)) and inside underground pipelines. Hydrogen facilities which include

an electrolyzer, compressors, and cylindrical storage are still relatively expensive.

According to The International Renewable Energy Agency (IRENA, 2019), the costs

of electrolyzers at the time of writing range are 840 USD per installed kW and can

be reduced to 200 USD per kW in the future, assuming that electrolyzers are at

least utilized half of the time. Under these conditions, hydrogen production can

be “competitive with average to high natural gas prices” for industry consumers

(IRENA, 2019). However, this still excludes the costs of renewable energy production

capacity. When including, for example, solar production capacity, hydrogen is still

relatively expensive (IRENA, 2019).

Storage may fulfill different functions in the transition to renewable energy

supply. The discussed challenges require energy systems that can adapt to
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supply-driven production, intermittency in production, the mismatch in supply

and demand, the location differences between production and demand, and grid

congestion. Storage solutions enable storing the supply-driven production of biogas,

wind, and solar energy for later use to avoid curtailment. Storage provides an

approach to bridge intermittent supply of energy while providing the needed level

of output to demand. It enables matching the different profiles of supply and

demand more effectively by gaining more control over the supply of energy. Finally,

storage enables more control over the distribution of energy to avoid peak use of grid

infrastructure. Some further considerations also play a role in each of these functions

of storage.

While renewable energy is supply-driven, which means that production can be

less flexibly adjusted, storage can help in adapting to the increasing supply-driven

energy production levels. This enables avoiding curtailment. During times of excess

supply, energy can be stored and used at later times to supply peaks in demand. This

enables avoiding both curtailments as a result of excess supply and avoids shortages

during times of excess demand. In designing effective energy systems, balancing

production capacity and storage capacity is important, because excess production

capacity reduces the need for storage, but leads to excess supply. Avoiding all

potential curtailment may lead to excess and overly expensive storage requirements.

Storage enables the adaptation to the intermittent and different production

profiles of different sources and demands. The variable production levels can be

stored, while the output of the storage facility can reflect the variable profile of

demand levels. To reduce storage required, supply from multiple energy sources

such as biogas, solar, and wind energy can be combined, which takes advantage

of the different production profiles in matching supply and demand and uses the

storage capacity more effectively. Also, biogas can be converted to electricity using

a Combined Heat and Power (CHP) engine and can complement the electricity

generated from solar and wind energy.

Storage enables adapting to the increasing seasonality associated with supply

and demand and increasing levels of renewable sources. For example, the peaks

of solar energy generated in the summer coincide with reduced levels of electricity

consumption by households in the summer, whereas solar production levels are

much lower in winter. Storage (e.g. in the form of hydrogen) enables the adaptation

of energy systems to seasonality differences by bridging supply and demand across
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seasons. It is important to note that the increased adoption of heating based on

electricity (e.g. heat pumps) in the energy transition is likely to increase seasonal

differences between supply and demand due to increased electricity consumption in

the winter.

Finally, storage helps to adapt to increasing needs for flexibility services to

the electricity grids. Connecting storage facilities to the electricity grid and local

electricity demand enables more control over the times at which electricity is

obtained or fed to the grid. The peak availability of electricity at solar parks may

cause peaks in the supply to the electricity grid connection. Congestion can also

occur elsewhere in the electricity grid, which can be solved by providing or obtaining

energy to or from the grid at the right times. Storage can facilitate the mitigation

of peak supply to the grid, as well as enable the adaptation of energy systems to

congestion problems elsewhere in the electricity grid.

1.3 Problem statement

1.3.1 Aim of this thesis

This thesis is based on the project entitled “ADAPNER” (Adaptive logistics in a

circular economy) which is financed by the Netherlands Organization for Scientific

Research (NWO). The main objective of ADAPNER is “Determining optimized

adaptable and sustainable configurations for different distribution alternatives

regarding biomass and biogas in a circular economy”.

The objective of this thesis is to determine these configurations for different

decentralized renewable energy production, storage, and distribution alternatives.

The scope of the alternatives considered in this thesis encompasses different

renewable energy sources, storage types, and the connection to the electricity grid

infrastructure. In particular, we focus on electricity generated by wind and solar

photovoltaic (PV) energy. Biogas is both seen as a source to fulfill natural gas

demand and also as a source for fulfilling electricity demand employing a CHP

engine. We also include LNG as a potentially important fuel in the transportation

sector. Furthermore, this thesis includes hydrogen storage as a way to bridge

seasonal mismatches between renewable energy production and electricity demand,

in which the hydrogen can be converted to electricity. Finally, we include the
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electricity grid connection as a way to connect to the rest of the grid and to

benefit from flexibility and availability of electricity that is consumed and generated

elsewhere.

From the objective and scope above we formulate the main research question of

this thesis as follows:

How should the decentralized storage and distribution of biogas, solar energy, and

wind energy be organized and adapted to enable effective embedding in existing grid

infrastructure?

To position the energy sources, forms, and storage possibilities related to the

main research question, we use the reference diagram from the ENTSO-E (2021)

model of the European transmission system in Figure 1.1. This diagram gives

a holistic overview of generators, grids, storage, demand (sectors), and the links

between them. Designing efficient logistics systems based on this complex diagram

with all its interacting links (sector couplings) requires solving numerous ‘pieces of

the energy transition puzzle’. Our chosen scope of the main research question is

denoted by the dotted rectangular box. Note that we leave out the hydroelectricity

source since it has specific intermittency aspects and does not play a role in the

Netherlands.

Figure 1.1: Scope of this thesis, depicted on the reference diagram of ENTSO-E
(2021))
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Furthermore, we identified three main research domains in the scope of our thesis

to which our study aims to contribute. These research domains are:

• Transportation logistics

• Seasonal matching of supply and demand

• Operation of storage facilities

The depiction of the research domains in the scope of this thesis is shown in

Figure 1.2.

1.3.2 Overview and structure of the thesis

The main body of this thesis, Chapters 2 – 6 addresses five studies executed,

which successively cover different aspects of the three research domains. Finally, to

conclude, Chapter 7 reflects upon the findings of these studies and their contribution

to the main research question. An overview of the structure of the main body of the

thesis together with the research domains we distinguish is depicted in Figure 1.2

below.

Figure 1.2: Overview of research domains and structure of the thesis
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Firstly, Chapter 2 and Chapter 3, focus on the domain ”Transportation logistics”.

This domain includes both logistics decisions related to transportation, and then

the transition to cleaner fuels in the transportation sector. We first address the

storage and transportation of biogas in a decentralized setting. To enable efficient

transportation of biogas to gas injection and upgrading facilities, we determine

the scheduling and routing of trucks that transport cylinders with biogas. This is

important to enable the embedding of biogas into existing pipeline gas grids. We

then focus on the transition to cleaner fuels in the transportation sector in which

biogas can be applied in the form of LNG as a fuel in ships. To facilitate the

transition to cleaner fuels in the transportation sector, it is important to determine the

conditions under which investments in the usage of cleaner fuels are economically

viable.

We address the following individual research questions as part of the domain of

transportation logistics.

1. How should biogas be distributed using trucks with tube trailers from

digesters to centralized upgrading facilities? (Chapter 2).

2. Under which conditions is the application of LNG economically viable for

LNG-fueled ships? (Chapter 3).

Secondly, we focus on the domain ”Seasonal matching of supply and demand”.

Chapter 4 studies combining electricity from biogas with other renewable energy

sources such as wind and solar energy in a decentralized setting across seasons. We

study different configurations of storage and production capacity levels and examine

the shares of each source in the total production levels to effectively match the supply

and electricity demand of a group of connected households.

1. How should biogas, wind, and solar energy be combined across seasons and

how is this affected by the level of total production capacity and storage

capacity? (Chapter 4).

Thirdly, we focus on the domain ”Operation of storage”. We investigate how

solar parks with hydrogen should be operated when connected to existing electricity

grids and a community of households that aim to be self-sufficient. Hydrogen

storage enables the bridging of seasonality differences in supply and demand and

contributes to avoiding grid congestion. However, the operational decisions of
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solar parks with hydrogen storage to reach these goals are important to enable the

effective embedding of solar parks in existing electricity grid infrastructure. The

related sub-questions are summarized below.

1. Under which conditions should the owner of solar fields with hydrogen buy

and sell from and to the grid to maximize profits? (Chapter 5).

2. How should solar fields with hydrogen storage be operated to alleviate

congestion? (Chapter 6).

To conclude, Chapter 7 reflects upon the findings of the five studies and their

contribution to the main research question.

In the next section, we give a short background of the studies which are covered

in more detail in the subsequent chapters.

1.4 Background of the studies in this thesis

This section provides a short background for each of the studies in this thesis. The

studies are described in detail in the subsequent Chapters 2 – 6, and are based on the

following journal publications.

• Chapter 2:

Fokkema, J. E., Land, M. J., Coelho, L. C., Wortmann, H., Huitema, G.

B. (2020). A continuous-time supply-driven inventory-constrained routing

problem. Omega, 92, 102151.

• Chapter 3:

Fokkema, J. E., Buijs, P., Vis, I. F. (2017). An investment appraisal method to

compare LNG-fueled and conventional vessels. Transportation Research Part D:

Transport and Environment, 56, 229-240.

• Chapter 4:

Fokkema, J. E., Land, M. J., Wortmann, H., Huitema, G. B. (2021). Combining

biogas, wind and solar energy to match local demand: The production–storage

trade-off. Under Review.

• Chapter 5:

Fokkema, J. E., Uit het Broek, A.J., Schrotenboer, A.H., Land, M.J., Foreest, N.D.
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(2021). Strategic seasonal hydrogen storage for renewable energy producers.

Under Review.

1.4.1 Organizing biogas storage and transportation (Chapter 2)

Biogas can be produced from manure and other feedstock in digester facilities and is

a result of biochemical processes in which microbes feed off biomass. Several aspects

are important to effectively organize logistics.

Biogas production is relatively constant, due to the biochemical processes in

which microbes feed off the biomass. Since it takes typically 20 days to initiate

biogas processes in a digester, the production is highly inflexible and supply-driven.

There are limited local storage options, in which uncompressed additional storage

roofs are expensive and have a very low capacity. These reinforced plastic roofs are

commonly used and enable limited storage of raw biogas with a capacity of up to

one day of biogas production. Due to the limited capacity, biogas must either be

curtailed, used for heating, or converted with conversion losses into electricity using

a Combined Heat and Power (CHP) engine when excess production cannot be stored

or distributed.

Instead of converting biogas to electricity, it can be injected into existing gas grids

using upgrading facilities that purify the gas to meet the requirements of gas in the

gas grid. However, these facilities require high investments and are generally not

economically feasible when located at single farms. Therefore, these need to be used

by multiple farms to achieve economies of scale.

Biogas can be produced by mono-digestion, which refers to solely feeding

manure into a digester. Since mono-digestion does not rely on feedstock such as

maize that needs to be procured expensively on the external market, it has relatively

low variable costs. The stability of the input required also enables lower variable

costs. However, it also creates a relatively low biogas output rate. While this may be

a solution to the high abundance of manure, the high manure requirements relative

to the biogas output create the need for external manure procurement to make

mono-digesters economically feasible. Transportation of feedstock is considered

inefficient, because of the relatively low energy density of manure relative to the

energy consumption of truck transportation (Pierie et al., 2015).

Biogas produced by co-digestion is a result of combining manure with other

feedstock. From an environmental perspective, co-digestion at the farm level
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interferes with agricultural practices, since it leads to increased nitrogen emissions

(Hoang et al., 2019). Even though it enhances biogas output, the feedstock must be

externally procured. Consistency of quality of the feedstock is also important, which

creates a high dependency on a single supplier and causes prices to be relatively

high. This affects the economic viability of digesters. Since feedstock has a relatively

low energy density, transportation by gasoline-consuming trucks from the source to

the farm becomes soon unsustainable. It is associated with considerable inefficiency

when fuel consumption exceeds the energy contents of transported feedstock.

The above-mentioned issues suggest that, from a transportation perspective, it

is more efficient to decentralize digester locations close to biomass sources and to

transport the gas to centralized gas upgrading and injection facilities rather than

to centralize digesters. The supply-driven and inflexible production characteristics

require biogas distribution to be orchestrated around supply rather than only

demand. Distribution of biogas can be done using trucks with tube trailers.

However, this creates specific routing and inventory problems in which the cylinders

act as both a stationary and mobile storage unit and the trucks exchange empty

cylinders for full ones.

Since the amount of transport related to biogas should be minimal, we aim to

achieve this in Chapter 2 by examining how to minimize biogas transportation

using smart planning of routes. We address the research question: How should

biogas be distributed using trucks with tube trailers from digesters to centralized upgrading

facilities? Minimizing biogas transportation is important since this contributes to

the economic viability of biogas production for relatively small farms, which is

limited in general (Lauer et al., 2018) and also depends on subsidies in, for example,

the Netherlands. In Chapter 2, we develop a model that addresses the inventory

and routing decisions of biogas transportation using trucks with tube trailers to

distribute the gas to upgrading and pipeline injection facilities. In this setting, a

decision must be made on choosing a set of routes in which the truck visits a set of

farms to minimize the transportation time. The decision entails choosing the set of

multiple routes within a planning horizon, the time at which a truck arrives at a farm,

and the number of cylinders that the operator exchanges in which cylinders can be

partly filled. The cylinders are movable storage units. To ensure consistency in the

schedules, the routing and inventory replenishment decisions need to be repetitive

within a predetermined planning horizon. We propose a mathematical formulation
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that addresses this decision in continuous time and we indicate how to enhance the

performance and practical applicability of the model.

1.4.2 LNG as a viable fuel in transportation (Chapter 3)

The adoption of methane in key sectors such as the transportation sector depends

strongly on the economic viability of the investments that are necessary to enable

its usage. For example, biogas can be upgraded to ‘green’ gas in which the quality

is similar to methane in the gas pipeline grids. The methane can be liquefied at

extremely low temperatures to create Liquefied Natural Gas (LNG). In the case of

upgraded biogas, we refer to bio-LNG. For brevity, we shall from now on refer to

LNG which can be either LNG or bio-LNG.

In the transportation sector, LNG is considered as a promising transition fuel

in transitioning to a zero-emission transportation system (Post et al., 2018). For

example, ships can be fitted with LNG engines which enable zero particle emissions

and low greenhouse gas emissions. Moreover, International Maritime Organization

(IMO) regulations in 2020 stipulate that cargo ships are no longer allowed to utilize

high-polluting fuel-oils inside Emission Controlled Areas (ECA). Since LNG has

been a much cheaper alternative to oil-based fuels based on past LNG prices, this has

led to increased attractiveness of cleaner fuels such as LNG. However, the additional

investment costs associated with installing LNG engines are still one of the key

obstacles to adoption (Wang and Notteboom, 2014).

In Chapter 3, we address the research question: Under which conditions is the

application of LNG economically viable for LNG-fueled ships? We show that and

under which conditions, a cleaner fuel such as LNG can be more attractive than

conventional fuels for newly-built ships. This enables ship owners to make

better-informed decisions on the purchase of newly-built ships which are fitted with

LNG-fueled engines. We develop a simulation model that enables comparing the

total costs of newly-built LNG-fueled ships with conventional ships. LNG-fueled

ships can have dual-fuel engines that enable utilizing and switching between

different fuels while at sea. Since prices of the different fuels fluctuate, a decision

must be made on how much of the different fuels to bunker for each trip. Our

model takes into account the optimal bunker planning decisions of ship operators

in choosing how much of which fuel to bunker. We identify under which conditions

LNG-fueled ships are more cost-effective than conventional-fueled ships to facilitate
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the increasing adoption of fuels such as LNG.

1.4.3 Combining biogas with solar and wind energy (Chapter 4)

Biogas can also be converted to electricity using a CHP engine. Accordingly, solar,

wind, and biogas can all supply demand for electricity. Combining the constant

and supply-driven profile of biogas with other energy sources such as wind and

solar energy presents opportunities to achieve a better match between supply and

demand. Wind, solar, and biogas have an important role in rural areas where land is

relatively cheap, abundant and in which the local energy produced can be consumed

in local communities and villages.

Since the profiles of biogas, wind and solar energy cannot be directly matched

with the electricity consumption profiles of households in villages and communities,

storage is needed to bridge the different profiles and the seasonality gap between

supply and demand. However, both the share of each energy source in the total

supply and the total installed production capacity affect the storage capacity that

is needed to overcome short-term and seasonal differences in supply and demand.

Accordingly, a trade-off arises in which a high production capacity leads to high

curtailment and low storage requirements, and a lower production capacity requires

higher levels of storage capacity.

In Chapter 4, we address the research question: How should biogas, wind, and

solar energy be combined across seasons and how is this affected by the level of total

production capacity and storage capacity? We provide insights on the choice of an

appropriate mix of energy production and storage to reduce or avoid curtailment

while supplying a local community of households with electricity. This enables

decision-makers to understand how much storage and production capacity should

be installed, and what is an appropriate mix of biogas, solar, and wind energy to

most effectively match the resulting supply with demand. We develop a model that

highlights the relationship between production and storage capacity requirements

and the resulting energy mix while avoiding the inclusion of actual costs. Instead,

we use weights to determine the relative importance of production capacity versus

storage capacity. The model determines the hourly decisions on how much energy

to supply to storage versus how much to provide directly to the electricity demand.

We show how the mix of biogas, wind, and solar energy is affected by the

different combinations of total installed production capacity and storage capacity
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and highlight the implications for the curtailment of energy.

1.4.4 Strategic hydrogen storage for solar parks (Chapter 5)

The widespread adoption of solar parks in rural areas is causing increased

electricity grid congestion at the distribution connection in the summer during

peak production moments. Hydrogen storage is a promising alternative to grid

capacity extension by storing the excess-produced electricity in the form of hydrogen

and supply the energy later to a connected community of households. This could

potentially help alleviate congestion problems, but also leads to new questions

since the behavior of the storage owner is influenced by electricity prices. At

low prices, it is interesting to store energy while selling becomes relevant at high

prices. However, operating the storage facility is challenging, since the facility

owner must provide a reliable supply of energy to the households while maximizing

the revenues by interacting with the electricity grid and avoid curtailment. To

make hydrogen storage economically viable to storage facility owners as market

participants, operational decisions of when to buy and when to sell electricity from

or to the grid are important in enhancing the economic viability of hydrogen storage.

In Chapter 5, we address the research question: Under which conditions should the

owner of solar fields with hydrogen buy and sell from and to the grid to maximize profits?

We show how the operator of the solar park and storage facility should operate the

facility by interacting with the grid while maintaining a stable supply to the demand

and maximize revenues. We consider the seasonality aspects of supply and demand

and also show how this behavior affects the peak utilization of the cable connection.

This enables grid operators to assess the consequences of the profit-maximizing

behavior of the facility owners. We develop a Markov Decision Process model to

determine the daily decisions of the owner of the solar field with hydrogen storage

on how much to buy and sell to and from the grid. The objective of the facility

owner is to maximize profits while directly providing sufficient electricity to the

connected households. We explicitly consider the seasonality differences in supply

and demand and the uncertain character of prices, electricity demand, and solar

production. We examine the consequences of these profit-maximizing decisions on

congestion levels at the grid distribution connection. In sensitivity analyses, we

investigate the consequences of different capacity levels of the system components

to the behavior of the owner and operator of the facility and the utilization of the
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grid connection.

1.4.5 The operation of solar parks with hydrogen storage to enable
evenly distributed grid feed-in (Chapter 6)

While storage may aid in alleviating congestion problems, the profit-maximizing

objective of the facility owner may inhibit this due to opportunistic buying and

selling. Moreover, electricity prices increasingly respond to solar energy availability

due to the increasing adoption of solar energy. This raises the question of whether

storage operation can be based on price-driven operational decisions such as those

examined in Chapter 5. Moreover, this also raises the question of how storage should

be operated to alleviate potential congestion.

In Chapter 6, we address the research question: How should solar fields with

hydrogen storage be operated to alleviate congestion? We show how the operation of

storage affects the peak utilization of the cable connection and the potential to create

congestion problems due to volatility of the grid feed-in. We compare storage

decisions that aim to maximize profits with decisions that are price-independent and

provide insights into how expanding the cable capacity affects possible congestion

problems. We develop a simulation model to compare the profit-oriented buying

and selling policies of the facility owner with policies that do not respond to price

signals. We develop two heuristics. The first aims to maximize profits and the second

prioritizes the use of storage by always storing overages and obtaining shortages

from storage. For both heuristics, we consider again seasonality and uncertainty

in production, prices, and demand. We examine the consequences of potential

congestion problems elsewhere in the grid. In a set of sensitivity analyses, we

analyze the consequences of expanding the distribution capacity and different levels

of price elasticity. We also examine the influences of grid expansion on the potential

congestion and revenues for the facility owner. We provide recommendations to

policy-makers and grid operators on the conditions in which it is advisable to

expand the distribution capacity and on the operation of storage facilities.
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A continuous-time

supply-driven

inventory-constrained routing

problem

Abstract. We address an inventory routing problem (IRP) in which routing and inventory

decisions are dictated by supply rather than demand. Moreover, inventory is held in

containers that act as both a storage container and a movable transport unit. This

problem emanates from logistics related to biogas transportation in which biogas is

transported in containers from many suppliers to a single facility. We present a novel

and compact formulation for the supply-driven IRP which addresses the routing decisions

in continuous-time in which inventory levels within the containers are continuous. Valid

inequalities are included and realistic instances are solved to optimality. For all experiments,

we found that the total transportation time is minimized when the storage capacity at each

supplier is larger than or equal to the vehicle capacity. These routes are characterized by

tours in which mostly single suppliers are visited. In 95% of the instances, the average

content level of the exchanged containers exceeded 99.6%.

This chapter is based on Fokkema et al. (2020b):
Fokkema, J. E., Land, M. J., Coelho, L. C., Wortmann, H., Huitema, G. B. 2020. A continuous-time
supply-driven inventory-constrained routing problem. Omega 92 102151.
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2.1 Introduction

This paper addresses a Supply-Driven Cyclic Inventory-Constrained Routing

Problem (SDCICRP) in which the routing, scheduling and inventory decisions are

dictated by supply rather than demand. We are the first to address the routing and

inventory collection decisions in continuous time in which the inventory contents

are continuous in discrete containers. These containers are movable transport units,

but also represent the storage capacity at a supplier. We show by solving it in an

extensive design, how this problem leads to very specific routing and inventory

patterns within each cycle. The problem is also known as a reverse inventory routing

problem (Mes, 2014) and emerges when biogas is transported from biogas-producing

farmers to a centralized green-gas upgrading facility. Biogas is produced from

biomass such as manure at livestock farms. Producers are unable to adjust biogas

production to demand due to the underlying processes. The produced biogas

must be collected before the available storage capacity in containers is exceeded.

Therefore, logistics decisions need to be orchestrated around biogas producers that

act as suppliers, creating the supply-driven characteristic. Another important aspect

here is that biogas is compressed and stored in containers. These act as both local

storage containers and movable transport units. A vehicle collects full or partly filled

containers from biogas producers and exchanges these for empty ones. Given that

production of biogas is stable, the problem is to find a repetitive schedule including

a set of multiple tours that minimizes total transportation time and transports all

produced gas and containers to the central facility. From a practical perspective, it is

desirable that the schedule is cyclic in the sense that it is repeated after a fixed time

period. From our experience in the Netherlands, realistic instances for this problem

are typically small (up to 10 suppliers), since limited capacity of the centralized

facility only enables a small set of suppliers to provide biogas. While instance size is

generally expressed in the number of nodes, the number of vehicles or the number

of time periods (for finite, multi-period planning horizons), our problem includes

multiple tours for a set of nodes which increases difficulty and instance size.

Inventory routing problems (IRPs) have been studied in several papers and are

a class of distribution problems that deal with both inventory replenishment and

vehicle routing decisions simultaneously (Coelho et al., 2014). The main goal is

to minimize the total inventory and transportation costs over the planning horizon
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(Coelho et al., 2014; Ekici et al., 2015). While costs minimization is the most common

objective function in the basic IRP literature, other functions can also be used. For

example, the logistic ratio studied by Alvarez et al. (2018), Archetti et al. (2017)

and Archetti et al. (2019), service level and green house gas footprint by Rahimi

et al. (2017). We also refer to Rahimi et al. (2017) for a review of different objective

functions in the literature. IRPs are also related to Vendor-Managed Inventory

(VMI) problems in which the supplier decides on inventory policies for a set of

customers and that enable cost savings by more effectively coordinating shipments

and combining customer routes (Vansteenwegen and Mateo, 2014; Coelho et al.,

2014). A separate class of IRPs are Cyclic IRPs (CIRP) that deal with finding

repetitive routing schedules for long-term decision-making. In CIRPs, the time

between replenishments is equal for each customer or the schedule for a fixed

planning horizon repeats itself infinitely (Chitsaz et al., 2016; Raa and Aghezzaf,

2008).

Whereas most literature relies on either discretization of time and continuous

cycle times between visits, the main difference with other studies is that our

formulation addresses both the optimal continuous-time and continuous-inventory

solution. We identify the exact point in time at which a supplier is visited and the

exact amount of inventory collected in a discrete number containers. In contrast to

traditional IRP literature that focuses on the trade-off between inventory and routing

costs, we do not consider any cost components. Since we focus on minimizing

transportation time in which the routing and inventory decisions are constrained

by the container and vehicle storage capacities, the problem can be referred to as an

inventory-constrained routing problem. Therefore, we will refer to our problem as a

Supply-Driven Cyclic Inventory-Constrained Routing Problem (SDCICRP).

This paper proposes a novel and compact formulation with valid inequalities

for the SDCICRP that enables solving realistic instances to optimality. In a design

with thousands of experiments we reveal the characteristic routing and inventory

patterns provided by these solutions. This study differs from existing approaches

by combining the following characteristics. Firstly, we address both continuous

time and continuous inventory contents in each container enabling containers to

be exchanged while partly filled. Secondly, we address the problem in which a

container acts as both a storage container and a movable transport unit. Thirdly,

we combine these aspects with multiple tours in cyclic schedules that can be
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repeated infinitely. Finally, we address an IRP that is supply-driven, rather than

demand-driven in which the relationship between suppliers and a single customer

is many-to-one, next to structures in existing literature that also include many-to-one

(Hein and Almeder, 2016; Chitsaz et al., 2019) and many-to-many(e.g., Guimarães

et al., 2019).

This paper is organized as follows. A literature review is presented in Section 2.

Section 3 delineates the proposed MIP formulation and provides valid inequalities

to strengthen the continuous relaxation of the model. Section 4 provides detailed

computational results of the model and experimental insights on storage capacities

at each supplier and routing and inventory collection decisions. Section 5 provides

concluding remarks.

2.2 Literature review

In this section, we position our problem in the literature on IRPs for each of the

different characteristics related to our problem (see Table 2.1). IRPs are well-studied

and we refer to Coelho et al. (2014) for a detailed review. However, the IRP as

developed in this paper has not yet been addressed in existing literature. This

entails the combination of continuous time and continuous inventory contents,

compartments which act as both storage capacity and movable transport units, cyclic

schedules and supply-driven routing decisions.

Most IRPs are demand-driven, such that routes are designed in which one or

many suppliers service customers that have a certain demand. Early research

includes work by Bell et al. (1983), Federgruen and Zipkin (1984) and Golden et al.

(1984). These basic versions of IRPs consist of determining routes by minimizing

inventory costs while meeting customer demands by shipping products from a

single supplier to a number of customers (Anily and Federgruen, 1990; Chien

et al., 1989; Bertazzi et al., 2002). Most work on the IRP includes extensions of

the basic (demand-oriented) IRP to include multiple items (Speranza and Ukovich,

1994; Viswanathan and Mathur, 1997; Sindhuchao et al., 2005) and heterogeneous

fleet composition (Persson and Göthe-Lundgren, 2005; Christiansen, 1999). Other

classifications include models with continuous time (Aghezzaf et al., 2006; Anily

and Federgruen, 1990; Li et al., 2014; Al-Khayyal and Hwang, 2007; Stanzani et al.,

2018; Agra et al., 2017; Christiansen, 1999), discrete time (e.g., Solyalı and Süral, 2008;
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Table 2.1: Related themes in IRP literature

Authors Supply-drivenContinuous
time

Cyclic
IRP

Transport
in
discrete
containers

Aghezzaf et al. (2006) X X
Aghezzaf et al. (2012) X X
Agra et al. (2017) X X
Al-Khayyal and Hwang (2007) X X X
Alvarez et al. (2018) X
Archetti et al. (2007)
Archetti et al. (2017)
Archetti et al. (2019)
Anily and Federgruen (1990) X X
Amponsah and Salhi (2004) X
Avella et al. (2004) X X
Bard et al. (1998)
Bell et al. (1983)
Bertazzi et al. (2002)
Boudia and Prins (2009)
Campbell and Savelsbergh
(2004)
Chien et al. (1989)
Chitsaz et al. (2016) X X
Chitsaz et al. (2019)
Christiansen (1999) X X
Diz et al. (2017) X
Easwaran and Üster (2009) X
Ekici et al. (2015) X X
Federgruen and Zipkin (1984)
Gallego and Simchi-Levi (1990) X X
Golden et al. (1984)
Guimarães et al. (2019) X
Hein and Almeder (2016)
Iassinovskaia et al. (2017) X
Johansson (2006) X
Lahyani et al. (2015) X X
Larrain et al. (2017) X
Liu and Chung (2009) X
Li et al. (2013b)
Li et al. (2014) X X
Liu et al. (2015) X
Mes (2014) X
Persson and Göthe-Lundgren
(2005)
Savelsbergh and Song (2008) X
Shyshou et al. (2012) X X
Sindhuchao et al. (2005) X
Solyalı and Süral (2008)
Solyalı and Süral (2011)
Soysal (2016) X
Speranza and Ukovich (1994) X
Srivastava (2008)
Stanzani et al. (2018) X X X
Raa and Aghezzaf (2008) X X
Raa and Aghezzaf (2009) X X
Raa and Dullaert (2017) X
Raa (2015) X
Vansteenwegen and Mateo
(2014)

X X

Vidović et al. (2014) X
Viswanathan and Mathur
(1997)

X

Yamashita et al. (2019) X X X
Zhao et al. (2008) X

1Adapted from Coelho et al. (2014)
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Bertazzi et al., 2002; Diz et al., 2017) and both finite (Archetti et al., 2007; Savelsbergh

and Song, 2008; Boudia and Prins, 2009) and infinite planning horizons (Raa and

Aghezzaf, 2008; Zhao et al., 2008). Work that is supply-driven is still relatively

limited.

In IRPs with discretized time periods, the precise time of a visit within a

period does not affect the inventory level, as the demand is assumed to happen

instantaneously at the begin or end of a period. These do not determine the exact

point within a time period in which a node is visited and the exact amount of

continuous inventory that is collected or replenished in discrete containers. Time is

generally modeled in discrete time periods, which can either be fixed throughout the

planning horizon (e.g., Archetti et al., 2007; Amponsah and Salhi, 2004; Lahyani et al.,

2015; Larrain et al., 2017) or dynamic (Aghezzaf et al., 2006, 2012; Raa and Aghezzaf,

2008, 2009; Raa, 2015) in which the continuous cycle time between visits is calculated

(see Table 2.1). This leads to decisions that are made for a specific time interval. Such

schedules may be less accurate, because cyclic schedules in supply-driven problems

depend strongly on the precise timing of arrivals in preventing the inventory levels

to exceed storage limits. Discretization of time may have severe consequences

(Boland et al., 2019). We address this gap by optimally obtaining both the points

in time in which a supplier is visited and the exact amounts of inventory collected in

each container without affecting calculation times.

To the best of our knowledge, there is limited work available which addresses

movable inventory containers that also act as local storage at a supplier and that

can be picked up while partly filled. Larrain et al. (2017) address an IRP in which

ATMs are replenished using casettes in which the old casette is replaced by a new

one with all of its contents. However, time is discretized in their model. Lahyani

et al. (2015) address a multi-compartment IRP in which vehicles collect olive oil that

need to be loaded inside separate compartments. These compartments do not act

as local storage containers at the producer and are fixed at the vehicle. In most

other literature, the individual containers are not picked up for transport and are

only fully emptied at the supplier site. This assumption is also made in papers

related to fuel transportation, in ch fuel is stored and transported in tanks (Avella

et al., 2004; Vidović et al., 2014; Li et al., 2014; Savelsbergh and Song, 2008). Papers

in which inventory levels are treated as continuous include Savelsbergh and Song

(2008); Stanzani et al. (2018) in maritime contexts and Yamashita et al. (2019) in the
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liquefied gas industry.

IRPs with a more supply-driven nature relate to waste collection (Mes, 2014;

Johansson, 2006; Avella et al., 2004), olive oil collection (Lahyani et al., 2015)

and shipping (Christiansen, 1999; Agra et al., 2017; Al-Khayyal and Hwang, 2007;

Stanzani et al., 2018; Yamashita et al., 2019). A number of reverse inventory routing

problems can be considered both demand-driven and supply-driven. These exist

in the context of returnable items in which the returned items that influence the

routing decisions and inventory policies (Li et al., 2013b; Liu et al., 2015; Soysal,

2016). Many-to-one structures have also been explored in production and/or

assembly contexts, for example, Hein and Almeder (2016); Chitsaz et al. (2019).

Guimarães et al. (2019) address a many-to-many IRP with multiple echelons and

depots. However, demand has remained the primary mechanism dictating the

routing decisions in most of the existing IPR-related literature.

Cyclic scheduling aspects are also an important characteristic of our problem in

which multi-tour schedules can be repeated infinitely. In existing literature, cycle

time is usually addressed as the time between visits to a location (Aghezzaf et al.,

2006, 2012; Raa and Aghezzaf, 2008, 2009; Raa, 2015; Shyshou et al., 2012). In contrast,

we replace cycle time by a planning horizon and obtain (multiple) exact times at

which each supplier is visited within this planning horizon. The resulting schedule

is repeated directly after this planning horizon. According to Vansteenwegen and

Mateo (2014), rudimentary contributions on CIRPs stem from Anily and Federgruen

(1990) and Gallego and Simchi-Levi (1990). Furthermore, Speranza and Ukovich

(1994) and Viswanathan and Mathur (1997) considered repetitive transportation

plans for multiple products. Aghezzaf et al. (2006) consider multiple tours and

vehicles for the CIRP. In their work, vehicles are assigned to specific regions and

service a subset of customers in a repetitive manner where the cycle times (i.e.,

time between replenishments for each customer) are equal for a given solution.

Vansteenwegen and Mateo (2014) and Chitsaz et al. (2016) address a similar problem

and treat cycle time as a key decision variable. Ekici et al. (2015) deal with cyclic

schedules by setting beginning inventory levels equal to ending inventory levels for

a predefined planning horizon, a condition that we adopt in this paper. Even though

cycle times in the literature are modeled in continuous time, existing models have

not addressed the routing and inventory collection decisions in continuous-time

with continuous inventory contents in discrete containers.
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2.3 Problem description

In this section, we describe in detail the SDCICRP and introduce a mathematical

formulation. We consider a logistics system in which biogas from decentralized

suppliers is transported to a single depot or customer. We summarize the definitions

of sets, parameters and variables in Table 2.

2.3.1 The SDCICRP

The SDCICRP defined in this paper is represented on an undirected graph G =

{V, E} in which V = {0, . . . , N + 1} represents the set of suppliers V ′ = {1, . . . , N}
and includes the departure depot {0} and arrival depot {N + 1}. Vo = {0, . . . , N} is

defined as the set of suppliers which includes the origin depot and Vd = {1, . . . , N +

1} as the set of suppliers that includes the destination depot. Both the origin and

destination depot are assumed to be at the same location. E = {(i, j) : i, j ∈ V, i 6= j}
denotes the set of edges. Each edge is associated with a transportation time Tij .

Each supplier i ∈ V ′ produces at a constant rate Wi per unit of time. Furthermore,

there exists an unordered set of available inventory containers H = {1, . . . , E} at

each supplier in which full containers are given the lowest numbers. The container

capacity at each supplier in which gas inventory can be stored is represented by U .

For each tour k in a set of tours K = {0, . . . , P}, a single vehicle with capacity Q

(in number of containers) exchanges empty container(s) for (partly) filled one(s) at a

subset of suppliers. The model assumes that each tour k cannot visit the same node

twice, but two different tours can visit the same node. These tours occur during

a predefined planning horizon D. Figure 2.1 illustrates one feasible solution for a

single example tour k in one arbitrary instance of 3 suppliers in which containers at

each supplier have different content levels.

The route is represented by a set of binary variables xijk that specify whether

edge (i, j) ∈ E is included in tour k ∈ K. sik represents the time at which the vehicle

arrives at node i ∈ V in tour k ∈ K and is calculated as the sum of transportation

times for edges traversed earlier in tour k ∈ K. zik denotes the remaining travel time

after the visit at supplier i before reaching the depot in tour k ∈ K. gik represents

the inventory after gas has been picked up, whereas aik denotes the amount of gas

picked up at supplier i ∈ V ′ for tour k ∈ K. Moreover, bk represents the vehicle

waiting time at the depot before embarking on tour k ∈ K. lihk indicates whether
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container h ∈ H is exchanged at supplier i ∈ V ′ for tour k ∈ K. Finally, variable

yi denotes the starting inventory levels for each supplier i ∈ V ′ at the beginning of

the planning horizon. The main objective is to minimize total transportation time,

which consists of the sum of transportation times related to the traversed edges.

Table 2.2: Sets, parameters and decision variables

Sets
V Set of all nodes which includes the origin and destination depot and suppliers V = {0, . . . , N + 1}
V ′ Set of all suppliers excluding the depots V ′ = {1, . . . , N}
Vo Set of suppliers and the origin depot Vo = {0, . . . , N}
Vd Set of suppliers and the destination depot Vd = {1, . . . , N + 1}
K Set of tours K = {0, . . . , P}
H Set of containers at each supplierH = {1, . . . , E}
i, j Indices on the set of nodes i, j ∈ V, i 6= j
k Index on the set of tours k ∈ K
h Index on the set of containers h ∈ H
Parameters
Q Vehicle capacity in number of containers
Tij Transportation time associated with edge (i, j) ∈ E
U Container capacity
Wi Production rate of supplier i ∈ V ′

D Length of planning horizon
Variables
xijk Binary variable indicating whether or not edge (i, j) ∈ E , i 6= j

is included in tour k ∈ K
lihk Binary variable indicating whether or not container h ∈ H has been exchanged

at supplier i ∈ V ′ for tour k ∈ K
sik Arrival time of the vehicle at node i ∈ V of tour k ∈ K
gik Inventory at supplier i ∈ V ′ for tour k ∈ K after pickup
zik Remaining travel time when arriving at node i ∈ V for tour k ∈ K
bk Waiting time of the vehicle at the depot before embarking on tour k ∈ K
aik Amount of cargo picked up at supplier i ∈ V ′ for tour k ∈ K
yi Starting inventory level at supplier i ∈ V ′

The mathematical formulation is as follows.

min
∑
i∈V

∑
j∈V

∑
k∈K

xijkTij (2.1)

s.t.
∑
j∈V

xijk ≤ 1 ∀ i ∈ V, k ∈ K (2.2)

∑
i∈V

xijk ≤ 1 ∀ j ∈ V, k ∈ K (2.3)

∑
i∈V

xi,N+1,k = 1 ∀ k ∈ K (2.4)

∑
j∈V

x0jk = 1 ∀ k ∈ K (2.5)

xiik = 0 ∀ i ∈ V, k ∈ K (2.6)
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Figure 2.1: General graphical representation of the SDCICRP for a single example
tour k with different container inventory levels (Q = 3 and E = 4)

∑
i∈Vo

xijk −
∑
i∈Vd

xjik = 0 ∀ j ∈ V
′
, k ∈ K (2.7)

sjk − sik ≤ Tij +M(1− xijk) ∀ i ∈ Vo, j ∈ Vd, k ∈ K (2.8)

sjk − sik ≥ Tij −M(1− xijk) ∀ i ∈ Vo, j ∈ Vd, k ∈ K (2.9)

s0k = 0 ∀ k ∈ K (2.10)

zik =
∑
m∈V

∑
j∈V

xmjkTmj − sik ∀ i ∈ V, k ∈ K (2.11)

gik = gik−1 +Wi(zik−1 + sik + bk)− aik ∀ i ∈ V
′
, k ∈ K\{0} (2.12)

gi0 = yi +Wi(si0 + b0)− ai0 ∀ i ∈ V
′

(2.13)

gik + aik ≤ UE ∀ i ∈ V
′
, k ∈ K (2.14)

gik ≤ UE −
∑
h∈H

Ulihk ∀ i ∈ V
′
, k ∈ K (2.15)

glk = 0 ∀ l ∈ {0, N + 1}, k ∈ K (2.16)

aik ≤
∑
h∈H

Ulihk ∀ i ∈ V
′
, k ∈ K (2.17)

aik ≥ U(−1 +
∑
h∈H

lihk) + ε ∀ i ∈ V
′
, k ∈ K (2.18)

∑
i∈V

∑
j∈V

∑
k∈K

xijkTij +
∑
k∈K

bk = D (2.19)

∑
i∈V′

∑
h∈H

lihk ≤ Q ∀ k ∈ K (2.20)
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∑
h∈H

lihk ≤ E
∑
j∈V

xijk ∀ i ∈ V
′
, k ∈ K (2.21)

yi = giP +WiziP ∀ i ∈ V
′

(2.22)∑
h∈H

lihk ≥
∑
j∈V

xijk ∀ i ∈ V
′
, k ∈ K (2.23)

∑
j∈V

xjik ≥ lihk ∀ i ∈ V
′
, h ∈ H, k ∈ K. (2.24)

xijk ∈ {0, 1} ∀ i, j ∈ V, k ∈ K (2.25)

lihk ∈ {0, 1} ∀ i ∈ V, h ∈ H, k ∈ K (2.26)

sik ≥ 0 ∀ i ∈ V, k ∈ K (2.27)

gik ≥ 0 ∀ i ∈ V, k ∈ K (2.28)

aik ≥ 0 ∀ i ∈ V, k ∈ K (2.29)

yi ≥ 0 ∀ i ∈ V (2.30)

zi ≥ 0 ∀ i ∈ V (2.31)

bi ≥ 0 ∀ i ∈ V. (2.32)

Constraints (2.2) ensure that the vehicle can only visit one destination node from

origin i, whereas constraints (2.3) ensure that the vehicle can only come from one

origin i to destination j for each tour. Constraints (2.4) and (2.5) ensure the vehicle

starts at the origin depot 0 and ends at the destination depot N + 1. Constraints (2.6)

ensure that destination node is not the same node as the origin node i. Constraints

(2.7) ensure that two edges are incident to every node that is visited by connecting

nodes in a tour.

Constraints (2.8) and (2.9) ensure that the difference between the time of arrival at

node i and node j for each tour k is equal to the transportation time between i and j

when xijk = 1. The bigM represents a VRP solution cost in which the transportation

time of a single tour is maximized, which is calculated heuristically using a furthest

neighbor approach. Constraints (2.10) ensure that the arrival time at the origin depot

is 0 for each tour k. Constraints (2.11) determine the remaining transportation time

for each visited node i before reaching the depot in tour k.

Constraints (2.12) determine the inventory levels after inventory has been picked

up when visiting supplier i for each tour k. Constraints (2.13) calculate the inventory

levels for each supplier i once that supplier is visited for tour k = 0. Constraints
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(2.14) ensure that the inventory level before being picked up does not exceed the

total capacity of the available containers at each supplier i. Constraints (2.15) ensure

that the gas inventory after a pickup does not exceed the available capacity of the

non-exchanged containers at supplier i for each tour k. Constraints (2.16) ensure

that the gas inventory is equal to zero at the origin and departure depot for each

tour k.

Constraints (2.17) ensure the amount that is picked up at supplier i does not

exceed the available storage capacity in containers at that supplier for each tour

k. Constraints (2.18) ensure that no additional empty containers are collected. For

cases in which the vehicle capacity exceeds the total amount of gas collected during

a tour (measured in containers), these constraints prevent exchanging additional

empty containers which do not affect the objective value. The value of ε was set

at a small number, 10−4. Constraint (2.19) ensures that the sum of transportation

times and waiting times are equal to the planning horizon. Constraints (2.20) ensure

that the number of containers that can be exchanged in tour k does not exceed the

vehicle capacity. Constraints (2.21) ensure that the number of containers exchanged

at supplier i are less or equal to the available containers when visiting that supplier

in tour k. Constraints (2.22) ensure that the starting inventory level at each supplier

i is equal to the final inventory level at that supplier measured at the end of the

last tour. Constraints (2.23) ensure that at least a container has to be exchanged at

supplier i if that supplier is visited by tour k. Constraints (2.24) ensure that if a

container exchange is performed at a supplier, that supplier must be included in a

tour.

Constraints (2.25) and (2.26) define the route xijk and exchanged containers

lihk to be binary. Finally, constraints (2.27) to (2.32) represent the non-negativity

constraints of the decision variables.

2.3.2 Time windows

In practice, it may not be desirable for vehicles to arrive at a supplier at certain times

outside working hours (e.g., at night). Therefore, our model can be extended to

consider time windows in which a supplier can and cannot be visited. We define

a set of time windows f ∈ F , where F = {0, . . . , F}. Let tik denote the actual

(cumulative) time at which supplier i is visited in tour k.
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tin =

n∑
k=1

sik + bk + zik−1 ∀ n ∈ K, i ∈ V
′

(2.33)

ti0 = sik ∀ i ∈ V
′

(2.34)

We define u−f and u+
f as the beginning and end of time window f respectively.

Moreover, we introduce an auxiliary binary variable rfk which specifies whether tik
occurs before u−f or after u+

f . The following constraints ensure that these windows

are avoided in the solution. The big M value was set as M = D.

tik ≤ u−f +M(1− rfk) ∀ i ∈ V
′
, k ∈ K, f ∈ F (2.35)

tik ≥ u+
f −Mrfk ∀ i ∈ V

′
, k ∈ K, f ∈ F . (2.36)

2.3.3 Valid inequalities

Since multiple optimal solutions exist for a single instance, we provide valid

inequalities (VIs) in order to strengthen the continuous relaxation of the model

and reduce the number of optimal solutions without loss of generality. The valid

inequalities are based on the relationship between exchanged containers, supplier

visits and flows which leave the depot. These extend the model as described in

Section 3.1.

A tour cannot be made after arriving at the destination depot and before

departing at the origin depot.

∑
j∈V

xN+1,jk = 0 ∀ k ∈ K (2.37)

∑
i∈V

xi0k = 0 ∀ k ∈ K. (2.38)

The vehicle must either move from i to j or from j to i.

xijk + xjik ≤ 1 ∀ i, j ∈ V
′
, k ∈ K. (2.39)
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A container exchange also implies that a vehicle must have left the depot to a

supplier. Hence, we can express this as follows.

∑
i∈V′

x0ik ≥ ljhk ∀ j ∈ V
′
, h ∈ H, k ∈ K. (2.40)

The following inequalities are related to leaving the depot and visiting other

nodes. If a tour is performed to serve a supplier, then that tour must have left the

depot to another supplier.

∑
i∈V′

x0ik ≥ xmjk ∀m, j ∈ V
′
, k ∈ K. (2.41)

In order to ensure that the final inventory levels do not exceed the initial

inventory levels, a minimum number of container exchanges during the planning

horizon are those for which full containers are exchanged. Therefore, the total

number of container exchanges for each supplier is larger than or equal to the

minimum amount of exchanges.

∑
h∈H

∑
k∈K

lihk ≥
⌈
DWi

U

⌉
∀ i ∈ V

′
. (2.42)

For each supplier, the number of visits in which a tour from the any supplier

to the depot is performed should be larger than or equal to the minimum number

of visits γ =

⌈∑
i∈V′ DWi/U

Q

⌉
. The minimum number of visits is represented by

single tours in which a single supplier is visited and Q containers are picked up

while completely filled.

∑
i∈V′

∑
k∈K

xi,N+1,k ≥ γ. (2.43)

Since each supplier must be visited at least once in the planning horizon, we can

select a specific supplier v, being the one that has the lowest production rate, to be
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included in the last tour to reduce the number of optimal solutions.

∑
i∈V

xivP = 1. (2.44)

No containers can be exchanged at each supplier when tour k is empty and no

suppliers are visited.

lihk + x0,N+1,k ≤ 1 ∀ i ∈ V
′
, h ∈ H, k ∈ K. (2.45)

Empty tours in which no suppliers are visited can be scheduled successively at

the start of the planning horizon to reduce the number of optimal solutions without

loss of generality.

x0,N+1,k+1 ≤ x0,N+1,k ∀ k ∈ {0, . . . , P − 1}. (2.46)

Since empty tours occur at the beginning of the planning horizon, the last tour

must include one visit from the depot to a supplier and back and this tour cannot be

empty.

∑
i∈V′

xi,N+1,P = 1 (2.47)

x0,N+1,P = 0. (2.48)

Exchanged containers can be arranged such that container h must be exchanged

before container h+ 1.

lihk ≥ li,h+1,k ∀ i ∈ V
′
, h ∈ {1, . . . , E − 1}, k ∈ K. (2.49)

Since container h must be exchanged before container h + 1 and a container can

only be exchanged when supplier i is visited, we can enforce li1k to always be one

when supplier i is visited.
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li1k −
∑
j∈V

xijk = 0 ∀ i ∈ V
′
, k ∈ K. (2.50)

The number of visits to supplier i during the planning horizon must be larger

than or equal to the minimum number of visits required in order to pick up all

inventory at that supplier.

∑
j∈Vd

∑
k∈K

xijk ≥
⌈
DWi

UQ

⌉
∀ i ∈ V

′
. (2.51)

In any given tour, the number of visited suppliers cannot exceed the vehicle

capacity in containers.

∑
i∈V′

∑
j∈Vd

xijk ≤ Q ∀ k ∈ K. (2.52)

Since waiting times before empty tours in which no suppliers are visited can have

any value, we can set the waiting time bk to zero for any empty tour to reduce the

number of optimal solutions. We can define the big M as the maximum waiting

time, which is denoted by the time to completely fill the minimum of the available

storage capacity E or truck capacity Q minus the transport time from the depot to

the fastest producer f and back, M = (min{E,Q}U)/Wf − 2T0f .

bk ≤M(1− x0,N+1,k) ∀ k ∈ K. (2.53)

The difference between the total quantity produced and the total quantity of gas

collected during the planning horizon must be zero.

WiD −
∑
k∈K

aik = 0 ∀ i ∈ V
′
. (2.54)
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Time windows

For the time windows extension of Section 2.3.2, we introduce the following valid

inequalities in order to enhance the performance of the model.

An arrival in tour k that occurs before the beginning of time window u−f always

occurs before the begining of time window u−f+1.

rf+1,k ≥ rfk ∀ f ∈ {0, . . . , F − 1}, k ∈ K. (2.55)

Since empty tours are scheduled in the beginning of the planning horizon for

which the cumulative arrival time at each supplier in that tour tik is zero, empty

tours should always occur before an arrival to any time window.

x0,N+1,k ≤ rfk ∀ f ∈ F , k ∈ K. (2.56)

2.4 Computational results

In this section, we analyze the solution quality and computational efficiency of the

model, and obtain experimental insights. In Section 2.4.1, we define the instance

sets. In Section 2.4.2, we assess the solution quality and computational efficiency of

the model and evaluate the impact of the valid inequalities (2.37) to (2.54). Section 4.3

evaluates the impact of the number of suppliers on computation times. Section 4.4

provides the general experimental insights. Finally, Section 4.5 provides a detailed

illustrative example of the resulting routing and inventory decisions.

2.4.1 Sets of instances

The instance sets for the SDCICRP (see Table 2.3) are based on a real-life example.

The instances are grouped in 5 sets. Sets 1 and 2 are used to asses the solution

quality and computational efficiency. Set 1 is the benchmark set and set 2 is used

to test the impact of larger numbers of suppliers. Set 3, 4 and 5 are included

to gain experimental insights and determine parameter sensitivity. All instances

in the sets have a cyclic planning horizon of one week. We consider production
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rates that represent an integer number of container equivalents produced during the

planning horizon. The production rates reflect rates that are common in practice.

The transportation times between nodes are symmetric. The total number of tours

P in the set of tours K was set to the minimal number of tours needed y, increased

by 4. Based on computational tests, 5 additional tours did not lead to a change in

objective values for the instances in set 1. Therefore, we assume that 4 additional

tours is a sufficient number.

The first instance set comprises small-scale instances with 4 suppliers with

randomly generated locations. The coordinates of both the suppliers and depot are

randomly chosen within a range of 0 and 60 minutes travel time to calculate the

transportation time matrix. The container size is set at 1500 which reflects the size in

m3 of compressed gas in movable containers for tube trailers in practice. The storage

capacity at each supplier ranges between 2 to 4 containers and the vehicle capacity

ranges between 3 to 5 containers, which represent existing configurations for trucks.

Each combination of storage and vehicle capacities is in turn combined with 5 levels

of randomly obtained production rates sampled from the range between 6 and 11

containers per week at each supplier reflecting rates of existing biogas producers.

The instances in the second set comprise an increased number of suppliers

ranging between 5 and 9. The supplier coordinates of 9 suppliers have been fixed

and the instances with less suppliers form a subset of these. The production speeds

have been fixed for all instances in this set, in order to examine the effect of the

amount of suppliers on calculation times. Both the storage capacity at each supplier

and vehicle capacity range between 3 to 5 containers.

Based on the computational tests, 5 suppliers were used in the third set of

instances. In this set, we generate 3200 instances as follows. We apply 4 levels for

the storage capacity, vehicle capacity, and production rates. For each combination

of these 3 variables, we solve 50 pregenerated instances with random depot and

supplier coordinates within a range of 0 and 60 minutes on the x and y axis. The

storage capacities and vehicle capacities both range between 2 to 5 containers. The

4 levels for production rates for the 5 suppliers consist of a combination with low

mean and low variance (9, 5, 7, 8, 6), low mean, high variance (5, 6, 11, 12, 4), high

mean, low variance (9, 11, 10, 13, 12) and high mean, high variance (5, 9, 12, 14, 13).

The high production rates are on average 31% higher than the low production rates.

In set 4, the 3200 instances of set 3 were solved with time windows activated in
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the model. In the planning horizon of one week, 7 time windows were implemented

in which the vehicle can only visit a supplier between 06:00 and 18:00 during the

day. It is assumed that the planning horizon starts on the first day at 06:00.

Set 5 consists of 3 instances that are solved in order to give a detailed illustration

of routing and inventory decisions for existing locations of biogas producers. With

fixed supplier coordinates and a vehicle capacity of 4 containers, we vary storage

capacities between 2 and 4 containers.

Table 2.3: Summary of the experiments

Set Number of instances Number of suppliers Storage capacity Vehicle capacity Time windows Supplier and depot coordinates Production rates

1 45 4 2-4 3-5 No Random Random
2 45 5-9 3-5 3-5 No Fixed Fixed
3 3200 5 2-5 2-5 No 50 random combinations 1 4 combinations
4 3200 5 2-5 2-5 Yes The same as set 3 The same as set 3
5 3 4 2-4 4 No Fixed Fixed
150 instances of randomly generated locations for which the combinations of storage capacity, vehicle capacity and production rates are varied

2.4.2 Computational results and valid inequalities

We present the computational results of the model for the instances of set 1 by using

the valid inequalities presented in Section 2.3.3. These were solved using Gurobi

7.0.2 within a computation time limit of 12000 seconds and a memory limit of 4Gb.

The instances without valid inequalities required a memory limit of 8Gb.

Impact of all valid inequalities

Table 2.4 provides the results to generate multi-tour cyclic schedules for 4 suppliers.

Columns 1 and 2 show the storage capacity at each supplier and the vehicle capacity

in the number of containers. Column 3 (Solution) reports the objective value of the

obtained solution, which is either the optimal solution (bold) or the upper bound

in case the instance could not be solved to optimality. Columns 4 and 5 report

the calculation times for the instances of set 1 with and without the proposed valid

inequalities (cuts). Columns 6 and 7 report the optimality gap which is calculated

as (Upper Bound − Lower Bound)/Lower Bound. The last column illustrates the

percentage reduction in calculation time as a result of the valid inequalities. If an

instance could not be solved, the last column indicates that a time reduction is not

available. If only the instances with cuts could be solved in the time limit, the last

column indicates the percentage time reduction relative to the time limit.
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The results in Table 2.4 show that the valid inequalities highly affect the

calculation times with an average time reduction of 93%. The valid inequalities also

highly affect the ability to solve the instances to optimality within the specified time

limit. Only 5 out of 45 instances could be solved without valid inequalities compared

to 44 out of 45 instances with the valid inequalities within the time limit. For the

instances with valid inequalities enabled, 34 out of the 45 instances could be solved

in less than 10 minutes.

Impact of individual sets of valid inequalities

In order to assess the impact of each individual set of valid inequalities, we have

performed additional experiments for each instance in set 1 (see Table 2.3). Firstly,

Table 2.5 shows the percentage time increase for each set of VIs when it was

omitted relative to the computation time in which all VIs were activated. In these

experiments, a time limit of 12000 seconds was set in which all instances except

instance 32 and 34 could be solved to optimality. Secondly, Table 2.6 shows the gap

improvement in % points of the lower bound for the instances in set 1 in which the

continuous relaxation was solved. This enables identifying the extent to which a set

of VIs contributes to an improved lower bound in the root node.

The experiments in Table 2.5 indicate that omitting any of the sets of VIs leads

to a positive increase in computation times on average, even though the effects vary

across instances. In particular, Table 2.5 shows that omitting each of the VIs (37), (43),

(44), (46), (49) and (54) lead to the strongest performance effect in which the average

computation time increases range between 48% to 1298% relative to having all VIs

activated. VIs (46) break symmetry in which empty tours are scheduled sequentially

and in the beginning of the planning horizon. These are most effective with a 1298%

time increase when omitted. VIs (44) which schedule the slowest producer in the

last tour are also very effective (121%). VIs (49) sequentially arrange the order of

container exchanges (79%). VIs (43) provide lower bounds on the number of tours

(77%). VIs (37) ensure that tours departing from the destination depot cannot be

made in each tour (50%). Omitting VIs (54) which enforce all gas to be collected

leads to a 48% computation time increase.

The experiments in Table 2.6 show that the optimality gap improvement in %

points of the lower bound in the root node as a result of each VI is strongest for VI

(40), (43) and (45) and ranges between 23% and 25%. In contrast to the results in Table
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Table 2.4: Valid inequalities improvements with 4 suppliers

Time (seconds) Gap (%) Production rates2

E Q Solution Cuts No cuts Cuts No cuts Time reduction (%) 1 2 3 4

2 3 885.3 407.4 12000.4 0.0 9.7 96.6 10 8 8 7
2 3 782.1 745.6 12000.4 0.0 12.1 93.8 6 7 9 8
2 3 924.1 1174.2 12000.4 0.0 3.2 90.2 7 9 9 8
2 3 880.4 924.1 12000.2 0.0 1.4 92.3 9 9 10 6
2 3 412.6 21.9 6741.8 0.0 0.0 99.7 6 10 8 6
2 4 915 1133.9 12000.1 0.0 10.0 90.6 10 8 8 7
2 4 877.2 147.6 12000.3 0.0 10.5 98.8 6 7 9 8
2 4 431.2 110.1 12000.2 0.0 5.5 99.1 7 9 9 8
2 4 754.3 2566.4 12000.1 0.0 18.6 78.6 9 9 10 6
2 4 933.1 1019.8 12000.1 0.0 22.1 91.5 6 10 8 6
2 5 741.3 45.1 12000.2 0.0 1.6 99.6 10 8 8 7
2 5 660.4 2387.3 4748.3 0.0 0.0 49.7 6 7 9 8
2 5 773.8 458.1 12000.1 0.0 7.8 96.2 7 9 9 8
2 5 452 651.0 12000.1 0.0 11.3 94.6 9 9 10 6
2 5 713.9 42.6 12000.2 0.0 3.1 99.6 6 10 8 6
3 3 949 1092.4 12000.6 0.0 7.9 90.9 10 8 8 7
3 3 906.3 507.6 12000.1 0.0 6.2 95.8 6 7 9 8
3 3 530.4 3.3 12000.2 0.0 0.3 100.0 7 9 9 8
3 3 926.2 2.2 12000.2 0.0 6.4 100.0 9 9 10 6
3 3 731.1 10.7 12000.2 0.0 7.8 99.9 6 10 8 6
3 4 528.7 100.5 12000.1 0.0 3.2 99.2 10 8 8 7
3 4 515.9 33.2 12000.3 0.0 0.3 99.7 6 7 9 8
3 4 520.5 206.0 12000.2 0.0 2.6 98.3 7 9 9 8
3 4 822.1 25.3 12000.4 0.0 18.2 99.8 9 9 10 6
3 4 605.2 34.5 12000.2 0.0 0.9 99.7 6 10 8 6
3 5 434 24.3 12000.2 0.0 4.0 99.8 10 8 8 7
3 5 496.7 197.3 12000.3 0.0 4.6 98.4 6 7 9 8
3 5 715.1 239.1 12000.1 0.0 9.3 98.0 7 9 9 8
3 5 284.6 6.5 546.1 0.0 0.0 98.8 9 9 10 6
3 5 427.8 3.9 1370.1 0.0 0.0 99.7 6 10 8 6
4 3 801.2 26.4 12000.3 0.0 5.8 99.8 10 8 8 7
4 3 651.8 12000.5 12000.4 6.1 11.0 n.a. 6 7 9 8
4 3 534.2 30.9 12000.2 0.0 2.6 99.7 7 9 9 8
4 3 463.9 6887.1 12000.2 0.0 13.7 42.6 9 9 10 6
4 3 918.4 74.8 12000.2 0.0 15.6 99.4 6 10 8 6
4 4 638 2.4 12000.1 0.0 5.4 100.0 10 8 8 7
4 4 684.7 18.6 12000.5 0.0 8.5 99.8 6 7 9 8
4 4 731.7 1.5 12000.5 0.0 9.6 100.0 7 9 9 8
4 4 333.4 86.0 12000.5 0.0 14.1 99.3 9 9 10 6
4 4 676.8 46.2 12000.3 0.0 17.0 99.6 6 10 8 6
4 5 518 9.9 12000.5 0.0 0.1 99.9 10 8 8 7
4 5 668.9 334.4 12000.2 0.0 15.7 97.2 6 7 9 8
4 5 676.7 12.3 12000.9 0.0 10.7 99.9 7 9 9 8
4 5 535.4 28.4 12001.0 0.0 0.2 99.8 9 9 10 6
4 5 365.1 14.0 4328.3 0.0 0.0 99.7 6 10 8 6
Average 660.6 753.2 11061.0 0.1 7.1 93.0

2Number of containers per week
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2.5, the remaining VIs lead to either no improvement of a very small improvement

up to 4.1% even though these VIs contribute much more strongly to a reduction

in computation times when the model was solved to optimality (see Table 2.5).

This suggests that the remaining VIs are more effective at lower branches in the

branch-and-bound tree.

In sum, VIs (37), (43), (44), (46), (49) and (54) related to depot departures and

arrivals, scheduling of empty tours, setting which of the containers are exchanged

and setting the difference between production and gas collected are most effective in

solving the model.

2.4.3 Computational results and number of suppliers

We present the computational results of the instances in set 2 that varies the number

of suppliers. For all instances in set 2, the valid inequalities are applied. The

experiments were again performed with a time limit of 12000 seconds and 4Gb

memory limit.

Table 2.7 shows that the number of suppliers highly affect calculation times,

as expected. Moreover, the model with the valid inequalities can solve instances

containing 7 suppliers within the time limit of 12000 seconds. All instances with 5

suppliers could be solved to optimality within the time limit. Three out of 9 instances

with 6 suppliers could be solved to optimality and one instance with 7 suppliers

could be solved. This confirms the increasing difficulty of the problem for instances

with more suppliers. Overall, 6 out of 45 instances could be solved optimally in

less than 10 minutes, all with 5 suppliers. Overall, the remaining instances could

not be solved within the time limit. The optimality gaps remain below 17.6% for

these instances. It should be emphasized that instance size is not fully reflected by

the number of suppliers as multiple tours are required for each supplier within the

planning horizon as the experimental insights will show.

2.4.4 Experimental insights

The experiments of set 3 are executed to examine the effect of storage capacity,

vehicle capacity and production rates at each supplier on the total transportation

time and other indicators which reflect inventory collection patterns. These include

the number of suppliers visited per tour, the number of exchanged containers per
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Table 2.7: Increasing the amount of suppliers

Suppliers E Q Solution Time (s) Gap (%)

5 3 3 621 593.0 0.0
5 3 4 539.7 6030.5 0.0
5 3 5 470.5 2544.5 0.0
5 4 3 621 314.4 0.0
5 4 4 461 81.9 0.0
5 4 5 418.7 527.2 0.0
5 5 3 621 336.0 0.0
5 5 4 461 59.6 0.0
5 5 5 389.8 782.8 0.0
6 3 3 849.5 8301.1 0.0
6 3 4 739.7 12000.7 3.3
6 3 5 637.1 12000.4 2.9
6 4 3 849.5 4402.2 0.0
6 4 4 671 12000.4 3.7
6 4 5 585.6 12000.3 0.2
6 5 3 849.5 5101.0 0.0
6 5 4 671 12001.1 3.9
6 5 5 538.5 12000.4 2.8
7 3 3 991.7 10809.9 0.0
7 3 4 822.7 12000.8 7.8
7 3 5 703.5 12000.7 10.2
7 4 3 991.7 12000.7 2.1
7 4 4 763.2 12000.5 4.7
7 4 5 660.9 12000.4 8.1
7 5 3 991.7 12000.6 2.3
7 5 4 763.2 12000.7 4.8
7 5 5 612.3 12000.4 8.1
8 3 3 1271 12000.9 2.9
8 3 4 1050.6 12000.7 12.6
8 3 5 895.9 12000.9 17.2
8 4 3 1270.9 12000.9 2.9
8 4 4 985.9 12001.7 9.4
8 4 5 835.2 12001.7 14.4
8 5 3 1270.9 12002.1 2.1
8 5 4 978.7 12001.7 8.9
8 5 5 798.4 12000.9 13.1
9 3 3 1548.7 12001.1 5.3
9 3 4 1295.4 12000.9 13.3
9 3 5 1108.4 12000.8 17.6
9 4 3 1521.1 12001.7 3.7
9 4 4 1159 12001.0 8.3
9 4 5 1012.8 12000.8 16.9
9 5 3 1521.1 12001.2 3.4
9 5 4 1159 12001.0 8.3
9 5 5 940.1 12000.8 12.3
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supplier, the average content levels of the collected containers and the number of

performed tours.

Out of the 3200 instances with 5 suppliers, 2174 instances could be solved to

optimality within a 12000 second time limit.

Overall, the results show that both the transportation time and the number of

suppliers per tour are reduced for increasing storage capacities until the storage

capacity equals the vehicle capacity. In contrast, the number of collected containers

increases with increasing storage capacity levels. In 95% of the instances, the average

content level of the exchanged containers exceeded 99.6%. Results indicate that the

average transportation time is reduced for increasing vehicle capacities. Detailed

results are described next.

Figure 2.2: Storage capacity at each supplier and average lower and upper bounds
(Q = 4)
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Storage and vehicle capacity.

Figure 4.2 shows lower and upper bounds for the transportation time, when the

vehicle capacityQ is 4 containers. The average lower and upper bounds decrease for

higher storage capacities, as expected. In particular, the total average transportation

times stop decreasing when the storage capacity becomes larger or equal to the

vehicle capacity. This was found for all vehicle capacities and across all production

rate combinations.

The behavior of the transportation time as a result of storage capacity appears

to be similar for low and high production rates and low and high variance of

the production rates. Moreover, higher production rates require more tours to be

performed which increases the average transportation time during the planning

horizon.

Figure 4.2 reveals a larger gap between the lower and upper bounds to the

solution for storage capacities which are below the vehicle capacity for high

production rates, indicating that such instances appear to be more difficult to solve

within the time limit of 12000 seconds. For example, the average gaps for storage

capacities of 2 and 3 containers are 2.2% and 0.7% respectively for high production

rates. This can be explained by the larger number of tours required for lower storage

capacities at each supplier.

Time windows

Figure 2.3 shows the lower and upper bounds for the transportation time when time

windows are activated and for a vehicle capacity of 4 containers. Out of the 3200

instances with time windows activated, 1642 could be solved to optimality within

the time limit. Moreover, the average optimality gap with time windows of 2.4% in

experiment set 4 is 1.3% points higher than the experiments without time windows

in set 3. This illustrates the increasing complexity associated with introducing time

windows in the formulation.

Figure 2.3 indicates that the upper bounds are slightly higher when time

windows are activated compared to the experiments in set 3. For a storage

capacity of 2, a vehicle capacity of 4 containers and low mean production rates,

the average percentage increases in upper bounds are 3.6% and 6.7% for the

low and high variance cases of production rates respectively. For high mean
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production rates, these average percentage increases were 5% and 2.5%. The average

increase in transportation time is reduced for higher storage capacity levels up to 5

containers. This shows that introducing time windows leads to only slightly higher

transportation times when storage capacity is limited relative to vehicle capacity.

This effect may be overcome by installing sufficient storage capacity levels.

Figure 2.3: Time windows, storage capacity at each supplier and average lower and
upper bounds (Q = 4)

Number of suppliers visited per tour.

Figure 2.4 indicates that the average number of suppliers visited per tour decreases

for higher storage capacity levels at each supplier until the storage capacity is larger

than or equal to the vehicle capacity. This effect was observed for all vehicle capacity

levels and production rate combinations. The average number of suppliers visited

per tour remains constant when vehicle capacity is larger than or equal to the storage

capacity at each supplier. In that case, tours in which a single supplier is visited are
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most efficient. The vehicle capacity can then be fully used to collect all inventory at

a single supplier and this limits the required number of visits to a supplier and the

total transportation time during the planning horizon.

Figure 2.4: Average number of suppliers visited per tour for different vehicle
capacities

Number of exchanged containers per supplier.

Figures 2.5 illustrates again that it is most efficient to collect multiple containers

at a single supplier if the vehicle capacity and storage capacity enable doing so.

The average number of containers exchanged per supplier per tour increases for

higher storage capacity levels until it approaches the vehicle capacity. The number of

exchanged containers does not fully reach the vehicle capacity for any combination

of vehicle capacity and storage capacity. This is due to the fact that some tours are

necessary in which multiple suppliers are visited, since the number of containers to

be collected at a supplier during the planning horizon is not always a multiple of

vehicle capacity.
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Figure 2.5: Average number of containers exchanged per supplier per tour for
different vehicle capacities

Content level of collected containers.

In none of the instances, the average content level of exchanged containers was

below 86.7%. In 95% of the instances, the average content level exceeded 99.6%.

In 50% of the instances, the average content level even exceeded 99.5%. In instances

with the lowest average content levels, partially filled containers were collected at

suppliers that did not require a significant detour on a tour visiting other suppliers.

Number of tours required.

Figure 2.6 shows that the average number of tours scheduled during the planning

horizon decreases for larger storage capacities for all vehicle capacities. We observe

that the number of tours required is mostly affected when storage capacity is smaller

than the vehicle capacity. Notice that the scales on the vertical axis had to be adapted

for each vehicle capacity. For a storage capacity of 5, a vehicle capacity of 5 does
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reduce the average number of tours by 56.5% compared to a capacity of 2 containers.

But as more of the tours visit a single supplier (Figure 2.4), the increased storage

capacity still reduces transportation time. In this case, more storage capacity does

not lead to less tours but better tours.

Figure 2.6: Average number of tours performed for different vehicle capacities

2.4.5 Illustrative example

In order to illustrate the relationships between storage capacities, vehicle capacities

and the total transportation time, we consider a single example based on four

locations of biogas producers in the Netherlands. In all experiments, we consider

a planning horizon of one week and a vehicle capacity of 4 containers which is the

most common in practice when using tube trailers. The container size is again set

at 1500 m3 of gas in uncompressed equivalents. The production rates are 12, 13, 10,

and 11 container equivalents produced during the planning horizon for producers

1, 2, 3, and 4 respectively. Moreover, we test the storage capacities at each supplier
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between 2 and 4 containers.

Routes.

Figure 2.7 illustrates the supplier visits. The numbers in the graph represent the

order of visit in each tour for storage capacities of 2 to 4 containers, i.e. the last tour

in the left-most graph, number 12, which first visits supplier 3 and next supplier 4.

The following aspects can be seen in more detail for this example.

Consistent with the overall experimental results, the number of suppliers visited

per tour decreases for increased storage capacities. For example, up to 4 suppliers

are visited per tour for a storage capacity of 2 containers and at most 2 suppliers are

visited per tour for a storage capacity of 4 containers.

For a storage capacity of 2, 2 producers are often combined in a single tour,

collecting 2 containers from both. When the storage capacity increases to 3, it appears

to be more efficient to regularly collect all 3 containers of a single producer and not

make a detour to collect a fourth at another producer.

As a consequence, more tours are executed for a storage capacity of 3 containers

than for a storage capacity of 2 containers, that is, 14 and 12 tours respectively.

The experimental results in 4.4 have shown that, overall, multiple tours are not

performed more often for higher storage capacities.

Figure 2.7: Suppliers visited per tour and the order of visit for different storage
capacities
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Inventory levels.

Figure 2.8, 2.9 and 2.10 show the inventory levels for each of the suppliers. The

numbers in the graph specify the tour in which the inventory is depleted. The timing

is such that all suppliers nearly reach their full storage capacity again at the next tour.

For these tours, the supplier with the highest production rate dictates the departure

time of the vehicle. Since the storage capacity limit of that supplier is reached first

in consecutive tours, the containers of that supplier are collected full, whereas the

containers of the next visited supplier are collected while partly filled. All suppliers

were combined in the fourth tour to create a match between produced and collected

gas within the planning horizon.

Notice that thus the optimal solution has 6 and 7 visits to supplier 1 and 3

respectively, while the storage capacity of 2 containers would enable 5 and 6 visits to

collect their weekly productions of 10 and 12 containers respectively.

For a storage capacity of 3 containers, we recognize mostly single supplier

visits in which all 3 available containers are collected. The vehicle capacity is not

completely filled for these tours, and carries 3 out of 4 containers. For tours in

which multiple suppliers are visited, the suppliers with the most similar production

rates are visited in pairs (see tour 2, 10, 12 and 14). Because a storage capacity of

3 containers now enables the collection of 3 containers at the same supplier, we

observe collected gas combinations of 1 and 3 containers (in tour 2 and 14) and 2

times 2 containers in tour 10 and 12.

For a storage capacity of 4 containers, Figure 2.10 illustrates that all 4 containers

are collected in almost all tours in which single suppliers are visited per tour and

then in tour 11, only 3 containers are collected at supplier 3. In tour 12, supplier

3 and 4 are combined for 2 containers each to ultimately realize a match between

weekly production and collection of gas. This is required to set inventory levels

at the end of the planning horizon equal to starting inventory levels. Notice that

supplier 4 is always visited just before reaching its storage capacity limit as 3 times

4 containers are collected, while supplier 4 produces 11 full containers each week.

Supplier 1 is producing 12 containers each week and is visited 3 times when exactly

reaching its storage capacity limit.
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Figure 2.8: Inventory levels and the related tours for a storage capacity of 2
containers
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Figure 2.9: Inventory levels and the related tours for a storage capacity of 3
containers
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Figure 2.10: Inventory levels and the related tours for a storage capacity of 4
containers
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2.5 Conclusion

In this paper, we have addressed the formulation of a continuous-time

supply-driven inventory routing problem in which the routing and inventory

collection decisions are dictated by supply rather than demand. To the best

of our knowledge, this study is the first to optimally solve the combination of

routing schedules in continuous time with continuous inventory contents in discrete

containers. The inventory is stored in containers that act as both movable transport

units and the available storage capacity at each supplier. This problem occurs when

biogas needs to be transported from a set of decentralized suppliers to a single

processing facility during a cyclic schedule. We have proposed a novel and compact

formulation that enables solving realistic instances to optimality. We have developed

valid inequalities that have a large impact on running times and have provided

experimental insights by examining the routing and inventory collection decisions

for different storage and vehicle capacities at each supplier.

The computational results illustrate the complexity of the problem. The valid

inequalities are a necessity in solving instances of a realistic size and reduced

running times with 93% on average. The analyses of the optimal solutions indicate

that these approach the lowest level of transportation time when the storage capacity

equals at least the vehicle capacity. This enables the more efficient solution to visit

fewer suppliers per tour. Both the average transportation time and the average

number of suppliers visited per tour generally decrease for larger storage capacities

at each supplier until the storage capacity is larger than or equal to the vehicle

capacity. For fixed storage capacity levels, a larger vehicle capacity reduces the

average number of tours and the transportation time required. In 95% of the

instances, the average content level exceeded 99.6%. An in-depth analysis of

the routes and inventory patterns generated for a small set of instances reveals

some remarkable characteristics of optimal schedules that would not have been

expected by transport planners. These particularly relate to the requirements of

weekly repeating schedules, while weekly production quantities do not allow for

full truckloads.

Overall, the solution method is shown to be able to generate optimal solutions

for real-life instances and points out where inefficiencies occur due to insufficient

storage capacity at each supplier and the need to create cyclic schedules.
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Inefficiencies may relate to 1) routes having to combine multiple suppliers, 2)

vehicles that drive while not fully loaded and 3) storage capacities which are not

fully used.

Avenues for future research may include extending the approach with multiple

vehicles and the problem case where the fleet is heterogeneous. For the case with

time windows, future research may formulate a different model which is solved with

a branch-and-price algorithm.
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Chapter 3

An investment appraisal

method to compare LNG-fueled

and conventional ships

Abstract. Ever stricter emission regulations stimulate vessel owners to consider the

adoption of alternative marine fuels, such as Liquefied Natural Gas (LNG). In deciding

whether to invest in LNG-fueled vessels, initial investment and operating costs are decisive

factors that have not yet been fully studied in the literature. In this paper, we present a new

investment appraisal method to compare the costs of LNG-fueled vessels with conventional

vessels. We analyze the fuel costs and overall exploitation costs by simulating bunker

planning decisions under stochastic fuel prices, presence in emission controlled areas, and

route lengths. Our analyses reveal that the fuel costs of LNG-fueled vessels are often lower

than those of conventional vessels, even under unfavorable LNG prices. Due to the higher

initial investment costs in LNG-fueled vessels, these fuel cost reductions do not always

translate into lower overall exploitation costs. By conducting numerical experiments, we

identified conditions under which the exploitation costs of LNG-fueled vessels are lower than

conventional vessels.

This chapter is based on Fokkema et al. (2017):
Fokkema, J. E., Buijs, P., Vis, I. F. A. (2017). An investment appraisal method to compare LNG-fueled and
conventional vessels. Transportation Research Part D: Transport and Environment, 56, 229-240.
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3.1 Introduction

With more stringent vessel emission regulations executed by the International

Maritime Organization (IMO), such as the Emission Control Areas (ECA) in the

Baltic Sea and along the North American coast, vessel owners increasingly seek for

cost-effective solutions to comply with those regulations (Wang and Notteboom,

2014). Conventional-fueled vessels can comply with ECA regulations by using

expensive low sulfur fuels such as Marine Gas Oil (MGO) and/or by installing

scrubbers. An interesting ECA-compliant alternative is using Liquefied Natural Gas

(LNG) as a marine fuel. Many factors could hamper the adoption of LNG as a marine

fuel, such as the lack of a clear regulatory frameworks for bunkering operations, the

extra space needed for an LNG fuel tank, potential methane slip, and a limited LNG

bunkering infrastructure (Wang and Notteboom, 2014). Nevertheless, the impact on

the financial bottom line of the ship owner is often the deciding factor.

While, compared to conventional-fueled vessels, LNG-fueled vessels have a

considerably higher initial investment cost due to more expensive equipment

and extra engineering costs in the design phase, they also have the potential to

considerably reduce fuel costs during the exploitation period (Wang and Notteboom,

2014). In this paper, we present a new investment appraisal method to study the

relation between the higher initial investment costs and potentially lower fuel costs

associated with LNG-fueled vessels. Our method uses an optimal bunker planning

policy, takes fluctuating fuel prices into account and considers variable travel times

in ECA. Below, we discuss each of these aspects in more detail.

Thus far, the literature on economic analyses of ECA-compliant alternative fuels

has generally assumed that vessels utilize only one type of fuel, that is, either

oil-fueled for conventional vessels or LNG for LNG-fueled vessels (Adachi et al.,

2014; Burel et al., 2013; Cullinane and Bergqvist, 2014; Jiang et al., 2014). In practice,

LNG-fueled vessels are usually powered by dual-fuel engines, where the crew can

switch between any of the available fuel types during a trip. Since prior literature

has not considered the option of using different fuels, bunker planning policies have

not yet been incorporated in existing investment appraisal methods. Doing so is

imperative, as the overall fuel costs are strongly depending on the bunker choices

made.

Furthermore, prior studies have assumed fixed ECA presence in their economic
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analyses of different ECA-compliant alternatives. ECA presence is defined here as

the operational time spent in ECA regions during a trip (Cullinane and Bergqvist,

2014). In practice, cargo vessels sail different routes in which their operational time

in ECA is different for each trip. ECA presence levels affect the available fuel type

options that can be employed. Heavy Fuel Oil (HFO), for instance, can only be used

outside ECA regions. Consequently, ECA presence strongly affects fuel costs and

evaluating the economic viability of different ECA-compliant alternatives requires

incorporating variable ECA presence.

Lastly, extant literature has generally assumed deterministic fuel prices. Burel

et al. (2013) and Adachi et al. (2014), for example, have used deterministic fuel prices

in their economic analysis of LNG-fueled vessels. Jiang et al. (2014) consider changes

in fuel prices over time, but assume deterministic price trends in evaluating different

options to comply with ECA regulations. However, fuel prices not only change

according to a known price trend, but also fluctuate from day to day. LNG fuel

prices are particularly volatile compared to other fuels, because LNG does not have

a stable international market yet (Acciaro, 2014a; Burel et al., 2013). Since fuel prices

significantly affect fuel and operational costs in shipping (Holmgren et al., 2014), it

is essential to include price volatility in investment appraisal methods for vessels.

The main contributions of this paper are threefold. Firstly, our proposed

investment appraisal method extends deterministic fuel price scenarios from the

literature with daily fuel price fluctuations to better estimate fuel costs. Secondly,

we include bunker planning decisions in our investment appraisal method by

simulating bunker planning decisions for many days over the full exploitation

period of a vessel. The corresponding bunker planning model is used with different

stochastic fuel price scenarios and various trip profiles. Thirdly, we integrate our

analyses of fuel costs into an appraisal of the overall exploitation costs to determine

the economic viability of LNG-fueled vessels. By running an extensive set of

experiments, this study compares the exploitation costs of an LNG-fueled vessel

with its conventional-fueled counterpart for a real-world case and derives generic

insights about the conditions under which the exploitation costs of LNG-fueled

vessels are lower than conventional-fueled vessels.

The remainder of this paper is structured as follows. Section 2 describes the

problem setting in more detail. It also presents the formal definitions of decision

variables and parameters, and explains the modelling assumptions that were made.
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Section 3 describes the investment appraisal method. Section 4 introduces the Dutch

shipping company that provided data for the case experiments. This section also

describes the numerical experiments and explains the stochastic fuel price scenarios

considered in our study. An overview and discussion of the experimental results is

included in Section 5. The paper is concluded in Section 6.

3.2 Problem description

The problem addressed in this paper concerns the decision to invest in a new build

vessel either propelled by an LNG dual-fuel engine or a conventional fuel engine.

We address this decision from an economic perspective, assessing differences in the

overall exploitation cost for each type of propulsion, which consist of the cost of

capital, overhead costs and fuel costs. We consider the discounted investment per

month as cost of capital, with a higher cost for LNG dual-fuel propulsion. Monthly

overhead costs, which consist of labor and maintenance costs, are considered

equal for both propulsion types. The final component of the monthly exploitation

costs concerns fuel costs, which can strongly differ between LNG dual-fuel and

conventional fuel engines.

Estimating the additional investment required for LNG dual-fuel propulsion can

be done rather precisely and is easily translated into a stable monthly cost of capital.

Given the equal overhead costs for both propulsion types, the additional investment

for an LNG engine can only be recovered by a lower fuel cost component. Actual

fuel costs differ per trip, and depend on the length of the trip, fuel efficiency, the

sailing time in emission controlled areas, which fuel—or fuels—the vessel sails on,

and the prices of those fuels. Taking these factors as input, vessel operators aim to

minimize the fuel costs of a trip by deciding how much of each fuel to bunker before

departure.

Since bunker planning decisions strongly affect fuel costs, our appraisal method

considers the underlying bunker planning problem. For any trip k, departing at day

i, the objective of the problem is to minimize the total fuel costs by determining the

amount of sailing time Sf on fuel type f . A vessel can bunker multiple fuel types

before departure. Vessels with an LNG dual-fuel engine can bunker LNG (f = 1),

MGO (f = 2) or HFO (f = 3); conventional-fueled vessels can only bunker MGO and

HFO. Each trip is specified by a total travel time and a time in emission controlled
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areas. Each fuel type is associated with a different fuel consumption rate due to

differences in calorific contents of the fuels. The maximum travel time on fuel type

is restricted due to fuel tank capacities. The underlying bunker planning problem

can be modelled as follows:

min
∑
f∈F

SfUfPf (3.1)

s.t.
∑

f∈{1,2}

Sf ≥ TECA (3.2)

Sf ≤ Tmaxf ∀ f ∈ F (3.3)∑
f∈F

Sf ≥ TECA (3.4)

∑
f∈F

Sf = T total (3.5)

The objective function (3.1) minimizes the total fuel cost per trip. Constraints

(3.2) imposes that only LNG and MGO can be utilized within emission controlled

areas. Constraints (3.3) enforces that sailing times on a fuel type cannot exceed the

maximum travel time. Constraints (3.4) makes sure that the sum of fuel specific

sailing times equals the total travel time of a trip.

Above, we formulated the bunker planning decisions as a deterministic problem.

However, both fuel consumption levels and fuel price differences may strongly differ

throughout the lifetime of a vessel. Our investment appraisal method is designed

specifically to address these uncertainties, for which we introduce a few additional

parameters. For each fuel type f , we consider a linear price trend, resulting in a

base price P basefi on a given day i. To express the stochastic behavior of fuel prices,

we draw a daily price deviation Dfi from a probability distribution RDf to compute

the fuel price Pfi. Since we assess monthly exploitation costs, we compute monthly

fuel costs. The characteristics of a trip, in terms of its total length and ECA presence,

will likely differ from trip to trip. Therefore, we obtain the length of a trip T totalk

from a probability distributionRT and the proportion of travel time within emission

controlled areas Ek from a probability distribution RE . An overview of all variables

and parameters is given in Table 3.1.

We make the following assumptions:
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Table 3.1: An overview of the variables and parameters addressed in our problem.

Sets
Uf Fuel consumption (in metric ton per hour) using fuel type f ∈ F
Tmaxf Maximum travel time (in hours) of fuel type f ∈ F
T totalk Total travel time (in hours) of trip k ∈ K
TECAk Travel time in ECA (in hours) of trip k ∈ K, where TECA = EkT

total
k

Pfi Fuel price (in dollars per metric ton) of fuel type f ∈ F on departure day i ∈ I, where Pfi = P basefi +Dfi

Ek ECA presence (in percentage) of trip
P basefi Fuel base price (in dollars per metric ton) of fuel type f ∈ F on day i ∈ I
Dfi Fuel price deviation (in dollars per metric ton) of fuel type f ∈ F on day i ∈ I
RDf Probability distribution for price deviation Dfi for fuel type f ∈ F on day i ∈ I
RT Probability distribution for total travel time T totalk for trip k
RE Probability distribution for ECA presence Ek for trip k

Variables
Sfki

• It is assumed that vessel operators always attempt to minimize total fuel costs

by making bunker planning decisions before the departure of a specific trip.

• For each fuel type , the different fuel consumption rates are considered known

and constant. We perform a numerical validation to study the fuel cost

behavior as a result of different consumption rates for the same fuel.

• Fuel bunker quantities are assumed to precisely cover fuel consumption

needed for a trip. Hence, we do not consider leftover fuel from previous trips.

• We assume all fuel bunkers are bought at spot prices, which are not subjected

to local price differences. Bunkering at spot prices is a common practice in the

maritime transportation sector (Ghosh et al., 2015; Plum et al., 2014).

Our investment appraisal method assesses differences in the overall exploitation

cost for new build vessels with either LNG dual-fuel or conventional fuel propulsion.

The method works with a fixed monthly cost of capital, which is higher for LNG

dual-fuel than for conventional fuel propulsion, and a fixed monthly overhead cost,

which is equal for both propulsion types. Determining the expected average fuel

costs per month for both propulsion types is the main element of our method and

computed by means of a simulation model.

The simulation model is implemented in Visual Basic for Applications (VBA)

for Excel, according to the logic flow diagram presented in Fig. 3.1, using Xpress

optimization software to find optimal bunker planning decisions for specific trips.

To address the stochastic behavior of fuel prices and trip characteristics, the model
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iteratively calculates an optimal bunker planning for a large number of trips and

days.

Figure 3.1: Logic flow diagram for the simulation model.

The simulation model is initiated with parameter values n = 0, i = 0 and k = 0.

In each new iteration (n = n + 1), a new day (i = i + 1) is created with base prices

P basefi for each fuel type. The “actual” fuel prices Pfin for that day are calculated by
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drawing a price deviation Dfin from probability distribution RDf and adding that

deviation up to the base price. This represents the fuel prices, in dollars per metric

ton, to be paid at the day of departure. Subsequently, a new trip (k = k + 1) is

created by drawing a total travel time T totalk from probability distribution RE and a

percentage of ECA presence from probability distribution . For that specific trip, an

optimal bunker planning is found according to objective function 3.1, which enables

calculating the fuel costs per hour for that trip.

For each day in the simulation, the mean fuel costs per hour are computed by

considering multiple trips with different travel times and ECA presence. Since the

input values are independent and randomly distributed, the mean fuel costs will

converge. Using the confidence interval method (Law, 2014), a new trip is created

as long as the estimated error from the real mean (ε) is larger than, or equal to 5%

with a 95% confidence interval. For each day i, the simulation keeps creating new

trips, computing optimal bunker planning decisions and updating the mean fuel

costs per hour until the estimated error ε < 0.05. Then, the mean fuel costs per hour

are recorded for that day.

The simulation model repeats creating new days for the full length of the

exploitation period, i.e., as long as i < |I|. When the end of the exploitation period

is reached, the mean fuel costs per hour are calculated for iteration . New iterations

are started as long as the estimated error from the real mean is larger than, or equal

to 5% and n is smaller than 30 iterations. Finally, the mean fuel costs per hour are

obtained for all performed iterations for both LNG dual-fuel and conventional fuel

propulsion. These values serve as the final hourly fuel costs, which are used as a

component of the overall investment appraisal.

3.3 Experiment definitions

This section provides an overview of the experiments we conducted in our study.

Firstly, we present the case experiments in which we apply our investment

appraisal method to a practical setting. Secondly, we execute experiments aimed

at numerically validating our method and deriving generic insights on the behavior

of fuel and overall exploitation costs under conditions that are different from the case

setting.
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3.3.1 Case experiments

For the case experiments, we obtained data from a Dutch shipping company that is

active in the short-sea shipping sector. It primarily operates in the North Sea, Baltic

Sea, Bay of Biscay and the Mediterranean Sea. At the start of our study, this shipping

company had plans for the development of a new dry cargo vessel of roughly

13.000 dead weight ton and considered equipping it with either LNG dual-fuel or

conventional fuel propulsion. The main engine should deliver around 3000 kW

output, 1800 kW in service condition and the vessel should have a maximum speed

of 13 knots. Vessel specifications were drawn up for both configurations, which

indicated a 30% higher initial investment required for LNG dual-fuel propulsion.

The shipping company expected similar overhead costs for both configurations.

Table 3.2 shows the expected monthly exploitation costs (without fuel costs) for the

LNG dual-fuel and conventional fuel configuration.

Table 3.2: Monthly exploitation costs without fuel costs.

LNG dual-fuel Conventional fuel

Monthly annuity on investment (3% interest) €140.000 €110.000
Monthly overhead costs €110.000 €110.000
Overall exploitation costs (without fuel) €250.000 €220.000

We also obtained data about the total travel times and time in ECA for over

200 trips of 13 vessels, mainly operating in the North sea, Baltic region and

Mediterranean. These trips had a profile similar to that of the planned new build

vessel, with a mean total travel time of 202.32 h and a standard deviation of 109.1.

The trip data were fitted to probability distributions to enable the creation of many

trips in the simulation model. Since Gamma distributions are commonly used in

simulation studies for task completion times (Robinson, 2014), and because this

distribution showed a good fit with the original total travel time data, RT is given

by a Gamma distribution with parameters α = 3.2839, β = 62.166). Data on ECA

presence Ek could not be fitted to a common probability distribution function due

to a large occurrence of the values zero and one, i.e., trips that were either executed

totally outside or totally within ECA. Therefore, we assigned probabilities to the

occurrence of zero (p = 0.266) and one (p=0.297) to express RE , while all values in

between (with p = 0.437) fitted a normal distribution (µ = 0.247, σ = 0.373).
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Fuel consumption and maximum travel time for the different fuels were

computed according to several reports (U.S. Department of Energy (2005);

Confidential Lab report of Dutch shipping company; Wild Ingenieurbüro (2005)) and

discussions with the employees of the Dutch shipping company. Fuel consumption

for HFO provided the basis for determining the MGO and LNG consumption, which

were derived using differences in calorific energy contents of the three fuel types.

Maximum travel times are based on fuel tank capacities common for short-sea

dry cargo shipping. An overview of the data used for our fuel consumption and

maximum travel time calculations is shown in Table 3.3.

Table 3.3: Values used for fuel consumption and maximum travel time calculations.

HFO MGO LNG

Fuel consumption (metric ton per hour) 0.333 0.326 0.284
Maximum travel time (in hours) 1515 525.3 1229.4
Calorific energy contents (MBTU per metric ton) 39.49 40.44 46.41
Fuel tank capacity (in m3) 500 190 750
Density (in kg per m3) 1010 900 465

In order to demonstrate the applicability of our investment appraisal method,

we conduct experiments with five different price scenarios. The first price scenario

is the most realistic one, and is based on an industry report (Deloitte, 2015) and

fuel price projections by Acciaro (2014b). The remaining four scenarios represent

different “What if” scenarios, which enable exploring several other future fuel price

developments based on questions raised by practitioners during discussions of

initial versions of our method. Each scenario is defined by linear price developments

for the three fuel types over the full exploitation period of the new build vessel, i.e.,

defining P basefi for any given day in the simulation. The five scenarios (see Fig. 3.6 in

the Appendix) are:

• “Realistic” scenario: Fuel prices for HFO and MGO increase considerably

while the price increase for LNG prices remains relatively limited (see Fig.

3.6a). This scenario reflects the common belief that oil prices will increase due

to shrinking oil reserves while LNG prices remain stable due to ample natural

gas reserves.

• Scenario “What if 1”: A low HFO price. Fuel prices for LNG and MGO are

the same as in the “Realistic” scenario, while the price for HFO increases
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proportional to the price for LNG (see Fig. 3.6b). Compared to the

“Realistic” scenario, this scenario reflects the expectation that more stringent

ECA regulations will reduce the demand for—and hence the price of—HFO.

• Scenario “What if 2”: Proportional fuel price increases. All fuel prices increase

proportional to that of LNG. Hence, the fuel price for LNG is the same as in

previous scenarios, while both HFO and MGO increase proportionally (see Fig.

3.6c). This scenario reflects the expectation that the price of all marine fuels

(including LNG) will be linked to crude oil prices in the future.

• Scenario “What if 3” High LNG price. Fuel prices for HFO and MGO are the

same as in “Realistic” scenario, while the price for LNG increases sharply (see

Fig. 3.6d). This reflects the expectation that LNG prices will increase rapidly

due to an increasing demand and adoption of LNG.

• Scenario “What if 4” High fuel prices. Fuel prices for HFO and MGO increase

sharply (and proportionally), while the price for LNG also increases (at a

similar level as HFO). MGO remains the most expensive fuel (see Fig. 3.6e).

This scenario reflects the expectation that all marine fuel types will increase

relatively sharply due to societal pressure and corresponding (fiscal) actions

from regulators.

Our investment appraisal method takes daily fuel price volatility into account. To

this end, we analyzed historical fuel price data to determine daily deviations from

(linear) price trends for each fuel. First, linear price trends were determined using

ordinary least squares (OLS) regression modeling. We have chosen OLS because

simple regression models have shown to be able to outperform complex volatility

forecasting models in estimating price volatility (Brailsford and Faff, 1996). For HFO

and MGO, fuel price trends were based on historical spot market prices in the Port of

Rotterdam (Bunker Index, 2015) in the period January 2009 to September 2012. For

LNG, we used US-Henry Hub spot market prices (IEA, 2015) in the period December

2005 to May 2015.

Next, daily deviations from the regression lines were analyzed to determine

probability distribution functions for . These daily deviations were obtained and

filtered by removing time intervals larger than one day because equally spaced

intervals and removal of discontinuities facilitate time series analysis (Brockwell
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et al., 1991; Eckner, 2012). The historical data of daily price deviations for HFO

could not be fitted to any theoretical probability function. Therefore, an empirical

distribution was developed, in which input data was generated by selecting

randomly from a pool of historical price deviations (Law et al., 2000). The MGO

and LNG price deviations showed a good fit with a Beta distribution (α = 12.5,

β = 3.9, with a range between -420.1 and 129.8) and Dagum distribution (p = 0.7,

α = 5.7, β = 4.5 and γ = −4.1, where γ corrects for negative values in the

original data), respectively. A statistically significant fit was confirmed using the

Kolmogorov-Smirnoff test, with p = 0.64 for the Beta and p = 0.23 for the Dagum

distribution. These empirical and theoretical distribution functions are used to create

values for Dfin during the experiments.

3.3.2 Numerical experiments

In addition to the case experiments, we performed experiments to numerically

validate the proposed investment appraisal method and derive generic insights

on the behavior of fuel and overall exploitation costs. Specifically, we examine

the effects of daily price volatility, total travel times, fuel consumption levels and

ECA presence on the expected monthly exploitation costs. Below, we introduce

the experimental setup for studying each of these factors. An overview of all

experiments is given in Table 3.4.

To study the effects of daily fuel price volatility, we ran experiments with a similar

setup as the case experiments, but now with deterministic instead of stochastic fuel

prices, hence where Pfin = P basefi for each fuel type f and each day i. By conducting

these experiments, we can assess the extent to which fuel price volatility is affecting

the investment decision.

To study the effect of total travel time of trips, we ran experiments with a

probability distribution RT for total travel times. Specifically, the mean of the

Gamma distribution used in the case experiments was multiplied by two. Trips

longer than 340 hours were removed to prevent violation of fuel tank capacities for

high fuel consumption levels and conventional vessels that sail fully in ECA and

cannot use HFO.

To study the effect of fuel consumption levels, we ran experiments with different

combinations of MGO and HFO fuel consumption levels relative to LNG fuel

consumption. The fuel consumption levels considered in the case experiments are
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based on discussions with experts from the shipping company. As these figures are

uncertain due to a variety of factors, we numerically test the outcomes with different

consumption levels. Specifically, we ran 25 experiments in which we let the values

for Uf range from 0.1 to 0.5 with steps of 0.1 for both LNG and conventional fuels,

where fuel consumption levels of MGO and HFO are coupled. These experiments

are repeated for each price scenario. Running these experiments enables finding the

maximum LNG fuel consumption level for which the monthly exploitation costs of

the LNG dual-fuel configuration remain below the conventional-fuel configuration.

To study the effect of ECA presence, we ran experiments where we change the

percentage of travel time of a trip in ECA. To this end, we use deterministic total

travel times, while step-wise increasing the values for ECA presence from 0 to 100%

in steps of 20 percentage points. We do this for both shorter (T totalk = 250) and

longer trips (T totalk = 500). In these experiments, the total travel time T totalk is kept

smaller than the MGO fuel capacity limit to ensure that this limit is not exceeded

for conventional vessels that sail fully in ECA. These experiments aim to reveal if a

certain ECA presence is required to render LNG dual-fuel propulsion economically

viable.

The experiments for each of these factors are conducted for all five price

scenarios. Including the case experiments, we ran 190 experiments on desktop PCs

with Windows 7 and an Intel Core i5 processor. Computation times per experiment

were 24 hours for each experiment for the “Case experiments”, “Total travel time”

and “Fuel consumption levels” (see Table 3.4). The remaining experiments needed 1

to 2 hours per experiment.

3.4 Results and discussion

In this section, we present and discuss the results of the experiments. These results

indicate how the exploitation costs for both types of vessels behave in response

to the experimental factors and feed into a discussion about the conditions under

which the exploitation costs of the LNG dual-fuel configuration are lower than the

conventional configuration.
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Table 3.4: An overview of the experimental setup.

Number of
experiments

Price
deviations
Dfi

Total travel
time (T totalk )

Fuel
consumption
per hour (Uf )

ECA (Ek)

Case
experiments

5 RD1 =
D(5.7, 4.5, 0.7)
RD2 =
Be(12.5, 3.9)
RD3 :
Bootstrap

RT =
Γ(3.28, 62.17)
capped at 340

U1 = 0.284
U2 = 0.326
U3 = 0.333

Stochastic

Daily
fuel price
volatility

5 Deterministic
fuel prices

RT =
Γ(3.28, 62.17)
capped at 340

U1 = 0.284
U2 = 0.326
U3 = 0.333

Stochastic

Total travel
time

5 RD1 =
D(5.7, 4.5, 0.7)
RD2 =
Be(12.5, 3.9)
RD3 :
Bootstrap

RT =
Γ(6.56, 62.17)
capped at 340

U1 = 0.284
U2 = 0.326
U3 = 0.333

Stochastic

Fuel
consumption
levels

125 RD1 =
D(5.7, 4.5, 0.7)
RD2 =
Be(12.5, 3.9)
RD3 :
Bootstrap

RT =
Γ(3.28, 62.17)
capped at 340

U1 from 0.1 to
0.5. U2 = U3

from 0.1 to 0.5
(steps of 0.1)

Stochastic

ECA presence 50 RD1 =
D(5.7, 4.5, 0.7)
RD2 =
Be(12.5, 3.9)
RD3 :
Bootstrap

T totalk = 250
T totalk = 500
T totalk < Tmax2

U1 = 0.284
U2 = 0.326
U3 = 0.333

Deterministic
ranging from
0 to 100%
with steps of
20 percentage
point
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3.4.1 Case results

For the case experiments, we consider a specific trip profile to study the behavior

of exploitation costs for both types of configurations. This enables examining

whether the higher initial investment costs of the LNG dual-fuel configuration can

be recovered by the potentially lower fuel costs.

The case results show that the fuel costs for the LNG dual-fuel configuration

are lower than the conventional configuration for all price scenarios considered (See

Fig. 3.2). Even when LNG prices end up considerably above than MGO and HFO

(i.e., “What if 3”), fuel costs for the LNG dual-fuel configuration are 4% lower than

conventional vessels. This somewhat counter-intuitive outcome can be attributed to

the fact that vessels with the LNG dual-fuel configuration simply have an additional

fuel to choose from. Due to the stochastic nature of the fuel prices, the LNG dual-fuel

configuration can save fuel cost every time the LNG fuel price drops below that of

MGO or HFO. For the other price scenarios, fuel cost reductions are much higher,

ranging from 24% up to 47%.

Figure 3.2: Mean fuel costs per hour.

For the LNG dual-fuel configuration to be economically viable, the fuel cost

reductions should outweigh the additional initial investment costs. This is reflected

in our analyses of the overall exploitation costs (see Fig. 3.3). These reveal

that LNG-fueled vessels are more cost-effective than conventional vessels for price

scenarios where LNG prices are similar to, or remain below, HFO prices, as long
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as MGO prices remain the highest. These price developments are reflected in

price scenarios “Realistic”, “What if 1” and “What if 4”. This implies that the

additional initial investment costs of LNG-fueled vessels can even be recovered

when the price for LNG rises above that of HFO, as long as the price for MGO

remains—considerably—above that of LNG (e.g. price scenarios “What if 1”

and “What if 4”). This can be attributed to the ECA regulations, which render

conventional vessels more expensive because they have to sail on MGO within ECA.

Figure 3.3: Average monthly exploitation costs.

For the other two what-if scenarios, the fuel cost reductions do not fully recover

the additional investment required for the LNG dual-fuel configuration. These

scenarios reflect the case where the current prices for MGO, LNG and HFO would

keep increasing proportionally, with a price for LNG in between the price for MGO

and HFO (i.e., “What if 2”), or where the LNG price rises sharply above the price for

MGO and HFO (i.e., “What if 3”).

3.4.2 Numerical results

In this section, we discuss the behavior of exploitation costs for both fuel

configurations and study the wider applicability of our investment appraisal

method. To this end, we consider settings that are different from the case

experiments by changing the values (or probability distributions) of the fuel prices,

route profiles, fuel consumption levels and ECA presence.
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Table 3.5: Mean fuel costs per hour for stochastic and deterministic fuel prices.

LNG Conventional

Stochastic prices Deterministic prices % Change Stochastic prices Deterministic prices % Change

Realistic 107.54 107.54 0% 201.09 201.09 0%
What if 1 102.72 104.51 1.75% 167.18 167.09 −0.06%
What if 2 102.51 104.51 1.96% 135.14 134.35 −0.58%
What if 3 192.50 193.95 0.76% 201.09 200.70 −0.20%
What if 4 156.92 156.92 0% 215.07 215.07 0%

Table 3.6: Mean fuel costs per hour for different Gamma distribution parameters for
RT .

LNG Conventional

α = 3.2839 α = 6.5678 % Change α = 3.2839 α = 6.5678 % Change
β = 62.166 β = 62.166 β = 62.166 β = 62.166
µ = 0.053 µ = 0.106 µ = 0.053 µ = 0.106

Realistic 107.54 107.54 0% 201.09 201.09 0%
What if 1 102.72 102.72 0% 167.18 167.18 0%
What if 2 102.51 102.51 0% 135.14 135.14 0%
What if 3 192.50 192.50 0% 201.09 201.09 0%
What if 4 156.92 156.92 0% 215.07 215.07 0%

Daily fuel price volatility

Our experiments show that considering deterministic prices only slightly affects

fuel and exploitation costs compared to stochastic prices (as can be seen in Table

3.5). It is noteworthy that fuel costs for the LNG dual-fuel configuration appear

to be somewhat higher for deterministic prices when there is a relatively large

price spread between LNG and MGO, while HFO is the cheapest fuel (i.e., scenario

“What if 1” and “What if 2”). Overall, we conclude that using either stochastic or

deterministic fuel prices yield very similar results. This implies that, in the long run,

price volatility has little impact on the decision to invest in LNG-fueled vessels.

Total travel time

Our numerical results for experiments with a different route profile suggest that a

different mean for the distribution RT , which determines the length of trips, has

little impact on the investment appraisal of LNG-fueled vessels. This change did not

affect the mean fuel costs per hour for either of the two configurations (see Table 3.6).
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Fuel consumption levels

Our analyses of different fuel consumption levels show the maximum allowed

LNG consumption level, compared to a certain level of HFO and MGO

consumption, before the LNG dual-fuel configuration becomes more expensive than

a conventional configuration.

For fixed levels of HFO and MGO consumption, it was found that the overall

exploitation costs increase and become constant when LNG consumption levels

increase (see Fig. 3.4). This behavior can be explained by the fact that the optimal

bunker planning chooses for HFO or MGO when LNG consumption levels are

relatively high. In those cases, potentially higher HFO and MGO prices are offset by

a large LNG fuel consumption. When LNG consumption becomes large (U2 −→ 0.5),

the difference in exploitation costs between LNG-fueled and conventional vessels

approaches the difference in monthly exploitation costs without fuel cost (i.e.,

€30,000) as can be seen in Fig. 3.4 for MGO and HFO consumption levels of 0.1

and 0.2. A similar pattern is found for the other price scenarios.

Figure 3.4: Monthly exploitation costs in “Realistic” scenario for different levels of
LNG consumption relative to a fixed HFO and MGO consumption (U3 = U2 = 0.2).

Our results indicate that the maximum allowed LNG consumption level

increases for higher levels HFO and MGO consumption levels in all experiments

(see Table 3.7). This suggests that LNG vessels are more economically viable than

conventional vessels at higher fuel consumption levels of all fuel types. For example,
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LNG consumption can only be 10% above HFO and MGO consumption levels for

low HFO and MGO consumption levels (U2 = U3 = 0.2) for scenario “Realistic”.

However, LNG fuel consumption can be 45% above MGO and HFO consumption

for high MGO and HFO consumption levels (see Table 3.7, U2 = U3 = 0.4). This was

pattern was observed in all experiments.

Table 3.7: Approximated maximum LNG consumption for a given level of HFO and
MGO consumption (in metric ton per hour).

HFO and
MGO
consumption
(U2 and U3)

Realistic What if 1 What if 2 What if 3 What if 4

0.2 0.22 0.17 0.11 0.12 0.15
0.3 0.40 0.34 0.22 0.18 0.29
0.4 0.58 0.69 0.34 0.27 0.41
0.5 N.A. N.A. 0.47 0.35 0.54

Lastly, our method does not appear to be very sensitive to the estimated LNG

fuel consumption level in the case experiments. In the “Realistic” price scenario,

LNG consumption levels can be 33% above those of HFO and MGO before the

overall exploitation costs of the LNG dual-fuel configuration become higher than the

conventional configuration, when considering HFO and MGO consumption levels

very similar to the case experiments (U2 = U3 = 0.3)

ECA presence

The results from the experiments with different percentages of ECA presence

(ranging between 0 and 100% in steps of 20 percentage point), enable identifying

the ECA presence at which the LNG dual-fuel configuration is more economically

feasible than a conventional configuration.

The results indicate that LNG-fueled vessels are already economically beneficial,

compared to conventional configurations, for very low ECA presence (0-30%) when

LNG price trends remain much below the MGO price trend (i.e., the “Realistic”,

“What if 1” and “What if 4” scenarios). Furthermore, the exploitation costs

of LNG-fueled vessels react less strongly to differences in ECA presence than

conventional vessels for all experiments conducted (e.g. scenario “Realistic”, see

Fig. 3.5). This indicates that higher ECA presence favors LNG-fueled vessels, which

confirms the findings of Wang and Notteboom (2014) and Burel et al. (2013). It also
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suggests that LNG-fueled vessels offer more stable exploitation cost under variable

route profiles. Less strong reactions of LNG-fueled vessels to ECA presence can be

explained by a lower dependence on MGO prices when sailing in ECA zones.

Figure 3.5: ECA presence and exploitation costs for scenario “Realistic” (T totalk,i =
250).

A relatively high minimum ECA presence of 68% is required for price scenario

“What if 2”. This implies that a relatively large ECA presence is needed for price

spreads which reflect the fuel prices at the time of writing. When the LNG price

increases (much) beyond the price for MGO and HFO (i.e., scenario “What if 3”),

even 100% ECA presence would not be sufficient for LNG-fueled vessels to have

lower exploitation costs than conventional vessels.

3.5 Conclusion

More stringent emission regulations stimulate vessel owners to consider the

adoption of cleaner, alternative fuels, such as LNG. In this paper, we presented a new

investment appraisal method to support vessel owners in their decision to invest

in LNG-fueled vessels. We use this method to analyze the fuel costs and overall

exploitation costs of LNG-fueled and conventional vessels by simulating bunker

planning practices under stochastic fuel prices, ECA presence and route lengths.

Moreover, we consider a broad range of future price developments for different
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marine fuels.

The results presented in this paper delineate the conditions under which

LNG-fueled vessels have lower overall exploitation costs than their conventional

counterparts. Firstly, the fuel costs of LNG-fueled vessels are lower than

conventional vessels for all price scenarios considered in this study—even for the

scenario where the fuel price for LNG grows considerably above the price of

conventional fuels. To be economically viable, however, these lower fuel costs

need to outweigh the additional initial investment associated with LNG-fueled

vessels. Our analyses show that this is the case as long as the price for MGO

stays considerably above that of LNG, regardless of the price for HFO. Secondly, the

exploitation costs of LNG-fueled vessels are lower for larger fuel consumption levels

of all fuel types. Finally, LNG-fueled vessels are more competitive at higher levels

of ECA presence relative to conventional vessels, but in a realistic price scenario

also a low ECA presence would already result in lower overall exploitation costs.

The exploitation costs of conventional vessels react more strongly to changes in ECA

presence than LNG-fueled vessels, which results in more stable costs for LNG-fueled

vessels under variable route profiles.

We have also shown the broader applicability of our method and its outcomes

by conducting a series of numerical analyses. These indicate that the results of

our method remain unaffected by different route lengths and apply to a large

range of route profiles. Our numerical study also suggests that price volatility

does not notably affect the outcomes of our method. Marginal exploitation costs

of LNG-fueled vessels decline for higher levels of LNG consumption when MGO

and HFO consumption is low due to bunker choices that favor HFO or MGO.

Lastly, it was found that our method is not very sensitive to fuel consumption levels,

indicating that a mistake in the LNG fuel consumption estimation provided by the

engine producer would not directly affect the outcomes.

Investment appraisal methods are prone to limitations, and ours forms no

exception. Firstly, the results in this paper only apply when vessel operators

seek to optimize their bunker planning decisions for every single trip. Indeed,

bunker planning policies become particularly important when sailing with an LNG

dual-fuel configuration as the economic benefits of this configuration mainly stem

from having an additional, potentially cheaper, fuel to choose from. Secondly, our

method determines the average expected monthly exploitation costs as a measure
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to compare LNG-fueled with conventional vessels. Yet, the economic benefits

of LNG-fueled vessels are not evenly distributed over the exploitation period.

Depending on future price developments, fuel cost reductions may emerge only later

and it is likely that some of the required extra initial investment must be born at the

start of the exploitation period. Future work could expand our method to include

cash flow differences during the exploitation period of the vessel. Thirdly, our study

does not include lost revenue that stems from a reduced cargo space due to extra fuel

tanks. Therefore, future research could investigate the extent to which reduced cargo

space influences the economic viability of LNG-fueled vessels. Future work may also

incorporate the effect of a limited LNG bunkering infrastructure on the economic

feasibility of LNG-fueled vessels to further examine the nuances associated with the

decision to adopt LNG as a marine fuel.
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Figure 3.6: Price scenarios.





Chapter 4

Combining biogas, wind and

solar energy to match local

demand: The

production–storage trade-off

Abstract. The transition from fossil fuels to cleaner alternatives presents challenges such

as the need to match increasing fluctuations in supply and demand. For rural communities

of houses and farms, electricity needs can be supplied locally using a combination of biogas,

wind and solar energy. The mismatch between energy demand and renewable energy supply

creates a trade-off in the need for storage and installed production capacities. In this study,

we examine which mix of renewable energy sources is needed when minimizing a specific

combination of storage and production capacity. By matching supply and demand using

empirical time series data, we take into account the effect of seasonality and determine the

hourly storage, consumption and curtailment decisions. Our model avoids the inclusion of

costs, because investment costs are uncertain and this enables determining a suitable mix of

sources purely based on profiles before making any investments. We find that biogas, which

has a constant supply profile, takes the largest share of the supply. Wind energy becomes

increasingly important in reducing storage needs when total production levels range between

116% and 122% of total demand. We also show how and why the optimal shares change
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when a certain overcapacity is installed. This has important implications for planning future

investments regarding the mix of renewable energy sources. It important to note that these

conclusions are specific to the Dutch situation and might be different in other countries due

to differences in weather and the resulting renewable energy production levels.

4.1 Introduction

It is generally agreed that improving energy efficiency and increasing the share

of renewables is necessary to accommodate the rising trend in energy demand

worldwide and the transition from fossil fuels to cleaner alternatives Alanne and

Cao (2017a); Li et al. (2013a). However, the intermittent nature of both demand and

renewable energy supply poses challenges in matching supply and demand. This

generally leads to high storage requirements Reuß et al. (2017). Higher penetration

levels of renewable energy increasingly necessitate hydrogen storage Won et al.

(2017), because hydrogen can be stored in large amounts at the terawatt-hour scale

Reuß et al. (2017) and, in contrast to batteries, it does not lose its energy content over

time when stored properly.

At a regional scale, rural communities of farms and households can produce

and consume renewable energy generated by wind, solar energy and biogas.

Communities of farms can be suitable renewable energy providers owing to the

availability of land for solar energy and wind, as well as to the availability of biomass

such as manure for producing biogas. Households are also increasingly adopting

solar energy to supply their electricity needs. However, matching the differences

in supply and demand profiles at a regional scale can be challenging. Biogas has a

relatively constant production profile, while wind and solar energy are more variable

Bett and Thornton (2016), but none of them can be flexibly adjusted Hahn et al.

(2014).

Combining the various production profiles of multiple renewable energy sources

can be an effective way to reduce the required storage or production capacities.

These can be minimized for given supply-and-demand profiles by determining the

capacity and relative share of wind, solar energy and biogas production Lee et al.

(2018).

In determining the size of a storage facility, decision-makers need to decide on

the level of installed production capacity, and vice versa. If the total yearly supply
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of renewables were at its lowest level to meet demand, extreme amounts of storage

would be needed. Investing in excess production capacity reduces storage needs.

For rural communities of households and farms, the question arises as to what mix of

renewable sources is required for certain levels of excess production capacity and/or

storage.

In this paper, we examine which energy mix is needed in the respective cases

when storage is either existent or non-existent and how the energy mix changes

with different levels of production and storage capacity for a regional community

of households and farms. In contrast to the existing literature, we simultaneously

determine the capacities of each renewable source and the operational decisions

that specify the times at which energy from each source is either consumed or

stored. We address this problem from the perspective of production and storage

capacities by focusing purely on production and demand profiles rather than on

costs. Since future investment costs are uncertain, this perspective allows us to

obtain insight into the behavior of inventory levels and the optimal capacities of

each source resulting from the installation of a certain combination of production

capacity or storage capacity. As Fig. 4.1 shows, we assume that the energy from

all renewable sources is generated as electricity, stored as hydrogen and again

consumed as electricity using fuel cells.

4.2 Literature review

In this section, we position our problem and approach in the context of the

existing literature. Studies in the literature have mostly determined the capacities

of renewable sources and storage of a single proposed system by evaluating the

performance with regards to indicators such as cost conditions. Most papers have

included only wind and solar energy, and only limited work has been done on the

inclusion of stable sources such as biogas in the context of farms surrounding a

community of households. Most work has focused on batteries as a storage medium,

which disregards the problem of seasonality. To the best of our knowledge, there

have been no studies specifically addressing the relationship between storage and

production capacity, and the related shares of each source, by matching variable

supply and demand profiles.

Papers that specifically address the shares of multiple renewable sources in
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Figure 4.1: Shares of wind, solar energy and biogas, storage capacity, local demand,
and curtailment
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the total energy mix include Kaabeche et al. (2011); Kaabeche and Ibtiouen (2014);

Mazzeo et al. (2018); Weitemeyer et al. (2015). For example, Kaabeche et al.

(2011) and Kaabeche and Ibtiouen (2014) show how costs and emissions behave for

specific combinations of solar and wind capacities. Mazzeo et al. (2018) shows how

operational decisions such as the energy sent and drawn from the grid are affected

by different capacity combinations of solar energy and wind. Papers that focus on

the relationship between storage and production capacity include Rodrigues et al.

(2015); Weitemeyer et al. (2015). Weitemeyer et al. (2015) show how combinations of

wind and solar energy shares and storage affect the share of a renewable in meeting

demand after curtailment. Rodrigues et al. (2015) show how a battery can be used

and sized to reduce curtailment during off-peak times. This allows the associated

shares between solar and wind energy to be obtained. However, none of these

papers provide insights in the relationship between storage and production capacity

and how this affects the shares and operational decisions for each renewable source

in the energy mix.

Even though the stable supply pattern of biogas presents opportunities to reduce

storage requirements, most papers have focused on configurations in which the

sizing of photovoltaic (PV) panels and wind energy is addressed. For example,

Ángel A. Bayod-Rújula et al. (2013) analyze the influence of sizing hybrid wind

and PV systems on the interactions with the electricity grid. Bartolucci et al. (2018)

evaluate how the sizing of PV installations affects the resilience of the system and

the environmental impact. Bianchi et al. (2014) investigate the feasibility of PV

panels combined with batteries and obtain optimal battery sizes. Castaneda et al.

(2013) address the control strategies and sizing of standalone hydrogen storage in

combination with PV solar panels. Eltamaly et al. (2016) address optimizing the

design of systems comprising of solar panels, wind energy, diesel and batteries to

minimize cost and maximize reliability. Moreover, Iverson et al. (2013) minimize

the levelized cost of energy for power demand in a residential network. Malheiro

et al. (2015) similarly focus on minimizing the levelised cost of energy by obtaining

optimal combinations of wind, PV, diesel and batteries. Ren et al. (2016) minimize

the running cost of a system consisting of solar panels, batteries and hydrogen for

a residential setting. Jorgenson et al. (2018a) address how transmission and storage

capacity can help in reducing curtailment of wind and solar energy. Kim and Kim

(2017) only consider wind in determining wind farm layouts for hydrogen-based
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storage. Samsatli et al. (2016) also focus on determining locations and sizes of storage

and transport facilities of wind-based hydrogen and electricity networks. Finally,

Kaviani et al. (2009) address the design of wind and solar-based hydrogen systems

to minimize annual costs.

Relatively few studies have included biogas in the combination of renewables.

For example, Lee et al. (2018) provide a framework for sizing solar energy, wind

and biogas for multiple storage facilities and demands. However, their approach

focuses on minimizing costs and grid-imported electricity and they do not examine

the relationship between storage and production. Chauhan and Saini (2016) conduct

a feasibility study on the development of a renewable energy system with multiple

sources with battery storage. Upadhyay and Sharma (2015) consider biogas,

hydroenergy, PV panels, diesel and batteries and optimize the capacities of each

renewable energy source. Hurtado et al. (2015) also consider biomass in combination

with solar energy and batteries. Heydari and Askarzadeh (2016) determine both

the size of PV panels and installed capacity of biogas digesters without considering

storage, in which excess energy is discarded. Ho et al. (2014) address the sizing of the

combination of biogas with solar energy. They assume that excess generated energy

is stored. While these papers focus on the inclusion solar and wind energy, it is still

unclear how including stable supply profiles such as biogas would affect the shares

of multiple renewable energy sources for different production and storage capacities.

While seasonal storage is regarded as an important requirement of renewable

energy supply Reuß et al. (2017), most studies have focused on battery-only

systems, which are not directly suitable for seasonal storage owing to their high

cost and limited capacity. Batteries have been the most prevalent storage method

in previous and recent research. In addition to the above-mentioned articles

that include batteries, the following studies also incorporate batteries in their

configurations. For example, Ogunjuyigbe et al. (2016) study the cost of energy

for different configurations that include PV, wind and diesel generators. Zhao

et al. (2014) consider the sizing of the same combination of energy sources and

optimize this for multiple objectives which include costs, emissions and renewable

energy penetration. Ahadi et al. (2016) also optimize combinations of wind, PV

and batteries, but do so for a standalone community without diesel. We refer to

Yang et al. (2018); Khare et al. (2016) for literature reviews on renewable energy

configurations that include batteries. However, although batteries are suitable for
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daily variability, this is not the case for seasonal storage owing to capacity limitations

arising from extremely high costs and limited lifespan Malheiro et al. (2015). We

focus in this paper on hydrogen storage to bridge the seasonality gap between

supply and demand.

We aim to fill this gap by determining the optimal shares of wind, solar energy

and biogas and the operational decisions required for different combinations of

production and storage capacities. In doing so, we develop a model that avoids

the inclusion of costs due to the uncertainty related to future prices. We determine

the optimal sizes and shares of each source in producing electricity, such that the

variable profiles of supply and demand are most effectively matched for a certain

level of (excess) production and storage capacity.

4.3 Problem description

The main problem addressed in this paper is concerned with deciding on the size of

each renewable source and the level of storage capacity. This decision requires that

the variable supply and demand profiles be matched such that excess production is

either stored or curtailed. Oversizing the production capacity of an energy source

requires less storage and leads to higher excess production at specific times than

reduced production capacity.

It should be emphasized that we aim to examine which variable supply profiles

connect well with the demand profile without addressing investment costs. While

costs are an important component in investment decisions, these can be uncertain

for long planning horizons in which future prices and technological developments

cannot be easily predicted. Incorporating costs provides insights only about

configurations under certain cost conditions. Not including costs enables allows an

examination to be made as to how the variability profiles of each supply source and

demand can be matched effectively using a combination of production and storage

capacity. Accordingly, we use a weight parameter C that indicates the relative

importance of each of these in the objective function. The objective function consists

of two components. The first component consists of the peak inventory levels for a

hydrogen tank supplied by wind, solar energy and biogas during a given planning

horizon. The peak inventory level represents the required storage capacity during

the planning horizon. The second component represents the total weight of the total
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energy generated. Since increased production capacity leads to increased amounts of

supply, we express the production capacity as the total amount of energy generated.

This approach allows us to quantify the relationship between production capacity

and storage capacity. The objective is minimized by determining the relative size of

each renewable source and the operational decisions that specify the movement and

direction of energy flows for a given supply-and-demand profile for each period in

time.

We define the following sets, parameters and variables (see Table 4.1). Let T
be the set of periods within the planning horizon N . These represent 1-hour time

intervals in our model. We also define a set of renewable sources R = {0, 1, 2},
representing solar energy, wind energy and biogas.

We define the following parameters. Srt denotes the supply in kilowatt-hours

of renewable source r ∈ R at time t ∈ T . The efficiency of energy transferred to

storage by renewable source r ∈ R is denoted by Er, whereas the energy transferred

from source r ∈ R directly to demand is denoted by Edr . The energy transferred

from storage to demand is denoted by Ef . The demand in period t ∈ T is denoted

by Dt. C denotes a steering parameter that defines the weight of the total energy

generated during the planning horizon relative to the storage capacity. Instead of

determining costs of each explicitly, we only vary this ratio to generate different

feasible combinations of production capacity and storage capacity and the related

sizes of each renewable energy source.

We define it as the inventory level in the storage tank at time t ∈ T . Moreover,

kr represents the sizing factor of renewable source r ∈ R. It is used to multiply the

energy supply Srt by the sizing factor kr to derive the actual supply srt of renewable

source r ∈ R that is needed at time t ∈ T to supply the total demand. art is defined

as the amount of energy transferred from r ∈ R to storage at time t ∈ T . We also

define ft as the amount of energy obtained from storage at time t ∈ T . We define

drt as the amount of energy directly consumed from renewable source r ∈ R at time

t ∈ T . We define p as the peak inventory level inside the storage during the planning

horizon. The peak inventory level represents the amount of storage required in the

planning horizon. y represents the inventory level at both the beginning and end

of the planning horizon. We define y as a decision variable to deal with potential

inventory initialization bias. In particular, setting the initial inventory equal to the

inventory level in the last period allows us to obtain stable inventory conditions and
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makes the levels cyclic in a repetitive pattern of deterministic supply and demand.

Finally, crt represents the excess produced energy or curtailment from renewable

source r ∈ R at t ∈ T that will not be stored. This excess-produced energy can be

injected into a grid or deliberately discarded, but will be referred to as curtailment.

Table 4.1: Sets, parameters and variables.

Sets
T Set of periods (1-hour intervals) T = {1, . . . , N}
R Set of renewable sources (wind, solar energy and biogas)R = {0, . . . , E}
Parameters
Srt Energy supplied by renewable source r ∈ R at time t ∈ T in kWh
Er Efficiency in % of the energy transferred to storage from renewable source r ∈ R
Edr Efficiency in % of the energy transferred directly to demand from renewable source r ∈ R
Ef Efficiency in % of the energy transferred from storage
Dt Electricity demand in kWh at time t ∈ T
C The relative weight of 1 kWh of total energy generated compared with 1 kWh

of storage capacity required
Variables
it Inventory level in kWh at time t ∈ T
kr Sizing factor of renewable source r ∈ R
art Amount of kWh transferred from r ∈ R to storage at time t ∈ T
ft Amount of kWh obtained from storage at time t ∈ T
drt Amount of kWh directly consumed from renewable source r ∈ R at time t ∈ T
srt Actual supply in kWh of renewable source r ∈ R at time t ∈ T
p Storage capacity (highest inventory level) in kWh
y Starting inventory level in kWh
crt Amount of curtailment in kWh from renewable source r ∈ R at time t ∈ T

A certain combination of storage and production capacity can result in many

optimal solutions in which various operational decisions of each source lead to the

same objective value. For example, the decision to store or curtail a certain amount

of energy can be made by any of the supply sources in the case of production

overcapacity. Therefore, we introduce ε and γt, which have very small values in

order to favor a consistent choice of operational decisions without affecting the

overall solution in terms of storage and production capacities. Whereas ε is a

constant, γt is time-dependent and ensures that when curtailment takes place, it

is scheduled in successive periods and as late as possible in the planning horizon

without loss of generality. This choice is made because, in a stochastic situation, it

would be sensible to store energy at an early time and defer curtailment in order to

avoid situations in which energy is unavailable. γt is given by

γt =
ε (2N − t)

N
∀ t ∈ T . (4.1)



90 Chapter 4

Having explained this, we define the objective function of our LP problem.

The objective function minimizes the weighted combination of storage needs and

the total amount of energy generated. Storage needs are expressed as the highest

inventory level that occurs in kilowatt-hours. The total amount of energy generated

is the sum of the actual supply srt for all periods and renewables. However, we

subtract a small fraction of total curtailment.

Curtailment was included in the objective function using γt for two reasons. First,

it is included in order to slightly reward curtailment in favor of storage. Since energy

flows that move through storage create conversion losses, multiple optimal solutions

may exist in which energy is either curtailed through the normal curtailment route

or moved to and from storage in the same period, creating “hidden curtailment”.

Slightly favoring curtailment over storage alleviates the issue of curtailment through

storage and makes sure that all curtailment is measured by crt. Second, we schedule

any curtailment late in the planning horizon in order to reduce the number of

optimal solutions without loss of generality and to avoid the issue of performing

both curtailment and storage decisions at random times. Unnecessary interchanges

between curtailment and storage due to multiple optimal solutions would impede

our analysis and are undesirable in practice, because the electrolyzer would operate

at a highly variable load. This leads to the following objective function:

min p+ C

(∑
t∈T

∑
r∈R

srt −
∑
t∈T

∑
r∈R

γtcrt

)
. (4.2)

Constraints (4.3) calculate the actual supply used in the model by multiplying

the sizing factor kr with the supply parameter Srt for each renewable source r and

period t:

srt = krSrt ∀ r ∈ R, t ∈ T . (4.3)

Constraints (4.4) calculate the inventory levels in storage at the end of period t by

taking into account the efficiencies of energy moving to and from a storage facility:

it = it−1 +
∑
r∈R

(θr + Er)art − ft ∀ t ∈ T . (4.4)

To reduce the number of optimal solutions without loss of generality, storage by
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wind is given slightly higher to-storage efficiencies using θr = {0, 1 + ε, 1 + 2ε}.
Thus, if a choice is made about which source to send to storage and which source

to use directly to fulfill demand, wind will be stored. This makes sure that storage

decisions can be distinguished between sources and are meaningful for analyses.

Constraints (4.5) calculate the inventory levels in storage at the end of the first

period in the planning horizon (t = 0):

i0 = y +
∑
r∈R

(θr + Er) ar0 − f0. (4.5)

Constraints (4.6) ensure that the peak inventory level p is below or equal to the

inventory level it for each period t:

it ≤ p ∀ t ∈ T . (4.6)

Constraints (4.7) ensure that the starting inventory level in storage is equal to the

ending inventory level in order to obtain a solution that can be repeated each year

and to alleviate a possible confounding effect of initial inventory levels:

y = iN . (4.7)

Constraints (4.8) ensure that the starting inventory y is also lower or equal to the

peak inventory level p:

y ≤ p. (4.8)

Constraints (4.9) ensure that the energy transferred to storage and the direct

consumed energy are equal to the actual supply at period t:

art + drt + βrcrt = srt ∀ r ∈ R, t ∈ T . (4.9)

To reduce the number of optimal solutions that lead to the same objective value,

curtailment of wind is slightly favored using βr = {1, 1− ε, 1− 2ε}. This enables the

distinction of curtailment decisions between the different sources of supply.

Constraints (4.10) ensure that the energy obtained from storage and the directly
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obtained energy are equal to demand in period t:

Efft +
∑
r∈R

Edrdrt = Dt ∀ t ∈ T . (4.10)

4.4 Experiment definitions

This section provides an overview of the experiments we conducted in our study.

We apply our model to real-life data and perform sensitivity analyses. We assume

that the wind, biogas and solar energy supplies are known in advance.

4.4.1 Data and parameter settings

For all experiments, we obtained aggregated consumption data of multiple

households in the Netherlands for the year 2009. The aggregated household hourly

electricity consumption has a mean of 1.85 MW and a standard deviation of 0.72 MW.

The total amount of energy consumed in 2009 was 16.2 GWh. The data consisted of

1-hour measurements, and no data were missing. We also obtained solar generation

data from Eelde in the Netherlands for 2009 from the Photovoltaic Geographical

Information System (European Commission). The data on solar energy generation

levels reflect an installed capacity of 2.5 kWp with a mean generated energy of

0.286 kWh and a standard deviation of 0.49 kWh. Hourly wind data were also

obtained from Eelde in 2009 via the Dutch National Meteorological Institute (KNMI).

The data were measured in meters per second. These values were converted to

power levels using a power curve with a cut-in speed of 3 m/s, a rated speed of

14 m/s at 3 MW and a cut-out speed of 25 m/s. The hourly generated energy has a

mean of 0.39 MWh per hour and a standard deviation of 0.48 MWh per hour. Since

biogas production is a very stable process, we assume a constant biogas production

rate of 1 MWh per hour. It should be noted that the installed capacity of an energy

source in the original data is not relevant for our model. This is because the sizing

factor in our model is determined during the optimization process and is used to

derive the actual sizes of the installed capacity for each source.

Table 4.2 shows the conversion efficiencies for each source. Since we consider the

production of hydrogen to enable storage of electricity from solar energy, wind and

biogas, we assume conversion losses for each conversion step. To avoid unequal
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weights for the generation of each source in the objective function, each source

is represented by the amount of electricity generated from it. Therefore, biogas

is represented in terms of the energy contents available after having generated

electricity using a combined power and heat (CHP) engine. Accordingly, the

efficiencies of supplying directly to demand and to storage were set equal for each

source. Conversion efficiencies for direct consumption were set at 1 for all sources,

since the possible small losses would be equal for all sources and also occur after

electricity generation from hydrogen. The conversion efficiencies of all sources to

hydrogen using an electrolyzer were set at 70%, since efficiencies between 65%

and 75% are common for proton exchange membrane (PEM) electrolyzers Koponen

et al. (2017). Furthermore, the fuel cell efficiency in which hydrogen is converted to

electricity was set at 50% Iverson et al. (2013).

Table 4.2: Overview of conversion efficiencies.

Description Efficiency

Solar energy to demand (E0) 1
Wind to demand (E1) 1
Biogas to demand (E2) 1
Solar energy to storage (Ed

0 ) 0.7
Wind to storage (Ed

1 ) 0.7
Biogas to storage (Ed

2 ) 0.7
Storage to demand with fuel cell (Ef ) 0.5

4.4.2 Experiments

The experimental setup is summarized in Table 4.3. For the main experiments, we

executed experiments (set 1) with 100 levels ofC on a scale between 0 and 1 to derive

insights into the behavior of storage requirements and sizes of each of the renewables

for different levels of storage capacity and production capacity. To understand how

these levels interact in a real-life context, the experiments were conducted using

the real-life data introduced in Section 4.4.1. One hundred levels appeared to be a

sufficient resolution to create a clear picture of the trade-off between excess capacity

and storage needs. To enhance the accuracy for very low and high storage and

production capacities, we performed additional experiments for very low and high

values of C, resulting in a total of 133 experiments.
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Table 4.3: Overview of experimental setup.

Description Experiment set Number of experiments Years (solar and wind)

Main experiments 1 133 2009
Exclude wind 2 133 2009
Exclude biogas 3 133 2009
Limited biogas availability (≤371 kW, 20% of demand) 4 133 2009
Smooth wind size curve 5 133 2009
Sensitivity to different years 6 1064 (133× 8) 2009–2016

Because constant sources such as biogas may not always be available in every

environment and to evaluate the storage requirements of configurations with a more

limited set of sources, we performed experiments in which either wind or biogas

was excluded (sets 2 and 3). Since biogas availability is limited by a limited supply

of manure, we performed an additional set of experiments (set 4) in which the size

of biogas was set to a maximum of 20% (371 kW) of the total energy demand. This

percentage was derived from the average maximum electricity potential that could

be produced using biogas in the Dutch province of Friesland (27%) if all available

manure were digested. Since 27% is the maximum potential of converting biogas

to electricity, we chose 20% in order to be conservative. Furthermore, we tested the

sensitivity of wind shares based on the findings of the original experiments.

We performed a further sensitivity analysis to evaluate the extent to which the

relationship between production and storage capacity, and the sizes and shares of

each energy source, change for different years of wind and solar supply (set 5). This

gave us insight into the level of safety production or storage capacity that may be

needed to account for differences between years of wind and solar supply. The

experiments of set 1 with the real-life data were repeated with supply data for the

same location of wind and solar energy for the years ranging between 2009 and

2016. The electricity demand was fixed for the year 2009, in order to investigate the

influence of different wind and solar patterns in supplying demand.

The experiments for each of these factors were conducted with a Gurobi 7.0.2

solver using four cores.

4.5 Results and discussion

In this section, we present and discuss the results of the experiments. These indicate

how the storage capacity and the optimal sizes of the renewable sources are affected
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by different levels of total energy generated as a result of excess production capacity.

We consider the demand and supply profiles of the real-life data introduced

in Section 4.4.1. First, we illustrate the relationship between storage capacity and

production capacity for the real-life data. We show how the production levels

expressed in percentages of annual demand of each renewable source are affected

by different levels of energy generated as a percentage of demand. Second, we zoom

into the flows of each source that are used to directly satisfy demand, are moved

into storage or will be curtailed, which, for example, may imply grid injection or

deliberate discarding. Third, we optimize the shares of each source and then exclude

or limit the shares of the energy sources to compare the differences in storage and

production capacity requirements. Finally, we show the influence of different years

of wind and solar energy supply.

4.5.1 Relationship between production and storage capacity

The results in Fig. 4.2 show the storage requirements on the y-axis and the total

energy generated on the x-axis for the experiments in set 1 in which C was varied.

Note that a high value of C is associated with low production capacity and vice

versa (see the left and right sides of Fig. 4.2, C = 1000 and C = 0.005). In Fig. 4.2, the

C-values of specific points that will be analyzed more deeply have been highlighted.

The results in Fig. 4.2 show that the trade-off curve between storage and

production capacity is convex and smooth. Owing to efficiency losses when

electricity has to be stored, the minimum amount of energy that had to be generated

was 116% of demand. An increase in production from 116% to 117% leads to

a relatively high marginal reduction in storage capacity of 1% point, whereas a

production increase from 140% to 141% yields a relatively lower storage reduction

of 0.1% points. For production levels above 140%, storage requirements approach

zero. This shows the importance for decision makers of deciding the levels of

storage capacity and production capacity at which to reside. A small amount of

excess production capacity greatly reduces storage capacity (see the left side of

Fig. 4.2), whereas production capacity that is sized too large does not yield significant

reductions in storage capacity (see Fig. 4.2 on the right).
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Figure 4.2: Storage capacity required for different levels of total energy generated (%
of demand) for experiment set 1.

4.5.2 Renewable shares and production and storage requirements

The results in Table 4.4 illustrate the relative shares of each renewable source as

percentages of the total amount of energy produced, the storage capacities and

the total production levels for different levels of C. Moreover, Fig. 4.2 sets the

storage capacity requirements against the levels of energy generated in percentages

of annual demand for the experiments in set 1. The combinations result from

optimizing for different levels of C. High levels of C apply to the left side of the

x-axis, whereas low levels of C apply to the right side.

The results in Table 4.4 indicate that the shares of biogas range between 91.3% and

98.9%. In particular, they are high for low levels of C, while the lowest shares occur

for C = 0.48. This indicates that the constant production profile of biogas is highly

suitable in supplying demand, especially in situations of overcapacity with high
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curtailment and relatively low storage. Overall, the high shares of biogas suggest

that constant sources are important in supplying the demand profiles in combination

with more variable sources such as wind for all levels of production capacity. While

the high levels of biogas shares may not be feasible or desirable in practice owing

to a limited supply of biomass and high cost, this does indicate that constant energy

sources are important in designing renewable energy systems and help in supplying

base-load levels of demand. If sufficient biomass is available, this implies that biogas

can play an important role in the renewable electricity supply of a local community.

The share of wind energy exhibits the opposite relationship to storage capacity.

Wind becomes more important in the energy mix for levels of storage capacity

between 0.2% and 5.2% of the total demand. Wind shares are highest in the

optimized model at C = 0.48 for the C-values in the experimental design with a

share of 9.2% of the total energy generated and a storage capacity of 5.2% of demand.

This shows that adding small shares of wind in the energy mix can contribute to

minimizing combinations of production and storage capacities, especially for storage

capacities up to 5% of the total annual demand. In Section 4.5.5, we analyze how

much additional storage capacity is required when wind is excluded.

The shares of 0% for solar energy indicate that the supply profile of solar energy

is less favorable than those of biogas and wind based on the Dutch data. This can

be attributed to the variability in solar supply within days and between days, the

absence of energy generation at night, and the seasonal mismatch between supply

and demand. Therefore, including solar energy creates higher storage or production

requirements than the profiles of wind and biogas in the specific instances studied.

These results also indicate that the profile of wind energy is more favorable than that

of solar energy in capturing peak levels in demand when a constant source such as

biogas is included in the energy mix.

4.5.3 Explaining optimal shares from the operational decisions

Fig. 4.3 extends Table 4.4 by showing more precisely how the production levels

for wind (Fig. 4.3a) and biogas (Fig. 4.3b) change for different levels of total

production. Solar production levels were zero for all experiments. We will explain

the remarkable pattern of wind production by analyzing the underlying optimal

operational decisions. Fig. 4.4 shows the operational decisions regarding wind

supply in week 14 (Fig. 4.4a), the hydrogen inventory levels over time for C = 1000
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Table 4.4: Renewable shares, storage capacities and production capacity for different
levels of C.

C Share of solar Share of wind Share of biogas Storage capacity Energy generated
(%) (%) (%) (% of demand) (% of demand)

0.1 0.0 1.1 98.9 0.2 141.7
0.2 0.0 1.1 98.9 1.1 134.8
0.3 0.0 1.5 98.5 2.2 130.0
0.4 0.0 4.2 95.8 3.3 126.9
0.5 0.0 8.7 91.3 5.2 122.3
0.6 0.0 6.8 93.2 7.6 117.9
0.7 0.0 5.8 94.2 8.6 116.2
0.8 0.0 5.5 94.5 8.7 116.2
0.9 0.0 5.0 95.0 8.7 116.2
1.0 0.0 4.7 95.3 8.7 116.1
1000 0.0 1.6 98.4 9.0 116.0

and C = 0.62 (Fig. 4.4b) and the curtailment levels for wind as a percentage of actual

wind supply (Fig. 4.4c, C = 0.62). These values of C represent the highlighted

points on the left-side of Fig. 4.3a. In Fig. 4.4(a), the red dashed curves indicate wind

curtailment levels, the green curves portray wind energy that is directly consumed

by demand and the black curves indicate the amount of wind energy that is stored

as hydrogen for both levels of C. In Fig. 4.4(b), the dark red curve shows the optimal

annual inventory levels for C = 1000 over time, whereas the blue curve indicates

optimal inventory associated with C = 0.62. The gray curve in Fig. 4.4(c) shows the

annual wind curtailment levels associated with C = 0.62.

Fig. 4.3(a) illustrates how wind production increases more than 5 percentage

points for the first 1 percentage-point increase in total production. Wind production

becomes more important in minimizing combinations of storage and production

capacity when total production capacity increases just above the minimal feasible

total production level of 116%. In contrast, Fig. 4.3(b) shows that biogas production

levels increase when total production levels exceed 118.5%.

To explain the high marginal increase in wind supply associated with the first

percentage-point increase in total production capacity, we compare the optimal

inventory levels in Fig. 4.4 for C = 1000 and C = 0.62, i.e. the highlighted points on

the left side of Fig. 4.3(a).

For the lowest level of total production due to settingC high (C = 1000), we show

the following. The dark red curve in Fig. 4.4(b) shows that inventory levels decrease
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during winter and increase immediately after having reached zero. At this point,

the inventory levels accumulate to bridge the seasonal gap in supply and demand

during winter at the end of the year. Since the total production capacity is minimal,

any curtailment is prevented. Therefore, inventory levels increase as soon as these

have reached zero. This is confirmed by the black curve on the right in Fig. 4.4(a),

which shows that unfortunately timed wind peaks need to be stored rather than

curtailed at the time in which inventory has reached zero in week 14. However, the

much lower wind production for C = 1000 avoids the need for storage of the large

amounts that were curtailed at C = 0.62.

As can be seen from the blue curve in Fig. 4.4(b), wind curtailment at this time of

the year forC = 0.62 allows postponement of inventory accumulation for the winter,

which reduces the overall storage requirements. This is confirmed by Fig. 4.4(c), in

which the gray curve illustrates 100% wind curtailment levels, which only occur at

the time at which the inventory is zero. The difference in storage requirements for

C = 0.62 and C = 1000 can be fully attributed to the difference in curtailment levels

that occur when the inventory is zero.

For relatively high total production levels above 130%, wind production levels

approach zero. The constant biogas production levels can now cover most of

the demand, in which case all excess production is curtailed rather than stored.

Accordingly, the variable wind profile becomes less attractive in supplying demand

peaks.

This shows that when curtailment is allowed, the variable profile of wind can be

an important component in the energy mix when combined with constant sources

in order to minimize combinations of storage and production. Curtailing wind

before accumulating seasonal storage reduces storage requirements. However, when

curtailment has to be avoided, unfortunate wind peaks can cause high storage

requirements.
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Figure 4.3: Optimal wind and biogas sizes (as % production levels of demand) for
different total production levels
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Figure 4.4: (a) Operational decisions in week 14. (b) Inventory over time for C =
1000 and C = 0.62. (c) Curtailment levels for wind as percentage of actual wind
supply for C = 0.62.
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4.5.4 Operational decisions in general

In Section 4.5.3, we looked briefly into the operational decisions to better understand

the optimal strategic choices between renewables. However, the optimal operational

decisions are a relevant outcome of our model in themselves. We will focus our

discussion of results on two levels of production capacity and storage (resulting from

C = 0.3 and C = 50; see Fig. 4.3) and zoom into a week in winter and a week in

summer.

The graphs in Figures. 4.5 and 4.6 show the operational decisions after

application of the optimization model for both high and low production capacities

in the second week of February (winter) and the last week of July (summer). In

Figures. 4.5 and 4.6, the blue curves indicate the amounts of biogas and wind energy,

respectively, sent directly to demand on an hourly basis, the black curves indicate

the amounts stored as hydrogen, and the dashed red curves indicate the curtailment

levels for in each hour.

Biogas

When we install low production capacity owing to a high value of C, the following

aspects occur in the winter (Fig. 4.5b). First, the blue curve shows that the demand

that is satisfied directly during the day does not include any peaks in demand.

Second, the black curve shows that the constant supply of biogas enables the use

of storage to supply differences in demand between night and day. The dashed

red curve shows that curtailment levels are zero, because the low total production

capacity prevents any curtailment. In the summer (Fig. 4.5d), the reduced demand

falls below the production capacity of biogas. This enables the peaks in demand to

also be provided by biogas. The black curve shows that the excess supply is stored

during both day and night. Again, curtailment is non-existent in the summer.

When we install high production capacity due to a low value of C, the following

changes occur in winter (Fig. 4.5a). First, the blue curve shows that the direct flows to

demand are higher than when total production is low. It can be seen that these flows

during the day are not always flat, which indicates that portions of the demand peaks

are covered by biogas. In the summer (Fig. 4.5c), the blue curve shows that demand

is fully covered by biogas. The dashed red curve shows that all excess-produced

biogas is curtailed. This is due to the fact that a high total production capacity is
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associated with larger biogas sizes compared with the case when total production

capacity is low.

Wind

When a low total production capacity is installed owing to a high value of C,

the following aspects occur for wind (Fig. 4.6b). In the winter, the blue curve

illustrates direct flows to demand, which occur throughout the day. Whereas

the biogas-to-demand curves are flat at these times, wind peaks are used to

accommodate daily demand fluctuations. The black curve shows that wind is mostly

stored at night when demand is lower. The low level of total production capacity

again prevents curtailment. In the summer, all wind is stored, because demand is

lower than in winter and curtailment is avoided. Biogas already covers all demand

at this time of the year, since biogas production exceeds demand in the summer.

When a high production capacity is installed owing to a low value of C, the

following changes occur in winter (Fig. 4.6a). Wind supplies slightly less to demand

directly than for a low total production capacity. This is because biogas covers larger

portions of demand directly at this time of the year. This results in larger wind

storage levels than for a low level of total production capacity, which is illustrated

by the black curve. In contrast to a low total production capacity, all wind is curtailed

rather than stored in the summer.

These results indicate that, in the optimized model, the roles of wind and biogas

change depending on the levels of production capacity and total production capacity.

For low levels of total production, biogas acts as a provider of base-load in which

the demand peaks are shaved by wind energy. Wind is mostly stored in winter and

curtailed in summer, even though the storage capacity is low. For high levels of

excess production capacity, biogas supplies both peaks and base-load at most times

in the year. Moreover, peaks in wind supply are supplied to demand directly in the

winter and are stored in the summer.
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Figure 4.5: Biogas allocation decisions in summer and winter.
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Figure 4.6: Wind allocation decisions in summer and winter.
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4.5.5 Sensitivity analysis

Since the optimal shares calculated for each renewable may not reflect real-life

opportunities, we tested the sensitivity of our findings for several alternatives.

First we ran experiments in which biogas was limited and excluded. Second,

we examined whether a smooth relationship between the wind share and total

production affects storage requirements compared with the optimal solutions, which

appear to be non-smooth (see Fig. 4.8). In doing so, we ran experiments in which we

controlled wind production so that it followed a smooth function. Finally, we ran

experiments in which wind was excluded.

Excluding or limiting electricity from biogas

In this analysis, we first exclude biogas and examine the sizes and storage

requirements of solar and wind energy. Second, we limit the size of biogas to 371 kW,

which corresponds to 20% of the total annual energy demand. The supply of biomass

is limited in practice.

The red and blue curves in Fig. 4.7 show the relationships between storage and

production capacity when biogas is excluded and when it is limited to 20% of

demand, respectively. The green curve portrays the storage and production for the

original experiments where all sources are included.

The red curve in Fig. 4.7 shows that when biogas is excluded, both a relatively

high total production capacity and a relatively high storage capacity are needed

compared with the case when all sources are included (the green curve). The lowest

possible total production capacity with biogas included is 116% of demand and

requires a storage capacity of 9%, whereas the lowest possible total production level

without biogas is 169% and requires 16% storage capacity. This shows that relying

solely on wind and solar energy requires much higher total production and storage

and emphasizes the importance of constant profiles in the energy mix in matching

supply and demand.

The blue curve in Fig. 4.7 shows that including a limited supply of biogas (20%

of demand) reduces storage requirements compared with the case when biogas is

completely excluded. When the biogas supply is limited, the lowest possible total

production capacity is 155% and requires a storage capacity of 14%. This shows that

adding a limited supply of biogas to the energy mix effectively reduces storage and
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production requirements.

Figure 4.7: Storage capacity requirements and total energy generated (percentage of
demand) when biogas is either limited or excluded.

Smooth wind sizes and excluding wind

As the non-smooth optimal pattern of wind shares reflected in Fig. 4.3 is difficult

to translate into a simple rule, we checked the relevance of small increases or

decreases of the optimal wind share in avoiding storage. We conducted additional

experiments in which the wind sizes (k1) were fixed for every value of C, such that

the relationship with wind sizes and total production was smooth, up to a total

production level of 129% by using a truncated sine function (see Fig. 4.8). Moreover,

we also ran experiments in which wind was excluded from the energy mix, in order

to examine the extent to which the variable wind profile provides an advantage in

reducing storage requirements.
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In Fig. 4.8, the red curve indicates the wind production levels of the optimal

solutions, and the green curve indicates the wind production levels that were fixed

for the different values of C. In Fig. 4.9, the blue curve shows the storage and total

production levels for optimal wind sizes, and the green curve illustrates the storage

and production relationship in which wind production was smoothed according to

Fig. 4.8. The red curve in Fig. 4.9 shows the production–storage curve when wind is

excluded.

Fig. 4.9 shows that the curves for the optimal and smooth wind sizes are very

similar. The non-smooth behavior of the wind production levels in Fig. 4.3 could

be attributed to the presence of multiple near-optimal solutions. This also suggests

that a smooth wind size curve can be used when specifying rules to determine

appropriate wind sizes for different total production levels. In a practical setting,

this enables the percentage of wind production needed for a certain total production

level to be determined more easily, since a deviation from the optimal wind size

may still lead to a very good solution. The red curve in Fig. 4.9, in which wind

is excluded, shows that overall storage and production requirements are slightly

higher than when wind is included. This confirms that including wind according to

the wind size curves in Fig. 4.8 enables reduced storage and production requirements

compared with relying solely on solar energy and biogas. However, excluding wind

gives less of a burden than even partly excluding biogas as analyzed in Section 4.5.5.

Different years of wind and solar energy

We examined the sensitivity of storage requirements for different years of solar and

wind supply ranging from 2009 to 2016. In the original experiments, the optimal

sizes of each renewable were determined for 2009 for each value of C. These sizes

were fixed for the remaining years. This allowed insight to be obtained into the ways

in which storage requirements differ for each year when the production capacity

decisions for each source are based on the wind and solar energy profiles of a single

year.

Fig. 4.10 illustrates the storage requirements on the y-axis plotted against the

total production levels for 2009 on the x-axis. Each curve represents the storage

requirements for a different year.

Using Fig. 4.10, we derive the following. First, storage requirements for all

years are similar when total production levels are at the lowest feasible production
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Figure 4.8: Optimal and fixed smooth wind sizes (as percentage of production levels
of demand) for different total production levels.

level. For total production levels between 116% and 130%, differences in storage

requirements are substantial. At a total production level of 121%, the greatest

difference in storage requirements is 3 percentage points of demand. This implies

that 2010 would have 1.85 times the storage needs of 2015. For total production levels

exceeding 130%, differences in storage requirements appear to converge. This is due

to an abundance of energy availability. Accordingly, storage capacity differences

between each year are negligible for the lowest total production levels and for

relatively high total production levels above 140%. In between, the substantial

differences in storage needs require a sufficient safety margin when the decision is

made to install a certain storage capacity.

Even though the production capacities for each source and year were fixed at

the optimal sizes for 2009, it was still assumed that the operational decisions in

the remaining years could be be optimally determined in advance. However, in
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Figure 4.9: Relationship between storage and production levels for optimal wind
sizes, fixed smooth wind sizes (see Fig. 4.8) and excluding wind

practice, the uncertainties associated with wind and solar energy supplies preclude

such optimal decisions. Therefore, the differences in storage requirements between

different years may be even larger in practice when the optimal operational decisions

cannot be determined in advance.

4.6 Conclusion

The transition from fossil fuels to cleaner forms of energy presents challenges related

to matching fluctuations in supply and demand, and determining in which form

energy should transported from producers to suppliers. In transitioning to an

energy supply characterized by a high share of renewables, the mismatch between

supply and demand at a community level creates storage and production needs.

This study investigated the relationship between storage and production capacity
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Figure 4.10: Storage capacity requirements and total energy generated (percentage
of demand) for wind and solar energy in different years of (experiment set 6).
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by examining how different renewables with their specific supply profiles can be

mixed in order to minimize storage and production requirements. Considering

which mix of renewables to install is important in avoiding unnecessary storage and

production.

It was found that the capacity size, the share and the operational decisions of each

renewable that should be installed are dependent on the combination of storage and

production capacity. The results indicate that, based on Dutch data, the variable

production profile of solar energy is least suited to supply demand compared

with wind or biogas, resulting in zero shares for the experiments conducted. This

is due to the unavailability of solar energy at night and the seasonal mismatch

between solar supply and demand. The optimal sizes and the roles of wind and a

constant source such as biogas change for different total production levels. For small

production levels, biogas can supply both peaks and base-load, leading to relatively

high storage requirements in which mostly biogas is stored. For higher levels of

total production, the optimal share of wind production increases, because some

excess production allows for curtailment of unfortunately timed wind peaks, which

allows substantial reductions to be made in storage requirements. Curtailing wind

peaks after inventory has reached zero levels allows postponement of inventory

accumulation that is needed to bridge the seasonality gap in supply and demand

before the summer. Wind then supplies peaks in demand, whereas biogas provides

base-load levels of demand. For very high total production levels, exceeding 130%

of demand, the high energy availability favors biogas for supplying all levels of

demand.

These amounts of biogas might not be available in practice. The results show that

excluding or limiting a constant source such as biogas in the energy mix leads to 1.8

or 1.6 times as much storage capacity, respectively, at the lowest total production

levels. This indicates the importance of constant supply profiles in the energy

mix. Furthermore, the inclusion of wind is beneficial in minimizing storage and

production combinations. Excluding wind from the energy mix slightly increases

storage requirements.

Experiments with multiple years of wind and solar energy suggest that, in

the range of total production between 116% and 130% of demand, differences in

storage requirements are substantial and amount to 3 percentage points of annual

demand. Storage needs are likely to be even larger when operational decisions
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are not optimal owing to uncertainty of wind and solar energy supply in practice.

Therefore, significant additional storage capacity is necessary when deciding on a

combination of production and storage capacity to accommodate changes in wind

and solar energy supply for different years.

It important to note that these conclusions are specific to the Dutch situation and

might be different in other countries due to differences in weather and the resulting

renewable energy production levels.
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Chapter 5

Strategic seasonal hydrogen

storage for renewable energy

producers

Abstract. We consider a profit-maximizing renewable energy producer operating in a rural area with

limited electricity distribution capacity to the grid. While maximizing profits, the energy producer is

responsible for the electricity supply of a local community that aims to be self-sufficient. Energy storage

is required to deal with the energy productions’ uncertain and intermittent character. A promising,

new solution is to use strategic hydrogen reserves. This provides a long-term storage option to deal

with seasonal mismatches in energy production and the local community’s demand. Using a Markov

decision process, we provide a model that determines optimal daily decisions on how much energy to

store as hydrogen and buy or sell from the power grid. We explicitly consider the seasonality and

uncertainty of production, demand, and electricity prices. We show that ignoring seasonal demand

and production patterns is suboptimal and that introducing hydrogen storage transforms loss-making

operations into profitable ones. Extensive numerical experiments show that the distribution capacity

should not be too small to prevent local grid congestion. A higher storage capacity increases the number

of buying actions from the grid, thereby causing more congestion, which is problematic for the grid

operator. We conclude that a profit-maximizing hydrogen storage operation alone is not an alternative

to grid expansion to solve congestion, which is essential knowledge for policy-makers and grid operators.



116 Chapter 5

5.1 Introduction

Renewable energy sources have become increasingly popular. For example,

renewable energy production in the EU has increased from 9.6% in 2004 to 18.9%

in 2018 (Eurostat, 2020). However, seasonality mismatches between supply and

demand are among the main challenges that should be dealt with to facilitate growth

in renewable energy production. Large solar parks tend to be located in rural areas

where land is relatively cheap, even though the electricity grid infrastructure is

often limited. This typically causes cable congestion at the location where the solar

park is connected to the grid, which causes outages, grid balance problems, and

affects operational costs of the electricity grid (Vargas et al., 2014; Kumar et al.,

2005). The high peaks of solar energy production in summer often cause cable

congestion, which may inhibit the installation of new solar parks. For the grid

operator, designing electricity grids that can accommodate location-specific energy

generation and do consider physical constraints is a challenging task Märkle-Huß

et al. (2020).

Connecting hydrogen storage to solar parks is a promising method to spread

the feed-in to the electricity grid throughout the year, thereby mitigating cable

congestion in the summer (Alanne and Cao, 2017b). It is also suitable as a

long-term and strategic buffer to alleviate seasonal mismatches in production and

local electricity demand.

Owners of solar parks with hydrogen storage (SPH) facilities connected to

an external electricity grid face variable electricity prices as a result of market

mechanisms to balance the grid, match supply and demand, and reduce congestion.

For example, location-specific (nodal) electricity prices are a solution to reduce

grid congestion caused by renewable energy sources (Papaefthymiou and Dragoon,

2016). Furthermore, time-of-use tariffs are expected to become more common since

these provide advantages to grid operators in alleviating expected congestion Soares

et al. (2020). The resulting market mechanisms facilitate the re-dispatching of energy

production by stimulating additional production in areas without congestion and

reducing production in areas of congestion by using nodal or zonal prices (Wang

et al., 2017). Electricity prices are also determined by other factors such as congestion

in other areas of the grid, the balancing market, and supply and demand at the

national level. As a result, facility owners’ electricity prices are stochastic and
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uncertain. This requires SPH facility owners to take into account these stochastic

prices to maximize their profits.

Electricity generated by solar parks directly supplies a local electricity demand

of connected households in a rural area. Excess-produced electricity can also be fed

to the electricity grid or stored in a nearby hydrogen storage location. The local

consumption of the generated electricity avoids energy-transportation over long

distances. It enables fulfilling a local electricity demand of households who require

a stable supply of green electricity and desire to be self-sufficient. The electricity

demand of consumers and solar energy production is characterized by differences in

seasonality (Arora and Taylor, 2016; Boland, 2020). The confinement of the produced

energy in the area of generation, seasonality differences in supply and local demand,

and variable electricity prices have significant consequences for the facility owner’s

decision to store energy and the resulting congestion levels at the cable connection

observed by the grid operator. Efficient long-term strategies that determine when

energy is stored as hydrogen and sold to or bought from the electricity grid are vital

in achieving successful renewable energy penetration. Since hydrogen storage is

characterized by relatively high investment costs and limited conversion efficiencies,

these strategies become even more critical in enhancing the economic viability of

hydrogen storage.

This paper focuses on a profit-maximizing SPH facility that faces daily decisions

on how much hydrogen to store, how much electricity to buy from and sell to the

grid while providing a local electricity demand of connected households with a

stable supply of green electricity. While our primary focus is on the SPH facility

owner, we also investigate the congestion levels at the cable connection from the

grid operator’s perspective due to the SPH owner’s profit-maximizing decisions.

The decision to store energy by the SPH facility owner is affected by the presence

of seasonality in supply and demand. It is also dependent on the level of solar

energy production, the amount of local electricity demand, the amount of hydrogen

in storage, and the current electricity price. Additionally, solar energy production

levels, electricity demand, and prices in the future are uncertain. For example, even

though solar energy production can be predicted rather accurately for several days in

advance, specific days’ solar energy production levels are uncertain when predicted

for more extended periods, such as months. As a result of seasonal patterns, solar

energy production and electricity demand’s stochastic behavior is time-dependent.
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These aspects affect storage decisions throughout the year. A Markov decision

process formulation is proposed to obtain optimal policies for the above problem.

Although we take daily aggregated decisions that ignore intra-day fluctuations,

it does not affect our long-term strategic focus for which hydrogen storage is

most suitable. Namely, inspired by practice, we assume that a battery handles

the intra-day fluctuations so that, from a technical perspective, the electrolyzer is

provided with stable loads to maximize its conversion efficiency.

We make the following contributions. Firstly, we identify the characteristics

of optimal storage policies for solar field operators with hydrogen storage. These

policies differ from short-term battery storage policies due to seasonality effects,

annual timescales, and hydrogen storage for long-term and strategic energy storage.

The policy characteristics include price thresholds for each period which depend on

the inventory level, price, and net production after demand. Secondly, we show how

the facility owner’s profit-maximizing decisions either solves or creates congestion

problems for the grid operator, which occur at the cable to which the solar park

is connected. This results from selling or buying-related decisions depending on

the cable distribution capacity and includes the actions taken during overages and

shortages throughout the year. Thirdly, we indicate how different combinations of

storage and distribution capacity affect these decisions. Next, we analyze profits,

congestion levels, and electrolyzer utilization by highlighting the trade-off between

profits for the facility owner and congestion levels for the grid operator. Finally, we

show how conversion losses and differences between selling and buying prices affect

these results.

Results show that the optimal policies are characterized by price thresholds

that separate different types of actions. These include buying the maximum

possible quantity, selling exact overages or buying exact shortages, storing overages

or obtaining shortages from storage, or selling the maximum amount possible.

For the grid operator, congestion at the cable connection is mostly caused by

buying-related actions in winter. These buying-related actions cover potential future

shortages when distribution capacity is constrained. For higher distribution capacity

levels, congestion is mostly caused by selling-related actions of the overages in the

summer. While it may be expected that storage enables reducing congestion at

cable connection, increased levels of storage capacity negatively affect congestion.

This is because storage enables increasing buying-related actions to prevent future
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shortages and exploit price differences. We found that the grid operator’s price

markups on the selling price effectively reduce local congestion. Results also indicate

that a lower electrolyzer utilization (resulting from a large capacity) is associated

with higher profits than a low electrolyzer capacity (with a higher utilization rate).

Hence, a high utilization level of the electrolyzer is not necessarily an indication of

improved feasibility. These results highlight that, while high levels of storage and

electrolyzer capacity lead to higher revenues for the SPH facility owner, they do not

solve congestion or peak utilization at the cable connection for the grid operator

when the facility owner aims to maximize profit. Therefore, the facility owner

should refrain from profit-maximizing trading with the grid. The grid operator

needs to expand distribution capacity and impose price markups on the selling price

to mitigate local congestion.

The remainder of this paper is organized as follows. A literature review is

presented in Section 6.2. Section 6.3 describes the problem and Section 5.4 formulates

a model. Section 5.5 provides an overview of the calibration of the parameter settings

and the base case system that we consider. Section 5.6 provides a sensitivity analysis

of key performance indicators based on the parameter settings of each of the system

elements’ capacities. Section 6.6 provides concluding

5.2 Literature review

The existing literature has mostly addressed energy management strategies in which

the owner of an energy storage device decides when to buy or sell energy from

or to the grid. For a detailed review of energy management decisions for electric

storage systems, we refer to Weitzel and Glock (2018) and Zakaria et al. (2020). While

seasonality differences between supply and demand are important characteristics of

renewable energy systems, most papers focus on intraday and day-ahead buying

and selling decisions using battery storage for short planning horizons and small

discretization levels. In contrast, our approach focuses on hydrogen storage

decisions for longer planning horizons covering seasonality during a year. We take

into account limited electricity grid distribution capacity that supports the need for

local storage. Seasonal patterns in supply and demand, limited grid infrastructure,

and electrolyzer and fuel-cell constraints all affect storage decisions.

The literature on energy management decisions optimizes grid interactions using
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storage by treating supply levels as deterministic (Dufo-López, 2015; Zhang et al.,

2017; Pelzer et al., 2016) or by optimizing the buying, selling, or storage decisions

in which the uncertainty of the generated renewable energy is taken into account

(Jiang and Powell, 2015b,a; Shin et al., 2017; Grillo et al., 2015; Hannah and Dunson,

2011; Hassler, 2017; Gönsch and Hassler, 2016; Keerthisinghe et al., 2019). Literature

on energy procurement decisions without storage include Wang and Deng (2019)

and Woo et al. (2006). For example, Wang and Deng (2019) analyze an energy

procurement problem for a centralized energy aggregator that can control both

procurement and consumption within a 24-hour planning horizon in which wind

energy is generated. From the perspective of a grid distribution operator, Woo et al.

(2006) address the energy procurement decisions of a grid distributor that need to

balance procurement risks and expected costs. Regarding prices, Densing (2013);

Zhou et al. (2019); Jiang and Powell (2015b,a); Hassler (2017) specifically take into

account stochastic electricity prices, whereas Keerthisinghe et al. (2019); Steffen and

Weber (2016); Grillo et al. (2015); Shin et al. (2017) treat these as deterministic. These

studies are explained in more detail below.

Studies that jointly optimize the use of storage and the decision to buy from or sell

to the grid mostly focus on detailed intra-day decisions (Jiang and Powell, 2015b,a;

Shin et al., 2017; Grillo et al., 2015; Hannah and Dunson, 2011; Hassler, 2017; Gönsch

and Hassler, 2016; Keerthisinghe et al., 2019). For example, Jiang and Powell (2015b)

address the arbitrage problem with energy storage to place bids in an hour-ahead

spot market. Grillo et al. (2015) optimally schedule batteries with renewable energy.

Hassler (2017); Gönsch and Hassler (2016) optimize energy arbitrage decisions for

short time horizons within one day and time intervals of 15 minutes. Keerthisinghe

et al. (2019) develop energy-storing policies for a battery in a residential home within

single days. In contrast, Shin et al. (2017) have addressed the problem for both

intraday and yearly planning horizons. Zhou et al. (2019) address the energy storage

arbitrage problem within a week for 5-minute periods. They address seasonality by

using specific parameter settings for each week that is solved. While these papers

all address detailed arbitrage and storing decisions for batteries and short time

horizons using batteries, none of them consider hydrogen, which is seen as a more

viable option for long-term storage. Most papers also do not provide an integrated

approach to address the issue of seasonality over one year.

The related literature on energy storage and arbitrage that has included
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transmission or distribution capacity constraints is relatively scarce. Fertig and Apt

(2011) investigate the economics of pairing a wind farm with compressed air energy

storage and limited transmission capacity. They use heuristic control policies to

decide on buying and selling to the grid. Most work that incorporates transmission

constraints focuses on energy storage planning from a strategic perspective rather

than an operational perspective. For example, Babrowski et al. (2016) optimize

storage planning for the German electricity sector while including transmission

constraints. Wang et al. (2017) examine to what extent transmission congestion

affects the profitability of arbitrage by energy storage, including transmission

constraints. Jorgenson et al. (2018b) analyze to what extent transmission or storage

can assist in reducing curtailment.

To the best of our knowledge, Zhou et al. (2019) and Gönsch and Hassler (2016)

are the only papers that have included transmission constraints in focusing on the

operational decision of when to buy, sell or store. They have addressed wind-based

electricity with co-located storage. However, their numerical study encompasses

only one week and does not consider hydrogen storage, which would become

relevant for longer terms. To the best of our knowledge, the seasonal effects related

to production, demand, and nodal prices of large-scale renewable energy generation

and storage have not yet been considered.

5.3 Problem description

We consider a profit-maximizing renewable energy producer using a photovoltaic

(PV) system (i.e., solar panels) who is also the owner of a hydrogen storage facility

and is responsible for satisfying local electricity demand. For instance, it may form a

self-sufficient community together with a small village. The energy producer can

also sell or buy electricity from the electricity grid, and the co-located hydrogen

storage is used to store electricity in the form of hydrogen temporarily. We consider

a time horizon T that resembles a complete year, and each period t ∈ T resembles

a single day. Figure 5.1 provides a graphical overview of the considered system

Flaticon (2020). The left side of Figure 5.1 shows the solar energy producer and the

hydrogen storage facility, and the right side shows the local electricity demand and

electricity grid connection. Our goal is to decide upon when and how much to 1)

sell and buy electricity from the grid, 2) store or consume hydrogen from our local
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storage to satisfy local demand and maximize profits. We assume the owner of the

storage and PV facilities and the households are connected to the grid through an

external connection and are the single users of this connection.

Solar energy production

Hydrogen storage capacity

Local electricity demand

Electricity distribution capacity k� 

k⁺ 

Producer

D
t

Y
t
 

m

Electrolyzer capacity

k⁻ Fuel cell capacity

Figure 5.1: Visual representation of the studied system

In the following, we describe our system in detail. Table 5.1 provides an overview

of all the parameters and variables.

The installed capacity of solar energy production in MWp is assumed constant

throughout the year and denoted by w. Solar energy production per day is a

random variable Yt, where the dependency on the period follows from seasonal

differences in energy production throughout the year. Local electricity demand

is denoted by the random variable Dt and is normally distributed with mean µt

and a period-independent standard deviation σ. As it is optimal to satisfy local

demand with local supply of solar energy (this comes at no cost), we assume that

the produced electricity Yt is first used to supply the local demand Dt. We then

convert our production and demand process in a net solar energy production level

Ȳt = Yt − Dt. The net solar energy production per day Ȳt can then be modeled via

a truncated probability distribution f ȳ(t) with a maximum of l+t in period t due to a

restricted installed capacity of solar energy.

Hydrogen inventory xt is held inside a hydrogen storage tank with energy

capacity m. The tank is filled using an electrolyzer with a maximum rate k+ at
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which energy can be stored per period and a conversion efficiency of α where α ≤ 1.

Moreover, the producer can obtain at most k− energy units per period from storage

due to a limited fuel cell capacity. The grid distribution capacity kc determines

the maximum electricity amount sold to or bought from the grid in each period.

Throughout this paper, capacities (except the installed solar energy capacity) are

defined as the maximum amount of energy per period that our system’s related

component can handle.

Electricity prices are stochastic and are modeled as an autoregressive AR(1)

process via Ct = θCt−1 + ξt, where ξt ∼ N(0, σc). Similar to Densing (2013) and

Zhou et al. (2019), we assume that the energy producer is sufficiently small so that it

is a price taker that cannot influence electricity prices. Since we explicitly consider

long-term strategic decisions, we assume that prices are exogenous, stochastic, and

therefore independent of the facility owner’s decisions. Consequently, solar energy

can be sold to the grid for Ct. The producer can also buy from the grid at a

price Ct + c+, where c+ ≥ 0 is a fixed price markup which the grid operator

imposes to discourage excessive selling to the grid. Similar mechanisms occur in

the Netherlands for example, in which annual net production differences sold to

the grid are priced at a lower level. As is commonly assumed, it is not possible to

simultaneously buy and sell from the grid (see, e.g., Zhou et al., 2019).

The solar energy producer makes the buying, selling, and storing decisions at the

end of each period t ∈ T . Since hydrogen conversion is associated with relatively

high conversion losses and electrolyzers perform better at stable loads, we assume

that a battery handles intra-day load fluctuations of net production levels.

The storage owner’s objective is to maximize the expected future profits related

to interacting with the electricity grid during the planning horizon. The decisions

made in each period affect the total profit. These decisions have to satisfy several

detailed constraints and depend on the system’s state at the end of a period. We

discuss these aspects in the next section.

5.4 Markov Decision Process Formulation

We formulate our problem as a Markov decision process (MDP). We first describe

our state and action spaces, and the constraints upon them. We also specify our

reward function. We then discuss how we discretized our state and action spaces,
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Table 5.1: Sets, parameters and state variables

Sets

T Set on the number of periods T = {0, . . . , T}

Parameters

w Installed peak capacity of the solar park (MWp)
l+t Maximum amount of solar energy that can be generated (MWh) in period t
m Maximum hydrogen inventory level (storage capacity, MWh)
kc Maximum load sent to the grid per period (distribution capacity, MW)
k+ Maximum load at which energy can be stored per period (electrolyzer capacity, MWh)
k− Maximum load from storage to electricity per period (fuel-cell capacity, MWh)
c+ Price markup added to the selling price for buying energy from the grid
α Conversion efficiency to storage
s Penalty per unit of unmet demand

State variables

ȳt Net production realization after demand (MWh) in period t
ct Prevailing selling price of electricity in period t
xt Inventory level (MWh) in period t

Stochastic variables

Yt Solar energy production in period t
Ȳt Net production level after demand in period t
Ct Electricity prices in the local spot market in period t
Dt Local electricity demand in period t

and formally define our MDP which we solve via backward dynamic programming.

5.4.1 State and action space

At the end of period t, we observe an inventory level xt, the current and previous

price level ct and ct−1 and net production level after demand ȳt. The price ct−1 is

included in the state because we consider prices to be an autoregressive process. The

transition probability between states also depends on the price level in the previous

period. Let St(ȳt, xt, ct, ct−1) ∈ S be the state of our system in period t. We write

S for the state space. For each state St ∈ S, we define the action u(St) ∈ R as the

number of energy units to buy from or sell to the grid at the end of period t. Negative

values represent the number of energy units to buy from the grid.

The action u is bounded by the characteristics of the state St. It is most easily

described if we consider the range of actions [−umin(St), u
max(St)]. Here, umin(St) ≥

0 denotes the maximum amount of energy bought from the grid at the end of a

period, and umax(St) ≥ 0 denotes the maximum amount of energy that can be sold

to the grid at the end of a period. In the following, we describe for each state St ∈ S
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how to obtain umin(St) and umax(St).

The maximum amount of energy that can be bought umin(St), for all St ∈ S is the

largest value which must satisfy three constraints such that

umin(St) ≤ kc (5.1)

umin(St) ≤ (m− xt)/α− αmax{0, ȳt} −min{0, ȳt} (5.2)

umin(St) ≤ k+ −max{0, ȳt}. (5.3)

These constraints ensure that the distribution capacity is respected, that we do

not store more energy than fits in the storage tank, and that the electrolyzer capacity

is respected. The minima and maxima within these constraints ensure correctness

in case of net overages and shortages. The maximum amount of energy that can be

sold umax(St), for all St ∈ S is the largest value such that

umax(St) ≤ kc, umax(St) ≤ xt + ȳt, umax(St) ≤ k−, (5.4)

which indicates that the cable distribution capacity should be respected, that we can

sell at most the inventory we have plus the net overage, and that the fuel cell capacity

should be respected. Note that these actions allow for unmet demand, in case ȳt < 0.

We, therefore, introduce a penalty s per unit of unmet demand that represents a very

large negative number to avoid this could happen under any optimal policy. The

action space U can then be defined as

U =
{[
−umin(St), u

max(St)
]
| St ∈ S, s.t. (1) and (2), t ∈ T

}
. (5.5)

The reward r(u(St)) of taking action u(St) is the sum of the revenues and costs

during period t as a result of interacting with the grid. It is defined as

r(u(St)) = u(ct + I{u≤0}c
+) + I{xt+1|u<0}s, (5.6)

where I(·) equals 1 if (·) evaluates to true, and is 0 otherwise. Here, by slight abuse of

notation, we denote by xt+1 | u the hypothetical inventory level at time t + 1 given

action u(St). If that is negative, demand is unmet and penalty costs s are incurred.

Note that if energy is sent to storage, that is for any state St, −u + ȳt ≥ 0, the

amount of energy that is stored depends on the conversion efficiency α. To avoid
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numerical issues in the MDP implementation associated with conversion losses

for both charging and discharging and resulting fractional numbers, we directly

calculate the round-trip conversion losses when sending energy to storage, which

is exact.

5.4.2 Discretization

For the numerical analysis, we need to discretize the state space. We discretize the

amount of hydrogen inventory, the net production throughout the year, and the

observed prices. We define X as the set of possible net inventory levels, where

∆xt represents the interval size of the inventory levels. The intervals to which

an action u belongs are split into equally-sized intervals which correspond to the

discretization of the inventory levels ∆xt. We denote the discretized set of actions

by U . The stochastic net solar energy production Ȳt is discretized according to ∆jt,

and electricity prices are discretized with ∆ct. Accordingly,

X = {0,∆xt, 2∆xt, . . . ,m}, (5.7)

Ȳt = {l−t ,∆jt, 2∆jt, . . . , l
+
t }, (5.8)

C = {0,∆, 2∆ct, . . . , C}. (5.9)

5.4.3 MDP for storing, buying from or selling to the grid

The selling and buying policies result in an inventory process over time in which

an immediate reward of r(u(St))) is earned after choosing an action at the end of

period t. The action is chosen after the solar production and electricity prices have

been fully observed at the end of a period. Therefore, the decision-maker knows

with certainty to which new inventory level the action will lead in the next period.

The future inventory xn−1 in period n− 1 with n = T − t can be defined as1

xn−1(u, ȳn) = xn +

 α(u+ ȳn) if u+ ȳn ≥ 0

u+ ȳn if u+ ȳn < 0.
(5.10)

1For readability, we ignore the case that inventory becomes negative, but this is trivially excluded by
taking the maximum of xn−1 and 0
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The transition probability pn−1(ȳn−1, cn−1, cn) is defined as the probability of net

production realization of ȳn−1 and a price realization of cn−1 in period n − 1 given

price cn in period n. Similar to Zhou et al. (2019), we assume that the underlying

stochastic processes are independent. We define V0(S0) as the total expected profit

at the end of the horizon with n = 0 periods to go. We assume that

V0(S0) = 0. (5.11)

For all other time periods in which n > 0, action u(Sn) ∈ U can be executed.

Accordingly, we define

Vn(Sn) = max
u(Sn)∈U

r(u(Sn)) +
∑
ȳn∈Ȳn

∑
cn∈C

pn−1(ȳn−1, cn−1, cn)Vn−1(Sn−1)

 .

(5.12)

Via backwards dynamic programming, Vn(Sn) can be obtained for

all periods-to-go n ∈ T . The associated optimal periodic policy

(u∗1(S1), u∗2(S2), . . . , u∗T (ST )) that minimizes long-term average rewards is then

obtained by iteratively applying backwards dynamic programming upon this

system, where V0(S0) is calculated according to equation (5.12) with Vn−1(Sn−1)

equal to VT (ST ) of the previous iteration (equaling zero for the first iteration).

Convergence to optimality is proven if all values Vn(Sn) change with the same value

(i.e., the long-run average reward) between iterations (Puterman, 2014).

5.5 Numerical Analysis

We start our numerical section by introducing a base-case system for which we

provide a detailed numerical analysis (see Section 5.5.1) and then describe how the

price and production processes are fitted (see Section 5.5.2). We end the section

by examining the optimal policy for the base-case system while focusing on the

differences between summer and winter. To provide a comparison for the viability

of the base-case system, we compare the optimal policy to a system without any

hydrogen storage options. A more extensive sensitivity analysis in which all system

parameters deviate one-by-one is postponed to Section 5.6.
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5.5.1 Base-case system

The experiments are based on a planned project of a rural village in the Netherlands

in which electricity needs are supplied by a solar park. It comprises a hypothetical

solar park with a peak capacity w of 5 MWp that is connected to a local electricity

grid in which the connection has a maximum load (kc) of 30 MWh per day (which

corresponds to 1.25 MW). Distribution capacities of 2.5 MW are common in practice

for lines that operate at the distribution (local) level rather than the (national)

transmission level. In our experiments, we set a more constrained distribution

capacity of 1.25 MW, to represent the situation in which the distribution capacity

is more constrained. We assume the solar park is connected to a 2.1 MW electrolyzer

and a 2.1 MW stack of fuel cells. For both the electrolyzer and fuel cell, this translates

to a maximum inflow (k+) and outflow (k−) to and from storage of 50 MWh per

day. Since only relatively small amounts (up to 16 MWh Bünger et al. (2016)) can be

stored inside pressurized vessels, we assume that hydrogen is stored in a co-located

large-scale storage location with a capacity of 1000 MWh. Moreover, we assume a

round-trip efficiency α of 0.5.

5.5.2 Fitting the price, production, and demand process

Day-ahead hourly wholesale electricity prices in euro/MWh in the Netherlands

between 2015 and 2019 are obtained from ENTSOE Transparency Platform

(ENTSOE, 2019). These prices are aggregated to daily prices using the intra-day

mean. We assume that the electricity prices which apply to the storage owner exhibit

similar behavior to wholesale day-ahead electricity prices.

The average daily day-ahead prices exhibited strong autocorrelation (0.872

for a time lag of 1). Moreover, weekly autocorrelation is observed in which

autocorrelation is stronger for weekly time intervals than for intra-week intervals.

For example, the autocorrelation decreases to 0.773 for lags up to 6 and jumps to

0.815 for lag 7, suggesting that weekday effects are existent. Seasonal effects are not

directly apparent from the data.

Inspired by existing approaches in literature (e.g., Zhou et al. (2019)), we test

three different AR(1) models of the form Ct = φ + θCt−1 + ξt, where ξt ∼ N(0, σc),

Ct is the predicted value, Ct−1 is the observation at t− 1, φ is a constant, and θ is the

AR term with a time lag of 1. First, we fit an AR(1) process to the daily electricity



Strategic seasonal hydrogen storage for renewable energy producers 129

prices in which both monthly and weekday effects are removed from the original

observations. Secondly, we fit an AR(1) process to prices in which only weekday

effects are removed. Thirdly, we fit an AR(1) process to the original observations. We

compare the models by evaluating the standard error of the estimate in relation to

the actual observations. The month day and weekday effects are removed similarly

as in Zhou et al. (2019). To evaluate the fit of the AR(1) models, the standard error

is calculated as
√∑T

t=2(Ct − Ĉt)2/T , where T is the number of periods and Ĉt =

φ+ θCt−1 + f ′(t) + ξt is the predicted price in period t. The seasonality effects of the

electricity prices are described by f
′
(t) which is defined similarly as in Zhou et al.

(2019). For the models in which monthly and weekday effects are removed from

the observations, the seasonality function incorporates monthly and weekday effects

f
′
(t) = γ1 + γ2

∑11
i=1D

2i
t + γ3

∑7
j=1D

3j
t , where γ1 is a constant, and γ2 and γ3 are

coefficients of dummy variables D2i
t and D3j

t related to monthly and weekly effects

respectively. These equal one if day t is in month i or in week j. The coefficients are

estimated using linear regression on the actual daily electricity prices. For models

1 and 2, the AR(1) process is fitted to the observations after the seasonality function

is subtracted. Because the standard error of the model which is fitted to the original

data is the lowest (7.7), as is given in Table 5.2, it is found to be unnecessary to include

the seasonality function. Since the aggregated data also shows no consistency in

seasonality effects throughout the 4 years, we do not include month and weekday

effects in our AR(1) process.

Table 5.2: AR(1) parameters and standard error

Model θ φ Std. error

1. Remove both month and weekday effects -0.004 0.89 37.7
2. Remove weekday effects -0.006 0.91 38.3
3. Fit to original data 5.23 0.87 7.7

To model the electricity demand in our base-case system, we assume that the

solar park and hydrogen fuel cells connect directly to a set of 1500 houses that are

responsible for the local electricity demand. We have obtained data on electricity

consumption from the society of the Dutch Energy Data Exchange (NEDU). The

data represents average electricity consumption levels per 15 minutes as a fraction

of the total yearly consumption level for 3001 measurements during the years 2016,

2017, and 2018. Since the data is highly aggregated, the data can be scaled to 1500
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households to represent our base-case system. We assume that one household on

average consumes 2990 kWh in electricity per year (Nibud, 2019). The scaled daily

consumption levels, as used in our base-case system, have a minimum of 9.9 MWh,

a mean of 12.3 MWh, and a maximum of 16.1 MWh per day.

The data exhibits a strong linear relationship with time in which the average

consumption levels follow a V-shape throughout the year. Accordingly, we split

the data into two subsets of observations and fit a linear regression to each subset.

The splitting procedure is based on minimizing the sum of the standard errors

for both models. According to this procedure, model 1 is based on day 1 to 199,

whereas model 2 is based on day 200 to 365. It is important to note that the splitting

procedure is not based on seasonality differences in demand, but on the day that

yields the lowest sum of the standard errors for both models. The fitted models are

displayed in Table 5.3. Since the original data is highly aggregated, we assume the

data is normally distributed (i.i.d.) with a daily average µt and a constant standard

deviation σ. Since the standard errors are relatively similar, we chose the highest

standard error of both models (σ = 0.62) as the standard deviation of electricity

demand in the experiments. The demand process can be written as Dt ∼ N(µt, σ).

Table 5.3: Linear models on electricity consumption

Model Intercept Slope σ

Day 1 to 199 15.3 -0.0302 0.62
Day 200 to 365 1.79 0.0372 0.55

We assume that the daily solar energy production levels are stochastic. For

each day, hourly solar energy production levels between 2005 and 2016 have been

obtained from PVGIS (PVGIS, 2016) and were aggregated to daily amounts. The

production levels correspond to an installed capacity of 5 MWp. The original data

is aggregated to daily production levels. For each week, the daily observations

within the week of 11 years were normalized to a range between 0 and 1 and fitted

to a beta distribution to increase the number of observations. Accordingly, daily

solar energy production levels are represented by shape parameters for each timer

period αt and βt. Hence, Yt ∼ B(αt, βt). Beta distributions are commonly used in

modeling daily solar energy production levels Ettoumi et al. (2002); Koudouris et al.

(2017). Similar to Boland (2020) and Soubdhan et al. (2009), we assume that Yt is

independent and identically distributed for each period.
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Figure 5.2: Optimal policies for winter (top) and summer (below) and for the first
(left) and third (right) quantiles of net production

5.5.3 Optimal Policy Structure

We solve the MDP associated with the base-case system employing backward

dynamic programming. As our states are dependent on the day of the year, we

consider 50 years. This is done for numerical certainty, in which this provides the

long-term average reward. The results presented correspond to the optimal policy

of year 0, and can be interpreted as the policy that maximizes long-term average

rewards (see, for a similar approach, Byon and Ding (2010)). Implementation is done

in C++17 and the MDP is solved on an Intel Xeon 2.5Ghz processor using 4 threads.

In the following, we discuss the structure of the optimal policy of the base-case

system. The performance of this policy is discussed separately in Section 5.5.4.

Figure 5.2 shows the optimal policies (i.e., the amount of electricity to sell to the

grid) for a period in the winter (Period 1) and in the summer (Period 2). For both
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periods, we present the optimal policies for the first and third quantile of the net

production distribution. On the x-axis, we show the observed electricity price and

the probability of occurrence. On the y-axis, we portray the inventory level of the

hydrogen storage facility. In this way, the four graphs represent a cloudy winter day

(top left), a sunny winter day (top right), a cloudy summer day (bottom left), and a

sunny summer day (bottom right).

From Figure 5.2, one can observe four different types of actions that are taken in

the optimal policy, in any of the depicted situations. First, if prices are relatively low,

the optimal policy prescribes buying as much electricity from the grid as possible.

Second, if prices start to increase, it is best to buy or sell the observed net production.

Third, dependent on the actual day of the year, it might be optimal to not buy or sell

electricity from the grid, as long as enough inventory is on hand. Fourth, if prices

are high enough, it is best to sell as much electricity as possible. We observe that the

action to not interact with the grid (u = 0) takes place for relatively low prices in the

summer and high prices in the winter. In the summer, ”no interaction” is optimal

for relatively low price levels and the net production is then converted to hydrogen.

In the winter, net shortages are fulfilled by converting hydrogen to electricity, which

also avoids interaction with the grid.

To better understand how the optimal policy differs throughout the year,

Figure 5.3 presents the optimal action as a function of time and the inventory level

for the 25% net production percentile and the two price levels (ct = 20 and 60).

Figure 5.4 does the same for the 75% net production percentile. The action is

represented as the resulting change in inventory level.

We observe that the change in inventory has a period-dependent threshold. In the

summer (the middle part of both pictures), the inventory at which optimal actions

lead to an inventory increase is lower than in the winter, due to oversupply of

electricity in the summer and shortages in winter. The inventory levels at which

these thresholds occur are similar for both low and high net production levels.

Figure 5.4 shows that inventory-increasing actions are also prevalent in summer

when prices are low (i.e., ct = 20). This indicates the prevalence of seasonal effects

in the optimal policies.

This behavior can be attributed to the following dynamics. Early in the year,

a higher probability exists of encountering future electricity shortages than later

in the year. Therefore, energy is stored at times of low prices early in the year
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Figure 5.3: Optimal policies as the change in inventory (∆xt) for a low price (ct = 20,
top) and high price (ct = 60, below), and a net production percentile of 25%

to enable accumulating sufficient inventory for moments of shortages later in the

year. Furthermore, buying decisions made early in the year facilitate the potential to

benefit from price differences later in the year. These dynamics will be explained in

more detail in Section 5.5.4.

5.5.4 Optimal Policy Performance

We simulate the optimal policy of the base-case system for a total of 1,100,000 years,

using the first 100,000 years as a warm-up for the simulation. Key performance

indicators are given in Table 5.4. As a benchmark, we also provide the statistics

of our base-case system if no hydrogen storage is available (BM1), and in case the

optimal policy for a yearly average, constant net production (i.e., ignoring seasonal

effects) is applied to our base-case system (BM2). Our key performance indicators

are mean profits, electrolyzer utilization, and the mean percentage of the time
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Figure 5.4: Optimal policies as the change in inventory (∆xt) for a low price (ct = 20,
top) and high price (ct = 60, below), and a net production percentile of 75%

in which congestion occurs at the cable connected to the solar park. Similar to

Cretı̀ and Fontini (2019), we define congestion as the event in which the amount

of electricity sent to or obtained from the distribution grid equals the distribution

capacity to which the supplier or consumer, in this case, the solar park with storage,

is connected. Accordingly, the mean percentage of time congestion is measured

as the mean percentage of time in which selling or buying energy equals the grid

distribution capacity. The electrolyzer utilization is given as the percentage use of its

full capacity.

Table 5.4: Summary statistics reference case

KPI Base-case system BM1 (no storage) BM2 (ignoring seasonality)

Mean profit per year 6579.4 -4060.5 6387.0
Mean electrolyzer utilization (%) 22 - 22.4
Mean % time congestion (%) 8.6 - 8.8
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From Table 5.4, we observe that adding storage increases mean profit per year

from -4060.5 to 6579.4. It is also clear that ignoring seasonality is suboptimal, as the

mean profit per year decreases by 2.9% comparing BM2 to the base-case system.

The mean electrolyzer utilization denotes the amount of electricity converted to

hydrogen given that the electrolyzer is used. It increases 1.6% when we ignore

seasonality. The mean percentage of time the cable is used to its full capacity,

reflecting situations in which congestion occurs at the cable to which the solar park

is connected, equals 8.6% and 8.8% for the base case and when ignoring seasonality

(BM2), respectively.

We further detail the expected fraction of times over all observations in which

particular actions are taken throughout the year. In Figure 5.5, we detail these actions

for a net overage (a) and a net shortage (b). Note, all the actions (i.e., curves) together

in (a) and (b) sum up to 1.

Given a net shortage, the red points indicate the fraction of times less than the

shortage is bought while the remainder is obtained from storage. The green points

indicate that more is bought than the shortage while the remainder is stored. The

blue points indicate the fraction of times the exact amount of the shortage is bought.

The purple points indicate that more inventory is sold than the shortage. Given a net

overage, the red points indicate the fraction of times exactly the net overage is sold.

The green points indicate the fraction of times the overage is sold plus additional

inventory. The blue points indicate the part of the overage that is sold while the

remainder is stored. The purple points indicate the fraction of times the overage is

stored and additional inventory is bought.

In the case of a net overage for the base-case system, the red points in Figure 5.5

(a) show that policies in which exactly the overages are sold to the grid are most

prevalent. These follow the seasonality pattern associated with solar electricity

production and occur most frequently at 69% of the time in the summer. Policies

in which additional electricity is sold out of storage are associated with exploiting

price difference possibilities. These are the least common during overages and are

highest in summer occurring 5% of the time. Selling less than the overage is also

not a common strategy and occurs maximally at 7.7% of the time. This indicates that

storage is not used frequently in cases of overages. This also suggests that excess net

production can at best be sold directly to the grid to avoid conversion losses when

using storage, even at low prices.
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For cases of net shortage in Figure 5.5 (b), occurrences in which the exact shortage

is bought from the grid are most prevalent. The blue points show that the fraction

of times the exact amount of the shortage is bought follows an inverse pattern

compared to policies in which exactly overages are sold during net overages. These

are highest in winter up to 79% and lowest in summer down to 5%. Other policies

are very uncommon for the conducted experiments.

Even though these policies are relatively uncommon, the less frequent action

types that include not simply selling or buying net production differences, are

important for the feasibility of a solar park in rural, possibly congested, areas.

For instance, in The Netherlands, it is not allowed to install a solar park with a

maximum capacity higher than the distribution capacity, even peaks only occur on

clear summer days. The results presented in Figure 5.5 indicate that using a storage

facility will not interact structurally different from a classic solar park without

storage, only its distribution capacity is limited. These are exactly the moments

when the less-frequent actions depicted in Figure 5.5 play an important role to keep

the base-case system feasible. This includes the ability to exploit price differences

and to fulfill shortages at times when prices are high. As can be seen in Table 5.4,

a solar park without a storage facility (connected to local electricity demand) yields

negative mean profits when demand needs to be solely fulfilled from the electricity

grid.

5.6 Sensitivity Analysis

We further investigate the performance of our system, using the key performance

indicators already presented in Section 5.4. We first investigate the impact of

changing the distribution capacity (Section 5.6.1) and afterward discuss the impact

of the storage capacity on the performance of the system (Section 5.6.2). For the

distribution and storage capacity, we also provide insights into the interaction with

the grid, as this is relevant for future solar park owners and legislators due to its

relation to grid congestion issues. We end this section by concisely showing the

impact of changing the electrolyzer capacity, conversion efficiency, price mark-up,

and production capacity in Sections 5.6.3-5.6.6. In each section, we only vary the

parameter that is being discussed and set the other parameter values equal to the

base-case system.
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Figure 5.6: Summary statistics and distribution capacity (kc)

We vary the distribution capacity between 1 MWh to 80 MWh per day, which
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corresponds to 0.04 to 3.3 MW. In Figure 5.6, we see that the mean profit increases

for larger distribution capacities, between 4 MWh and 80 MWh per day, because our

system becomes less constrained. Distribution capacities below 4 MWh per day are

infeasible for our parameter settings, due to unmet demand.

Low distribution capacities up to 10 MWh per day lead to negative profits, which

is due to the limited possibility to exploit price differences as local demand should

always be satisfied first. For increasing distribution capacities, the electrolyzer

utilization increases up to 36.8%. This due to the exploitation of price differences.

If prices are low, electricity is bought from the grid to sell it again when prices are

high. Finally, the percentage of the time the distribution capacity is fully utilized

with congestion at the connected cable approaches 0%, which is expected since the

distribution capacity is then only constraining the system for high net production

overages.

Figure 5.7 (b) (bottom) shows the fraction of times in which the amount of energy

bought equals the distribution capacity for different levels of distribution capacity.

We label this event as buying-induced congestion that takes place at the connection

with the electricity grid. Figure 5.7 (a) (top) shows the fraction of times in which sold

energy equals the distribution capacity, causing selling-induced congestion.

Figure 5.7 shows that relatively low levels of distribution capacity (e.g., kc = 5)

cause a combination of buying-induced and selling-induced congestion. This is the

result of preventing future shortages and exploiting price difference opportunities.

Both types of congestion follow a seasonal pattern. Whereas buying-induced

congestion is highest in the winter months, selling-induced congestion is highest

in the summer. This can be attributed to net production shortages that occur in the

winter and net production overages that occur in the summer. In line with the results

in Figure 5.5, this indicates that selling net overages and buying net shortages from

the grid is a preferred action in general.

When the distribution capacity becomes larger (i.e., kc = 10), more

selling-induced congestion occurs since the optimal policy is less impacted by

possible shortages in winter. Consequently, less energy is stored and more energy

is sold to exploit price differences. Buying-induced congestion simply decreases

for higher distribution capacities as the distribution capacity becomes less-often

the limiting factor when net-shortages occur. When capacity increases even more

(i.e., kc = 20, 60), the occurrence of both types of congestion decreases, as the
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net-production realizations can be sold or bought completely from the grid without

being restricted by the distribution capacity. Price differences are exploited in higher

quantities, while fewer congestion events are observed.
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Figure 5.7: Fraction of time that sold (a) and bought (b) energy equals the distribution
capacity (selling and buying-induced congestion)

5.6.2 Storage capacity

While the base case used a storage capacity of 1000 MWh and a distribution capacity

of 1.25 MW (30 MWh per day), we vary the storage capacity between 100 and

1000 MWh with increments of 100, for three different levels of distribution capacity

(10, 40, and 80 MWh per day), see Figure 5.8. In this way, we investigate how

storage can facilitate congestion reduction when distribution capacity is constrained.

Additionally, it allows us to study how profits are affected when distribution

capacity is sufficient.

Figure 5.8 shows negative mean profits which increase at a marginally decreasing

rate with storage capacity for each distribution capacity. For distribution capacity

kc = 10 (a), the mean profits are negative due to the highly constrained distribution

capacity. Note that storage capacities smaller than 300 MWh are not displayed in

Figure 5.8 (a). This is because these capacities result in systems where it is not

possible to always satisfy local demand. Here, the percentage of unmet demand



140 Chapter 5

−9500

−9000

−8500

−8000

−7500

0 250 500 750 1000

Storage capacity (MWh)

M
e

a
n

 p
ro

fi
t

(a)

10

20

30

40

0 250 500 750 1000

Storage capacity (MWh)
P

e
rc

e
n

ta
g

e

Electrolyzer utilization
Mean % time congestion at cable

0

2000

4000

6000

8000

250 500 750 1000

Storage capacity (MWh)

M
e

a
n

 p
ro

fi
t

(b)

10

20

250 500 750 1000

Storage capacity (MWh)

P
e

rc
e

n
ta

g
e

Electrolyzer utilization
Mean % time congestion at cable

0

3000

6000

9000

250 500 750 1000

Storage capacity (MWh)

M
e

a
n

 p
ro

fi
t

(c)

0

10

20

30

250 500 750 1000

Storage capacity (MWh)

P
e

rc
e

n
ta

g
e

Electrolyzer utilization
Mean % time congestion at cable

Figure 5.8: Summary statistics for varying the storage capacity, for distribution
capacities equal to kc = 10 (a), kc = 40 (b) and kc = 80 (c)

ranges between 0.005% and 8%, and a penalty for unmet demand is incurred.

Electrolyzer utilization levels remain relatively constant (between 6.9% and 7.5%),



Strategic seasonal hydrogen storage for renewable energy producers 141

and congestion levels are not affected by the storage capacity of 300 MWh or higher

(the mean percentage time congestion remains between 38.2% and 38.3%). These

results indicate that the distribution capacity is too limited across all levels of storage

capacities to enable positive profit levels, more effective use of the electrolyzer, and

to reduce congestion issues.

Results for kc = 40 and kc = 80 in Figure 5.8 (b) and (c) show that congestion

issues are not relevant anymore for our distribution capacity. Furthermore,

increasing storage capacity to kc = 40 leads to more congestion at the cable

connection, due to increasing interactions with the electricity grid. This is in line

with the observed electrolyzer utilization for higher storage capacities.

Concluding, hydrogen storage used to supply electricity does not lead to

profits when distribution capacity is too constrained and the storage owner aims

to maximize profits. While increased levels of distribution capacity reduce peak

utilization and the resulting local congestion, seasonal storage does not solve local

congestion problems of the grid operator at the connected cable, regardless of the

level of installed distribution capacity. To address this, we advise that (1) the

grid operator increases distribution capacity and (2) the storage operator should be

encouraged to refrain from short-term trading.

5.6.3 Electrolyzer capacity

We vary electrolyzer capacities k+ between 2 and 50 MWh per day. Figure 5.9

shows that mean profits increase, at a marginally decreasing rate, for increasing

electrolyzer capacity. Utilization levels decrease and range between 50% and 29.9%

for k+ = 2 to k+ = 50. Profits are positive when the electrolyzer capacity is at least 6

MWh per day (250 kW). Without considering capital expenditures, this suggests that

over dimensioning the electrolyzer capacity leads to increased profits, even though

utilization levels are reduced. These results suggest that electrolyzer utilization is

not a good proxy for profitability as large electrolyzer capacities with a relatively low

electrolyzer utilization may lead to more profits than smaller electrolyzer capacities

with a relatively high electrolyzer utilization. This only applies to operational profits

as capital expenditures are not taken into account.

The mean time in which congestion occurs due to the full utilization of the

connected cable increases with higher electrolyzer capacities (up to 50 Mwh per day)

and ranges between 0.7 and 8.7%. This can be attributed to the increased trading
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with the grid. While this enables increased profits for the facility owner, it leads

to local congestion for the grid operator. From the perspective of a grid operator,

it is, therefore, more beneficial to install a lower-capacity electrolyzer that limits

congestion problems when the SPH facility owner aims to maximize profits.
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Figure 5.9: Summary statistics and electrolyzer capacity (k+)

We illustrate the (optimal) actions taken by the facility owner as a result of

different electrolyzer capacities. We portray the two combinations of electrolyzer

capacities in Figure 5.10 (k+ = 2, k+ = 10). It shows the mean fraction of times

an action occurs for a net shortage (a) and a net overage (b). The x-axis indicates the

period (day) and the y-axis indicates the fraction of time a particular action occurred.

The same actions as in Figure 5.5 are given.

Given a net shortage and a low electrolyzer capacity (i.e., k+ = 2), the green

points in Figure 5.10 (a) show that buying the exact amount of the shortage is

most prevalent in winter and least prevalent in summer. Other actions are almost

non-existent. For a high electrolyzer capacity (i.e., k+ = 10), buying more electricity

than the shortage occurs 8 percent points less frequently on average than for a low

electrolyzer capacity (i.e., k+ = 2).

Given a net overage and a low electrolyzer capacity (i.e., k+ = 2), the blue points

in Figure 5.10 (b) show that actions in which part of the overage is sold and the

remainder stored are more prevalent than for high capacity (i.e., k+ = 2), indicating

that storing part of an overage is mostly needed for low electrolyzer capacities to
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cover potential future shortages.

These results indicate that the higher electrolyzer utilization at low capacity (i.e.,

k+ = 2) is caused by buying and storing additional electricity from the grid in times

of shortages or storing in times of overages. The stored energy can be used to cover

potential future shortages during times of high prices. When the capacity is higher

(i.e., k+ = 10), the risk of supplying future potential shortages from the grid at high

prices is reduced, and storing energy is not beneficial.
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Figure 5.10: Fraction of time a certain action occurs over time during a net overage
(left) or shortage (right)

5.6.4 Conversion efficiency

Figure 5.11 shows that mean profits are positively related to conversion efficiency

since storage becomes increasingly beneficial in both exploiting price differences and

covering shortages that do not need to be bought from the grid. For this reason,

electrolyzer utilization is also positively related to conversion efficiency. Moreover,

congestion at the connected cable increases for higher conversion efficiencies due

to a higher frequency of peak loads at the cable connections. This indicates

that technological improvements related to hydrogen storage which lead to higher

efficiencies also cause increased levels of local congestion at the cable connection.
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Figure 5.11: Summary statistics and conversion efficiency (α)

5.6.5 Price markup

We vary the price markup that is imposed by the grid operator and is related to

buying electricity from the grid (i.e., c+) between 0 and 5. Figure 5.12 illustrates that

mean profits are negatively related to the price markup on the buying price. This is

expected because price markups on buying electricity discourage the use of storage

to benefit from price differences over time. The electrolyzer utilization is reduced

from 29% to 22% between price markups of 0 and 5. Reduced grid interaction as

a result of higher price markups reduces congestion levels as well. This indicates

that the electrolyzer is used less often to buy energy from the grid to benefit from

price differentials. This facilitates the use of storage to prevent congestion. This also

indicates that price markups are effective as an instrument to the grid operator to

reduce congestion levels in which markups can be raised until using storage is not

profitable anymore.

5.6.6 Production capacity

We vary the production capacities of the solar park (i.e., w) between 1 and 10 MWp.

Figure 5.13 indicates that mean profits appear to increase linearly with increased

production capacities. Up to 4 MWp of the conducted experiments, profits are

negative, due to a high reliance on the grid to cover shortages and the inability
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Figure 5.12: Summary statistics and price markup on buying price (c+)

to store energy when prices are low to cover future shortages. Increased reliance

on the grid at low production capacities is reflected in the electrolyzer utilization

rates, which increase for solar energy production capacities between 3 and 6 MWp

and decrease for higher capacities. At low production capacities (e.g., w = 1), the

electrolyzer is deployed to store energy that is bought from the grid to cover future

shortages. Congestion at the connected cable increases nearly linearly for production

capacities above 6 MWp. This is attributed to increased overages which are sold to

the grid during summer. This highlights the importance of avoiding the installation

of excess solar park capacity.

5.7 Conclusion

Increased decentralization of renewable energy sources such as solar parks leads

to grid congestion in rural areas where grid distribution capacity is limited. At

the same time, supplying local villages in the vicinity of solar parks reduces the

need for long-distance energy transportation through the electricity grid. To reduce

congestion and supply electricity to a local demand of households, hydrogen storage

can be an important flexibility option to bridge the seasonality gap associated with

supply and a local electricity demand when external distribution capacity is limited.
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Figure 5.13: Summary statistics and solar production capacity (w)

In this paper, we examine the problem of the owner of a solar park with local

hydrogen storage who needs to decide how much to store, sell to or buy from

an external electricity grid throughout the year and can supply energy to local

electricity demand by households. Furthermore, the solar energy production and

local electricity demand are seasonal and there is uncertainty associated with solar

electricity supply, electricity demand, and variable electricity prices in the external

electricity market. We propose a Markov decision process formulation to the above

problem to optimize the expected profits per year from the perspective of the facility

owner. We detail the optimal policies with regard to the period in which the actions

take place (e.g., summer or winter). Moreover, we illustrate which actions are taken

during overages and shortages throughout the year. We show how congestion

levels for the grid operator and electrolyzer utilization are affected by conversion

efficiency and strategic decisions such as the distribution capacity, storage capacity,

and production capacity.

It is found that optimal policies are characterized by price thresholds that

separate different types of actions. These include buying the maximum possible

quantity, selling exactly overages or buying exact shortages, storing overages or

obtaining shortages from storage, or selling the maximum amount possible. When

distribution capacity is unconstrained, storage is not used for large periods of time.

When distribution capacity is constrained, local congestion at the cable to which
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the solar park is connected is mostly caused by buying-related actions in winter,

which are needed to cover potential future shortages. Under these conditions,

increasing the level of storage capacity does not reduce congestion levels, because

buying actions in winter remain necessary to cover shortages. For higher levels

of distribution capacity, local congestion is mostly caused by selling-related actions

of the overages in the summer. Counter-intuitively, local congestion increases for

increased levels of storage capacity, because this enables increasing buying-related

actions to prevent future shortages and exploiting price differences.

Mean profits are highly sensitive to the level of electrolyzer capacity and appear

to increase linearly with capacity. Moreover, a lower electrolyzer utilization as a

result of a large capacity is associated with higher profits than a low electrolyzer

capacity with a higher utilization rate as a result of interacting with the electricity

grid. This indicates that a high utilization rate of the electrolyzer is not necessarily

an indication of increased profits. Hydrogen storage used to supply electricity does

not lead to profits when distribution capacity is too small. Moreover, storage also

does not aid in reducing local congestion at the connected cable when the associated

distribution capacity is too small. This is because buying actions to prevent future

shortages and benefit from price differences cause buying-related congestion at

the cable connection. These actions are not aimed at reducing congestion, but at

maximizing profits. Higher production capacities are associated with higher profits,

even though this also causes higher congestion levels due to increased selling to the

grid at times of abundant supply or high prices.

While a limited level of storage capacity is needed to cover shortages and

overages when the distribution capacity is insufficient to handle peak loads of

the solar park, a high level of storage capacity leads to increased local congestion

problems for the grid operator when the SPH facility owner maximizes profits.

Accordingly, the role of profit-oriented storage for solar parks as a source of

flexibility to mitigate local congestion is limited, and a grid operator may need to

expand distribution capacity to deal with this. Hence, we advise the grid operator to

1) establish price markups on sold electricity, 2) setting limits on the capacity of the

solar park, 3) increase distribution capacity to alleviate local congestion problems.

The opportunities for future research are numerous and can be divided into

two areas. The first area is centered around extending the model that we present

in this work. For instance, new concepts arise in which local demand not only
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consists of electricity but also of hydrogen and, for example, demand for heat.

Additionally, one could investigate the potential correlation between production and

demand, or physical properties of using hydrogen as an energy carrier. Other future

approaches may be focused on minimizing congestion instead of maximizing the

storage owner’s profits.

The other avenue for further research is the transition towards more strategic

models. For instance, one may investigate the impact of multiple renewable energy

systems with co-located storage facilities in grid-congestion issues. It would be

interesting to research how the location of renewable energy systems in a grid can

be optimized, with the aim of minimizing grid congestion.
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The operation of solar parks

with seasonal hydrogen storage

to avoid potential congestion

Abstract. The occurrence of seasonal peaks in the electricity grid due to increased electricity

production by solar parks leads to potential congestion problems. This requires expanding the capacity

of the cable connection or the use of flexibility options such as hydrogen storage connected to solar

parks. While seasonal hydrogen storage connected to solar parks may help to stabilize the feed-in to

the grid, the profit-maximization behavior of solar parks with storage may not facilitate this as a result

of opportunistic buying and selling. Operating the facility to bridge seasonal differences in supply

and demand rather than to maximize profit may help to stabilize the interaction with the grid. This also

provides local electricity consumers with a stable supply of green electricity, that comes directly from the

solar park with storage. We study the impact of commercially versus non-commercially operating solar

parks with seasonal hydrogen storage (SPH) connected to a local electricity demand of households to

facilitate an evenly distributed feed-in to the electricity grid. We compare two different heuristic policies

that are oriented towards either profit-maximization or by prioritizing storage to bridge the seasonality

gap between solar electricity production and local electricity demand. We show that operating the SPH

facility independently from prices by always prioritizing the use of storage reduces curtailment and is

far more effective in evenly distributing the sold electricity to the grid. Profit-oriented operation leads

to peak utilization of the grid connection and curtailment when storage is full. The decision to expand

the grid connection capacity should be done with care and leads to unevenly distributed feed-in to the

grid for both profit and non-profit oriented operation strategies. This has important consequences for
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grid operators in managing congestion and stability problems and deciding on capacity expansion.

6.1 Introduction

The transition towards increased electricity supply by solar parks leads to an

increased occurrence of peaks in the electricity supply, due to the intermittent nature

of solar energy and the effects of seasonality. In the Netherlands for example, solar

parks have been built in rural areas where land is relatively cheap, but the electricity

grid capacity is limited. Connecting solar parks to the electricity grid may lead to

grid congestion due to unevenly distributed feed-in to the grid and at moments of

high peak loads. At these times, the generated power becomes confined to the direct

environment in which it is produced. The occurrence of high peak loads differs

throughout the year as a result of seasonality. Grid congestion is a result of network

constraints that threaten grid balance and cause outages (Vargas et al., 2014; Kumar

et al., 2005). In the Netherlands for example, this prevents the installation of new

renewable energy production capacity in the form of solar parks and hinders the

progression of the energy transition.

There are different potential solutions to alleviate this problem. First, a

Distribution System Operator (DSO), that operates regional grid infrastructure, can

increase the grid connection capacity. Secondly, the solar electricity producers

can use storage in the form of batteries or hydrogen to flatten the supply to

the grid (Schill and Zerrahn, 2018). Hydrogen storage enables the bridging of

seasonal differences in solar energy production and electricity demand (Korpås and

Greiner, 2008). Finally, geographically-specific zonal or nodal prices can also prevent

congestion problems by matching supply and demand and stimulate interactions

with the grid when required (Papaefthymiou and Dragoon, 2016).

The expansion of the grid connection capacity enables the handling of increased

loads en thereby reduces potential congestion. This can be effective as a long-term

structural solution. However, network expansions are costly and may have long

development times due to government licenses and limited resources. This is further

complicated by the expected growth of renewables in the future that may render

current grid expansion plans already insufficient for the future.

The combination of a solar park with a hydrogen storage facility can provide

a connected nearby neighborhood of households with a stable supply of green
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electricity. We assume that the households are unable to buy and sell from the

electricity grid and that these decisions are managed by operator and owner of

the solar park with the hydrogen storage facility (SPH). However, the operational

buying and selling decisions of the SPH facility owner affect the volatility of the

feed-in to electricity grid over time. This has consequences for grid congestion

elsewhere in the electricity grid.

The buying and selling decisions of the SPH facility with the aim to maximize

profits do not always facilitate an evenly distributed feed-in to the electricity

grid over time. This is because the profit maximization behavior of the SPH

leads to opportunistic buying and selling to benefit from zonal price differences

Fokkema et al. (2020a). In contrast, operational decisions of SPH facilities that

operate independently of prices and that aim to bridge seasonal differences in solar

electricity production and local electricity demand can be more suitable to enable a

more stable feed-in to the grid. With a stable feed-in, we refer to a low volatility of

the amounts of electricity that the SPH facility sells to the grid over time. Therefore, it

is important to (1) identify whether or not the SPH facility should be operated either

with a profit orientation or by bridging seasonal differences in supply and demand,

(2) investigate under which price conditions a profit-oriented storage operator may

act in the interest of evenly spreading the selling decisions throughout the year, (3)

examine how expanding the grid connection capacity affects the above-mentioned

dynamics.

The main problem considered in this paper is to determine under which price and

grid connection capacity conditions the solar park with hydrogen storage should be

operated with a profit or a non-profit orientation to facilitate a stable feed-in with the

electricity grid. We compare two different heuristic policies which are either oriented

towards profit or towards prioritizing the use of storage to bridge the seasonal

differences between solar electricity production and local electricity demand. Hence,

the policies of the second heuristic are price-independent. We show that operating

the SPH facility by prioritizing storage independent of prices is more effective in

evenly distributing the feed-in to the grid than operating it from a profit-oriented

perspective. While grid operators address capacity problems in many cases by

expanding the grid capacity, we argue that it is important to consider how the SPH

facility is operated. Our results indicate that grid connection capacity expansion of

the connection to the grid should be done with care, since it leads to more overall
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variability of the grid feed-in for both profit and price-independent policies, and

higher storage requirements and reduced revenues for the price-independent SPH

facility operator.

This paper is organized as follows. A literature review is presented in Section

6.2. Section 6.3 describes the problem and formulates a simulation model. Section

6.4 provides an overview of the experimental design. Section 6.5 provides results

and a discussion. Section 6.6 provides concluding remarks.

6.2 Literature review

The literature which addresses storage planning in combination with renewable

energy production focuses on planning energy storage facilities and electricity

pricing. Energy storage-related papers mostly deal with planning investments

for energy storage and determining storage capacities, as well as using storage to

address grid congestion. Papers that address electricity pricing specifically focus on

computing prices in order to maximize social welfare. However, existing literature

has not yet compared the conditions under which a solar park with hydrogen storage

should be operated commercially and non-commercially to facilitate a stable feed-in

to the grid. Existing research has also not yet considered how electricity prices and

grid connection capacity expansion affect these dynamics.

Papers on storage planning mostly deal with the optimization of the size and

control of storage systems in distribution networks. We refer to Haas et al.

(2017); Saboori et al. (2017) for reviews on energy storage planning. According to

Saboori et al. (2017), many storage applications aim to minimize a combination of

investment and operational costs, in which operational costs are often measured

in terms of energy purchase costs, network losses, emission costs, or curtailment

costs. For example, Alnaser and Ochoa (2016) propose a planning framework to

size battery storage in wind power-rich distribution networks are were able to

reduce curtailment with optimal charging and discharging strategies. Denholm

and Hand (2011) examined storage requirements for different renewable energy

penetration and curtailment levels. Schill and Zerrahn (2018) examine storage

requirements for various shares of renewable energy and find that these depend

on costs and availability of other flexibility options. They found that storage

requirements increase significantly when renewable energy shares exceed 80%. Soini
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et al. (2020) have found and discussed how storage can assist wind and solar to

replace dispatchable power production. They found that large storage volumes

strongly affect the operation and replacement of conventional dispatchable power

production facilities. Dufo-López (2015) consider prices in the optimization and

control of grid-connected battery storage, even though they mostly focused on the

optimization of a single configuration under specific prices. Brouwer et al. (2016)

are more concerned with evaluating the role of storage under various scenarios of

renewable energy penetration and concluded that power storage is too expensive

when renewable energy shares exceed 60%. The above-mentioned papers have

addressed the role of storage in transitioning to systems with increased penetration

of renewable energy sources. While these papers investigate how storage should be

planned in the future, they have not considered how the operation of storage with

solar energy production facilitates affects the interaction with the grid and potential

congestion problems at the grid connection.

Other papers include storage and the occurrence of congestion in their analyses

(Wang et al., 2017; Babrowski et al., 2016; Jorgenson et al., 2018b; Hemmati et al.,

2017b,a). For example, (Del Rosso and Eckroad, 2014) found that placing a

battery near a congestion point can successfully mitigate congestion problems in

transmission networks. Babrowski et al. (2016) optimize storage planning decisions

both geographically and in terms of capacity for the German electricity sector and

show that storage systems should be mainly located near congested grid lines.

Their approach mostly encompasses storage and energy plants as expansion options

to deal with growing demand and congestion but does not take into account

transmission expansion. Wang et al. (2017) examine the extent to which transmission

congestion affects the profitability of arbitrage by energy storage devices. They

consider a merchant storage device that maximizes profits and a market-clearing

mechanism that calculates the resulting prices. In their book, Cretı̀ and Fontini (2019)

provide supply curves and economic models for prices as a result of congestion.

They define congestion as taking place when the generated energy supplied to the

grid equals the capacity of the connection. However, they do not incorporate the use

of storage to smooth the feed-in to the grid over time. In contrast to other papers that

address storage and congestion, Bussar et al. (2016) combine the planning of both

storage and network capacity expansion in Europe in size and allocation. However,

these do not explicitly take into account the extent to which amounts sold to the grid
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are evenly distributed. While these papers address either storage and congestion or

both storage and transmission capacities, none of these papers have considered the

effectiveness of seasonal hydrogen storage for solar parks to facilitate stable feed-in

to the grid as a result of the operation of solar parks with storage, grid connection

capacity expansion, and price conditions.

Papers on electricity pricing have mostly addressed the computation of nodal

or zonal prices to maximize social welfare. In the literature, nodal prices

are also referred to as locational marginal pricing (LMP) (Weibelzahl, 2017).

Weibelzahl (2017) provides a survey and framework on uniform, zonal, and

nodal pricing strategies in the context of transmission constraints. Jafarian et al.

(2020) propose a combined nodal and uniform pricing mechanism for including

renewable generation to maximize social welfare. They found that storage and

price signals to network users are effective in mitigating congestion, in which

revenues from congestion prices to the network operator should be reinvested

into grid bottlenecks. Li et al. (2021) propose a nodal pricing scheme which is

decomposed into 5 components that include, congestion, energy prices, reactive

and passive power losses, and voltage levels. Yuan et al. (2018) propose a

hierarchical nodal pricing scheme that enables the computation of prices based

on the transmission, distribution, and embedded networks. Papavasiliou (2018)

presents various approaches to understanding locational marginal prices and they

highlight the importance of clarifying the communication between TSOs, DSOs and

aggregators. Feng Ding and Fuller (2005) show that zonal and uniform prices give

perverse incentives for generation expansion. In the case of nodal prices, they found

that it can be profitable for suppliers to add production capacity to frequent and

consistent changes in nodal feed-in constraints. While these papers have addressed

the consequences and computations of zonal and/or nodal prices, these have not

investigated how the price conditions affect the effectiveness of a solar park with

hydrogen storage to mitigate potential local congestion problems.

6.3 Problem description

To avoid peak utilization of the grid connection and congestion as a result of a

volatile grid feed-in, electricity prices, the implementation of storage and expansion

of the grid connection capacity are solution options. However, the operation
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strategies of the storage facility are important in reaching this objective. The problem

addressed in this paper is concerned with how storage should be operated to

mitigate peak utilization of the grid connection and volatile grid feed-in. Moreover,

the extent to which electricity prices respond to solar energy availability affect

these dynamics. We compare two types of storage operation policies which are

aimed at either maximizing revenues from interacting with the grid, or prioritizing

the use of storage to cover shortages and overages. We shall refer to these

heuristics as the 1) profit-oriented and 2) storage-priority heuristic in Section 6.3.2

and 6.3.2. We determine the conditions of price elasticity and grid connection

capacity under which a solar park with hydrogen storage should be operated with

a profit orientation or by prioritizing storage to facilitate evenly distributed buying

and selling policies from and to the grid.

We consider a solar park which is connected to an external electricity grid and

uses a total peak capacity of solar panels w (MWp) and a hydrogen storage facility

with a capacity of m MWh (see Figure 6.1), which leads to the generated supply

level st. Hydrogen is produced with an electrolyzer with a capacity that enables a

storage inflow of k+ (MWh per day). Hydrogen obtained from the storage facility

for consumption or sales to the grid is converted to electricity by a fuel cell with a

storage outflow level of k− (MWh per day). We assume that a battery is connected

to the electrolyzer and covers daily fluctuations in solar electricity production while

providing a constant load to the electrolyzer. Since we focus on seasonal differences

in solar electricity production and local demand, the daily battery operation is

considered out of the scope of this paper. Hence, we discretize time in days in

which each period t ∈ T represents one day in a year. The amount of solar

electricity generated (MWh) during period t is given by st. Moreover, we assume

the solar park is directly connected to a group of households which constitute the

local electricity demand dt and is assumed to be obtained from a normal distribution

with a period-dependent mean and a constant standard deviation. The distribution

parameters are based existing aggregated electricity demand data. The solar energy

production level during each period t is represented by st and is obtained from Beta

distributions based on historical production levels related to the installed capacity

w. The level of net production in period t after local demand is given by yt = st− dt,
which can be both positive and negative. This becomes directly available and can be

either fed to the grid or stored in the hydrogen storage facility. The solar park always
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prioritizes the direct provision of the local electricity demand when possible in order

to minimize storage-related conversion losses and costs due to obtaining electricity

from the external electricity grid. The amounts that can be stored or obtained from

storage during during period t depend on the electrolyzer and fuel-cell capacities.

We define the maximum inflow before conversion and outflow after conversion to

and from storage in MWh per period as k+ and k− respectively. Electricity sent to

or obtained from storage is subject to conversion losses α+ and α− respectively. We

assume that electricity costs related to compression of hydrogen are reflected in the

conversion losses. The inventory level in the storage tank at the end of period t is

denoted by It. We assume that the electricity producer with storage is subject to a

zonal electricity price in a region in which solar energy production is most prevalent

and which depends on the net production availability after demand. Accordingly,

the prevailing electricity price pt at the end of period t is partly dependent on the

level of net production. Even though we assume that there is always sufficient

demand externally for the electricity that is sent to the electricity grid, any external

demand is also reflected in the electricity price. During each time period t ∈ T , the

electricity producer can interact with the grid by sellingQt units of electricity. Selling

or buying electricity from the grid results in revenue or cost Rt. It is determined

by the amount bought or sold and the prevailing price. Hence, Rt(Qt, pt) = Qtpt.

During period t, the electricity feed-in by the producer can not exceed kc, due to grid

connection capacity constraints.

6.3.1 Electricity prices

Our approach to the determination of prices is based on the notion that zonal prices

in a rural region are determined by the level of net solar energy production after

local demand which becomes available to feed to the grid. Therefore, we assume

that prices are affected by the net production level in the region.

We split the price into two components consisting of an external process

determined by external market conditions and a component that depends on the

net production level that becomes available. For the first component, we define βt
as the base price which applies during the day, which is the price under normal

conditions and determined by external processes. We define the base price in period

t as an auto regressive AR(1) process βt = c+ϕβt−1 + εt, in which εt ∼ N (0, σ2). We

assume that the producer is sufficiently small, such that there will always be demand
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Table 6.1: Parameters and variables in the simulation model

Sets

T Set on the number of periods T = {0, . . . , T}

Parameters

w Installed capacity of solar panels (MWp)
m Storage tank size (in MWh)
kc Grid connection capacity (in MWh per day)
k+ Maximum storage inflow per period (in MWh per day)
k− Maximum storage outflow per period (in MWh per day)
l Sensitivity of price to solar electricity production
α+ Conversion efficiency to storage
α− Conversion efficiency from storage
c Intercept price related to the AR(1) process of the base price βt
p−i Price threshold i that is approached during a shortage (yt < 0)
p+i Price threshold i that is approached during an overage (yt ≥ 0)

Stochastic inputs
st The amount of solar electricity (MWh) produced during period t
dt Local electricity demand during period t
yt Net production after fulfilling demand st − dt in period t
pt Prevailing price of electricity in period t
βt Base price in period t which follows an (external) AR(1) process

Decision and performance variables
Qt Amount sold to (positive) or bought from (negative) the grid during period t
It Inventory level at the end of period t
Rt Profit or cost in period t

for the produced electricity when it is fed into the grid. Hence, the base price is not

influenced by the presence of the producer. We define l as a sensitivity parameter

which specifies how sensitive the price reacts to the amount of net production that

becomes available to the grid at the end of each period. Since oversupply in any

market generally leads to lower prices, we assume that prices and net production

are inversely related.

We assume that the prevailing price that applies to the electricity producer pt is

positive and is given by

pt(yt, l, βt) = βt − lyt + µβ − lµy (6.1)

where µβ is the average of the base price and µy represents the average annual

net production. This ensures that the prices are dependent on the elasticity l to

net production, while the average price remains equal to the average of the AR(1)

process. This enables to fully capture the price behavior which depends on a level of

elasticity without the requirement to adjust the the buying and selling policies which
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Figure 6.1: The studied configuration (see Fokkema et al. (2020a))

will be explained in detail in Section 6.3.2.

6.3.2 Buying, selling and storage policies

Since the operational decisions of the producer with storage strongly affect both

operational costs and and the volatility of the feed-in to the electricity grid, our

model considers the underlying operational problem associated with buying, selling

and storing energy. This decision entails choosing how much to store, buy from and

sell to the grid at time t.

The heuristic policies aim to determine Qt which represents the quantity of

electricity sold to or bought from the grid. In each time period, the amount sold

to or bought from the grid depends on the current inventory level and the prevailing

price at the end of a period. A negative value of Qt represents electricity bought,

whereas a positive value represents electricity sold.

Similar to Fokkema et al. (2020a), the quantity sold or bought is bounded by

several conditions and can best be described as a range [−Qmin(It, yt), Q
max(It, yt)],

where Qmin(It, yt) ≥ 0 represents the maximum amount that can be bought in a



The operation of solar parks with seasonal hydrogen storage to avoid potential
congestion 159

period and Qmax(It, yt) represents the maximum that can be sold in a period.

The maximum quantity bought Qmin(It, yt) is bounded by the constraints

Qmin(It, yt) ≤ kc (6.2)

Qmin(It, yt) ≤ k+ − yt (6.3)

Qmin(It, yt) ≤

 (m− It−1 − α+yt)/α
+ if yt ≥ 0

yt + (m− It−1)/α+ if yt < 0.
(6.4)

Constraints 6.2, 6.4 and 6.3 represent the maximum grid connection capacity,

the maximum storage inflow and the remaining inventory after net production and

respectively by taking into account the conversion efficiency of the electrolyzer.

The maximum quantity sold is bounded by the constraints

Qmax(It, yt) ≤ kc (6.5)

Qmax(It, yt) ≤ α−It−1 + yt (6.6)

Qmax(It, yt) ≤ α−k− + yt. (6.7)

Constraints 6.5, 6.7 and 6.6 represent the maximum grid connection capacity, the

available inventory and the maximum storage outflow respectively by taking into

account the conversion efficiency of the fuel cell.

Below, we detail two heuristic policies which take into account the

above-mentioned constraints. The profit-oriented heuristic is based on the

maximization of profits, whereas the storage-priority heuristic is only geared

towards the bridging of the seasonality gap between solar electricity production and

local demand.

Profit-oriented heuristic

We assume that the profit-oriented storage operator aims to maximize the total

operational rewards with this decision and defines a (heuristic) policy which

determines how much to buy or sell at time t, in order to maximize rewards.

In the paper by Fokkema et al. (2020a), an optimal policy was determined to
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maximize profits for a storage owner by using stochastic dynamic programming for

a simplified case of the problem. To reflect the profit-maximizing behavior of the

storage owner, our profit-oriented policy is based on the behavior of their policy and

depends on the available inventory left in storage, the net production level and the

prevailing price.

Figure 6.2 shows the heuristic policy which describes the decisions taken by the

SPH operator. The left side of Figure 6.2 shows the policies which apply during a

shortage, whereas the right side shows policies related to an overage.

We define three price thresholds p
′

i(It), i ∈ {0, 1, 2} which separate four different

types of decisions that depend on the available inventory in storage. The decisions

indicated in Figure 6.2 include (a) buying as much as possible, (b) conducting no

storage transactions and use the grid to handle shortages and overages, (c) using

storage to replenish shortages or store overages, and (d) sell as much as possible.

Note that the regions for (b) and (c) switch in case of an overage compared to a

shortage situation. For an overage yt ≥ 0, the price thresholds are given by

p
′

0(It) =
φ

It −m
+ p−0 (6.8)

p
′

i(It) =
φ

It
+ p−i ∀i ∈ {1, 2}. (6.9)

For a shortage (yt < 0),

p
′

i(It) =
φ

It
+ p+

i ∀i ∈ {0, 1} (6.10)

p
′

2(It) =
φ

It −m
+ p+

2 . (6.11)

where φ is a constant tuning parameter based on the shape of the price thresholds

in (Fokkema et al., 2020a). In addition, p+
i and p−i are obtained from (Fokkema et al.,

2020a) and represent the price thresholds when inventory levels are extremely small

or large for overages and shortages respectively (see Figure 6.2).

We defineQt as the policy that the SPH facility adopts during each time period. It

is represented by the amount sold to (positive) or bought from (negative) the grid. It

depends on whether a shortage or overage net production level has occurred during



The operation of solar parks with seasonal hydrogen storage to avoid potential
congestion 161

Inventory

Price

a

c

b

d

m

p+
3

p+
2

p+
1

Inventory

Price

a

b

c

d

m

p-
3

p-
2

p-
1

Figure 6.2: Profit-oriented policy for a shortage (yt < 0, left) and overage (yt ≥ 0,
right)

each time period.

If yt < 0 (see the left side of Figure 6.2),

Qt(It, pt, yt) =



Qmin
t if pt < p

′

1(It)

Q
′

t if p
′

1(It) ≤ pt < p
′

2(It)

Q
′′′

t if p
′

2(It) ≤ pt < p
′

3(It)

Qmax if p
′

3(It) ≤ pt.

(6.12)

If yt ≥ 0, (see the right side of Figure 6.2),

Qt(It, pt, yt) =



Qmin
t if pt < p

′

1(It)

Q
′′′

t if p
′

1(It) ≤ pt < p
′

2(It)

Q
′

t if p
′

2(It) ≤ pt < p
′

3(It)

Qmax if p
′

3(It) ≤ pt.

(6.13)

The maximum amount that can be bought, −Qmint applies to region (a) in Figure

6.2. We define Q
′

t, which applies to region (b) as the amount bought from or sold

to the grid by prioritizing to use the grid and not use storage to fulfill a shortage or

overage. This takes into account the above-mentioned restrictions. It is given by
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Q
′

t =


yt if −Qmin ≤ yt ≤ Qmax

−Qmin if yt < −Qmin

Qmax if yt > Qmax.

(6.14)

We define Q
′′

t as the amount sold to or bought from the grid by prioritizing

the use of storage, provided that yt ∈ [−Qmin, Qmax]. There are cases in which

an overage is so large that only selling actions can be performed and Qmin ≥ 0.

In contrast, shortages may also cause only buying actions to be feasible when

Qmax < 0. In those cases, storage is prioritized by choosing the policy which

minimizes interaction with the grid. Hence,

Q
′′

t =


−Qmin if −Qmin ≥ 0

Qmax if Qmax < 0

0 else.

(6.15)

We define Q
′′′

t , which applies to region (c) as the amount sold to or bought from

the grid by prioritizing the use of storage. This also includes cases in which the net

production is outside of the boundary of policies. When this is not the case, the

policy of Q
′′

t is maintained which indicates that storage transactions with the grid

are prioritized and grid transactions are minimized. For all other cases, the policy is

limited by the boundary of policies. Accordingly,

Q
′′′

t =


Q
′′

t if −Qmin ≤ yt ≤ Qmax

−Qmin if yt < −Qmin

Qmax if Qmax < yt.

(6.16)

To summarize, the adopted policy Qt(It, pt, yt) depends on the inventory level,

price and the net production level. In region (a) of Figure 6.2, the maximum possible

quantity Qmin is bought from the grid due to a relatively low price. In region (b), the

policy which prioritizes using the grid to cover overages or shortages Q
′

t is bought
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from or sold to the grid. In this case, storage transactions are avoided when possible,

since the price is not sufficiently favorable to use storage for buying or selling more

than the shortage or overage respectively. Storage transactions only occur when yt <

−Qmin or yt > Qmax. In price region (c), storage transactions are prioritized with

policy Q
′′′

t in which no interaction with the grid is conducted if possible. In region

(d), the maximum amount possibleQmax is sold to the grid due to the relatively high

price.

As can be seen in Figure 6.2, we define the policy for both a shortage and an

overage, in which the main difference is the shape and location of region (c) and the

corresponding policy Q
′′′

t .

Storage-priority heuristic

Our second heuristic does not respond to prices and prioritizes the use of storage. We

assume this reflects the behavior of a non-private party that operates the solar park

with hydrogen storage primarily to cover seasonal differences in solar electricity

production and local demand. Hence, it naturally follows the seasonality differences

associated with the net production levels that become available during each period.

Therefore, it is reflected by Qt := Q
′′′

t which is independent of the price and equal to

the storage priority element of the profit-oriented heuristic described above.

Inventory, curtailment and unmet demand

For both heuristics, the change in inventory is defined as

∆It(Qt, yt) =

 α+(−Qt + yt) if yt −Qt ≥ 0

−Qt+yt
α− if yt −Qt < 0.

(6.17)

The inventory in storage at the end of period t is then

It(Qt, yt) =


It−1 + ∆It if 0 ≤ It−1 + ∆It ≤ m

m if It−1 + ∆It > m

0 if It−1 + ∆It < 0.

(6.18)
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Situations may occur in which the net production overage is too large to store, sell

or consume by the local electricity demand. In contrast, the net production shortage

may be too low to fulfill the local electricity demand. Hence, these situations create

curtailment or unmet demand, respectively. Excess production or curtailment is

given by It−1 + ∆It − m if It−1 + ∆It > m, whereas unmet demand is given by

It−1 + ∆It if It−1 + ∆It < 0.

6.3.3 Simulation model

Our simulation model calculates the decision and performance variables mentioned

in Table 6.1 using hydrogen storage near a solar park for a specific time horizon. The

model is implemented in Python according to the logic flow diagram in Fig. 6.3. We

perform each simulation for 100,000 consecutive years in which a warm-up time of

1000 years was proven sufficient.

In each period t, the solar electricity generated and local demand is obtained.

These values are then used to calculate the prevailing price pt as described in Section

6.3.1. Based on the price, the buying and selling policy of the producer with storage

is determined (see Section 6.3.2).

For each day in the simulation, the revenue or cost is calculated based on the

buying or selling policy with the grid. When the time horizon of one year is not yet

reached, the inventory levels are updated and a new day is created. The total revenue

consists of 1) revenue from buying from and selling to the grid, and 2) revenue from

selling electricity to the connected households. In our analyses, the revenue from

selling to the local demand is

6.4 Experiments

This section provides an overview of the experiments that are conducted in our

study. The experiments have been conducted for both heuristics. We present the

main experiments in which we apply our simulation method to a practical context.

We compare both heuristics based on the average inventory levels per time period,

the standard deviation of selling decisions, the mean fraction of runs the grid

connection was fully utilized, curtailment, unmet demand. We also derive insights

on the relationship between the elasticity of prices to net production levels for the
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Figure 6.3: Simulation model of the studied system
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profit-oriented operator, as well as how grid connection capacity expansion affects

these dynamics. The experimental design is summarized in Table 6.3.

6.4.1 Parameter settings

Reference case

The experimental factors in the experiments are the price elasticity to net production

levels l and the grid connection capacity kc. To determine the ranges of our

experimental factors, we first consider a hypothetical solar park of 5 MWp in the

Netherlands which is located next to a surrounding village of 1500 households that

can directly consume the generated electricity. The solar park connects to a hydrogen

storage facility for which an alkaline electrolyzer and a stack of fuel cells which both

enable a total storage inflow and outflow rate of 50 MWh per day respectively, which

corresponds to 2.1 MW. We assume that the hydrogen storage facility has a capacity

of 400 MWh. This level is such, that it is mostly sufficient for seasonal storage in our

parameter settings, but will just not enable complete self-sufficiency. Therefore, it

requires using the grid as well. The electrolyzer efficiency α− was set at 0.6 (Dukić

and Firak, 2011) and the alkaline fuel cell efficiency α+ was also set at 0.6 (Lamy,

2016). These constant parameter settings are shown in Table 6.2. On sunny summer

days the net production regularly peaks at levels of around 10.5 MWh.

Table 6.2: Constant parameters

System dimensions Policy

Installed solar capacity (w) Storage (m) Storage inflow (k+) Storage outflow (k−) α+ α− p−1 p−2 p−3 p+1 p+2 p+3

5 400 50 50 0.6 0.6 26 46 50 26 30 50

Demand, prices and solar energy production

We use the same demand, price and solar energy production data and model

calibration settings as in Fokkema et al. (2020a). Several fixed parameter settings

have been summarized in Table 6.2. These include the values of the price thresholds

p−i and p+
i correspond to the those in the optimal policy which was determined in

Fokkema et al. (2020a) (see Table 6.3).

For the local electricity demand, aggregated data of 2015 to 2019 was obtained

from NEDU (the Dutch Society of Energy Data Exchange) (NEDU, 2020). The data
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represents average electricity consumption levels per 15 minutes as a fraction of

the total yearly consumption level for 3001 measurements during the years 2016,

2017, and 2018. The data was normalized to 1500 households, by assuming that

one household consumes on average 2990 KWh per year Nibud (2019). The scaled

daily average electricity consumption levels, as used in our base-case system, have

a minimum of 9.9 MWh, a mean of 12.3 MWh, and a maximum of 16.1 MWh per

day. We assume electricity consumption per day is normally distributed (i.i.d.) with

a day-specific mean and a constant standard deviation. To represent the stochastic

behavior of electricity consumption, we determine normal distribution parameters

by applying two linear regression models to the scaled data. The first model was

applied to the first 199 days and the second to the remaining days in a year, since

the average electricity demand follows a V-shape throughout the year. The splitting

procedure to determine which day separates the two models is based on minimizing

the sum of the standard errors for both models. Accordingly, we use the same data

and linear models as in Fokkema et al. (2020a).

The base price βt which represents the external wholesale electricity prices, was

modeled in the same way as in Fokkema et al. (2020a). The AR(1) process of the

base price was fitted to daily wholesale electricity prices of the Netherlands which

occurred between 2015 and 2019.

Similar to Fokkema et al. (2020a), solar energy production levels between 2005

and 2016 were obtained from PVGIS PVGIS (2016) and correspond to an installed

capacity of 5 MWp. The production levels per week were fitted to beta distributions.

Similar to Fokkema et al. (2020a), Boland (2020) and Soubdhan et al. (2009), we

assume that production levels St are independent and identically distributed for

each period.

6.4.2 Experimental factors

To gain more insights on how prices and grid capacity expansion affects potential

congestion (i.e. peak utilization of the grid connection and the volatility of the grid

feed-in) for both storage operation policies, experiments are performed by varying

the price elasticity to net production levels and the installed grid connection capacity.

Grid capacity expansion is common in addressing congestion, and increasing solar

energy production capacity causes electricity prices to be more responsive to solar

energy availability. Therefore, choosing these experimental factors enables both
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the grid operator and the facility owner to assess the consequences of the different

storage operation policies in mitigating potential congestion when performing grid

capacity expansion, and the implications of stronger price responses to solar energy

availability.

Table 6.3: Experiment settings

Experiment Grid connection (kc) Price elasticity l

Low grid connection capacity 10 0
10 1
10 2

Expanded grid connection capacity 30 0
30 1
30 2

Price elasticity to net production

In order to determine the effectiveness of storage in evenly spreading buying or

selling decisions under different price conditions, three levels of the price elasticity l

have been included in the experimental design, being 0, 1 and 2 (see Table 6.3). This

enables the investigation of how the profit-oriented policies are affected by different

levels of price elasticity, and to what extent storage enables a stable interaction with

the electricity grid when prices respond more strongly to overages and shortages.

Grid connection capacity

In order to examine how the grid connection capacity affects the effectiveness of both

heuristics to enable a stable interaction with the grid, we vary the grid connection

capacity between 10 MWh and 30 MWh per day (see Table 6.3). These represent the

cases in which the grid connection capacity is close to the average net production

level and the case in which the grid connection capacity is highly sufficient.

6.5 Results and discussion

This section presents and discusses the results of the experiments. We compare the

two heuristics for different levels of price elasticity and grid connection capacity,
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and analyze each of the following decision variables and performance indicators.

Firstly, we illustrate the inventory levels over time. Secondly, the next subsection

indicates the average amounts sold and bought by the facility owner over time for

the different price elasticity levels. Thirdly, we analyze the standard deviation of

the sold electricity. This denotes the level of volatility of the grid feed-in. Fourthly,

we examine the fraction of runs in which sold electricity equals the grid connection

capacity to indicate peak utilization levels of the grid connection. Curtailment and

unmet demand are also analyzed, whereas the last subsection shows the revenue as

a result of buying and selling electricity by the facility owner.

The results indicate the effectiveness of the profit-oriented and the

storage-priority policies to spread the selling decisions from and to the grid

throughout the year. This is reflected in the average standard deviation of electricity

sold per run. Moreover, the results show how the standard deviation of selling

decisions is affected by the elasticity of the price to net production levels for

the profit-oriented heuristic. The results show the effectiveness of supply-based

pricing mechanisms to stabilize feed-in to the grid. We analyze how both profit

and non-profit operation strategies lead to curtailment, unmet demand or peak

utilization of the cable connection and inventory buildup that follows seasonal

patterns. Finally, the results provide insights on how expanding the grid connection

capacity affects the selling decisions for the above-mentioned dimensions.

6.5.1 Inventory levels

Figure 6.4 and 6.5 show the inventory levels for distribution capacity levels (kc) of 10

and 30 respectively. Each point on the curves reflects the average across all runs. The

blue curves apply to the profit-oriented heuristic while the red curves apply to the

storage-priority heuristic. The x-axis represents the days in the year. The different

graphs from left to right apply to the three levels of price elasticity.

Figure 6.4 shows that the inventory levels for both heuristic policies follow the

seasonal shape of the net production levels and the maximum storage capacity of 400

MWh is not reached. Since the grid connection capacity is limited to the maximum

average net production level per day during the year (10 MWh per day), there is

not much room for opportunistic buying and selling. The limited grid capacity

also causes shortages and limits the level of inventory that can be stored as will

be explained in Section 6.5.5. For increased levels of price elasticity, it can be seen
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that the profit oriented policy stores more since more energy can be bought at lower

prices during the summer. While the storage priority heuristic does not respond to

prices, we include it in all figures for comparison purposes.

For a higher grid connection capacity (kc = 30), the blue curve in Figure 6.5

indicates that the profit-oriented heuristic is less responsive to seasonal differences

than the storage-prioritizing heuristic, as a result of being more dependent on prices.

This is because the higher grid connection capacity enables additional trading with

the grid in addition to the coverage of shortages or overages. For prices that do

not respond to net production levels (l = 0), the profit-oriented heuristic thus uses

storage primarily for short-term opportunistic trading with the grid if price spreads

are sufficient to cover the conversion losses. For a price elasticity of 2, storage levels

follow more closely the seasonal patterns in net production levels, since prices reflect

these patterns. In contrast, the red curve shows that the storage-priority heuristic

fully uses the storage capacity in the summer and strongly follows seasonal patterns.

Since the grid connection capacity is also sufficient to prevent shortages when the

storage facility is empty in the winter, storage can be fully used to cover the seasonal

differences between supply and the local demand.
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Figure 6.4: Average inventory per day (kc = 10)
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Figure 6.5: Average inventory per day (kc = 30)
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6.5.2 Average amounts bought and sold

Figure 6.6 and 6.7 indicates the average amounts bought and sold for each heuristic

and for a grid connection capacity of 10 MWh and 30 MWh per day respectively.

For a limited cable capacity (kc = 10, see Figure 6.6), it can be seen that the policies

for both heuristics follow a similar seasonal pattern in which energy is sold in the

summer and bought in the winter. Since the grid connection capacity limits the

amount that can be bought and sold, storage is mostly used for covering additional

shortages and overages to prevent unmet demand. Hence, the average amount sold

and bought for the profit-oriented heuristic is not affected by different price-elasticity

levels.

For a higher grid connection capacity at low price elasticity (kc = 30 and l = 0,

see Figure 6.7), the average amounts bought and sold increases with 25.3% and

56.6% for both heuristics. This indicates that more energy is sold on average to

the grid than for the lower grid connection capacity. The grid connection capacity

enables the selling of more electricity per day. The red line shows that the average

amount sold related to the storage priority heuristic increases in the winter between

day 0 and 100, and flattens after that during spring. This plateau in the curve

can be explained as follows. The heuristic chooses to use storage primarily for

storing the overages. These become more common in spring as the summer is

approached. When inventory levels reach the maximum storage capacity more often

in the simulations, the average amount sold rises again, because the electricity which

cannot be stored is sold during summer.

6.5.3 Evenness of grid feed-in across a year

Figure 6.8 shows the standard deviation across days of the amounts sold for a

relatively low (a, kc = 10) and high grid connection capacity (b, kc = 30) respectively.

For a low grid connection capacity and (l = 0), the red curve shows that the

standard deviation of selling decisions by the storage-priority policies is 0.01 relative

to the standard deviation of 3.1 of the profit-oriented policies. Furthermore, the

profit-oriented selling policies become slightly less stable for increased levels of price

elasticity. This indicates that, for a limited grid connection capacity, storage-priority

policies are far more effective to evenly distribute the sold electricity to the grid.

However, it also shows that profit-oriented storage does not become more effective
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Figure 6.6: Average amounts bought and sold (kc = 10)

to evenly distribute the sold energy to the grid when prices react more strongly to

differences in net production levels.

For a high grid connection capacity (kc = 30) and l = 0, Figure 6.8 the red and

blue curve indicate that the standard deviation of sold electricity increases up to 5.9

and 7.9 for the storage-priority and profit-oriented heuristic respectively compared

to a low grid connection capacity (kc = 10). Again, the prioritization of storage

yields the most stable feed-in to the grid compared to the profit-oriented decisions.

A high price elasticity to net production levels leads to only a small increase in the

standard deviation of sold electricity for the profit-oriented policies. This indicates

that seasonal-dependent prices which react more strongly to net production levels

do not facilitate more stable grid feed-in for profit-oriented operators.

These results show that expansion of the connected grid capacity leads to more

unstable feed-in to the grid for both heuristics. For both levels of grid connection

capacity, the storage priority heuristic leads to much more stable grid feed-in than
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Figure 6.7: Average amounts bought and sold (kc = 30)

the profit-oriented heuristic. The profit-oriented operator is likely to engage in more

opportunistic trading when the grid connection capacity is expanded, which causes

a more unstable feed-in to the grid. The storage-priority heuristic also causes more

unstable feed-in at a higher grid connection capacity, but these are the result of a

full storage facility in the summer and variations in solar energy production which

cannot always be stored. Seasonal-dependency of prices stimulate slightly more

unstable behavior of a profit-oriented operator for both levels of grid connection

capacity, due to additional trading to benefit from price differences.

6.5.4 Peak utilization of the grid connection capacity

Figure 6.9 and 6.10 show the fraction of runs in which the sold electricity equals

the grid connection capacity for both a limited (kc = 10) and high (kc = 30) grid

connection capacity. For kc = 10, Figure 6.9 illustrates that the profit-oriented

and storage-priority policies behave similarly in the sense that both reach the grid
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Figure 6.8: Standard deviation per run of sold electricity for a low grid connection
capacity (a, kc = 10) and high grid connection capacity (b, kc = 30)

connection capacity limit in the summer peak for 62% and 60% of the runs in the

simulation respectively. Price elasticity levels do not influence the behavior of the

profit-oriented SPH operator, because the limited grid connection capacity does not

allow additional trading on the grid.

For a high grid connection capacity (kc = 30), the heuristic which prioritizes

storage does not reach the grid connection capacity limit, since it only sells to the

grid when storage capacity is reached, whereas the profit-oriented heuristic also sells

from storage to the grid. The profit-oriented heuristic reaches the grid connection

capacity limit less often, that is, 6.7% of the runs during the summer. It can also be

observed that increased levels of price elasticity lead to a reduced fraction of runs in

which the capacity limit is reached due to reduced selling as a result of low prices in

summer.

These outcomes indicate that the storage-priority heuristic avoids using all grid

connection capacity. This is because the heuristic stores the overages whenever

possible and only sells to the grid when the storage capacity is reached.
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Figure 6.9: Fraction of runs sold electricity is equal to grid connection capacity (kc =
10)
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Figure 6.10: Fraction of runs sold electricity is equal to grid connection capacity (kc =
30)
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6.5.5 Curtailment and unmet demand

Figure 6.11 illustrates the fraction of runs in which curtailment occurs for a limited

grid connection capacity (kc = 10) and different price-elasticity levels. It can be

seen that the storage-priority policies do not cause any curtailment, whereas the

profit-oriented policies lead to curtailment. This is because the storage-priority

policies do not lead to reaching the maximum storage capacity, and sufficient

storage capacity remains available. The fraction of runs in which curtailment occurs

increases from peak levels of 3.2% to peak levels of 20.9% for price elasticity levels

up to 2 for the profit-oriented policies. This indicates that the operation of storage

with profit-oriented policies leads to curtailment-related losses which increase when

prices react more strongly to differences in net production levels.

Figure 6.12 shows that, for a limited grid connection capacity of 10 MWh per

day, both policies lead to similar levels of unmet demand. In the winter, these occur

most frequently for the storage-priority heuristic with up to 74% of the runs. Price

elasticity levels do not drastically affect the frequency of these shortages.

For a grid connection capacity of 30 MWh per day, both curtailment and unmet

demand are not present for both types of policies. These results highlight that

profit-oriented storage in combination with limited grid connection capacity and

zonal prices may lead to curtailment losses, whereas the use of storage primarily

to bridge seasonality differences in solar electricity production and local demand

can help to avoid curtailment.
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Figure 6.11: Fraction of runs curtailment occurs (kc = 10)

Price elasticity: 0 Price elasticity: 1 Price elasticity: 2

0 100 200 300 0 100 200 300 0 100 200 300

0.0

0.2

0.4

0.6

Day

F
ra

c
ti
o

n
 o

f 
ti
m

e
 u

n
m

e
t 

d
e

m
a

n
d

Heuristic Profit−oriented Prioritize storage

Figure 6.12: Fraction of runs curtailment occurs (kc = 10)
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6.5.6 Revenue as a result of buying and selling

Figure 6.13 shows the average total annual revenue for the profit-oriented (blue) and

storage-priority heuristic (red) as a result of buying from and selling to the grid for

different levels of price elasticity. The total revenue displayed in Figure 6.13 contains

revenues from both 1) interacting with the grid, and 2) the revenue from selling to

the local demand. We include revenues from selling to the local demand to avoid

negative revenues as a result of interacting with the grid. The revenue from the

local demand is constant and known and amounts to 180,477. It is calculated as the

average price times the average yearly consumption. The left and right graphs show

the total revenues for a low (kc = 10) and high (kc = 30) grid connection capacity

respectively.

Figure 6.13 indicates that revenues are negatively related to the price elasticity

to net production levels for both heuristics. The lower prices in summer outweigh

the higher prices in winter, even though the storage facility enables selling energy in

winter.

Grid connection capacity expansion leads to higher revenues for the

profit-oriented operator since this enables more trading with the grid. In contrast,

this reduces revenues for the non-profit-oriented operator that prioritizes the use of

storage to cover shortages and overages. While capacity expansion enables reducing

unmet demand and curtailment, the lower profits are caused by selling decisions at

times of unfavorable prices when storage is prioritized.
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Figure 6.13: Average revenue per year as a result of buying and selling for a low grid
connection capacity (a, kc = 10) and high grid connection capacity (b, kc = 30)

6.6 Conclusion

Development of solar parks starts to cause congestion problems at electricity grids,

which increasingly leads to the need for curtailment. To avoid curtailment and

congestion, seasonal hydrogen storage, supply-based pricing, and grid capacity

expansion are possible solutions problems by stabilizing the supply to the grid.

Particularly hydrogen storage may help to solve seasonality differences in supply

and demand while mitigate peak supply to the grid connection. Moreover,

supply-based pricing motivates the storage of energy during high availability and

discharge during low availability. However, the profit-maximization behavior of a

privately-owned SPH facility with hydrogen storage may disturb this mechanism

due to opportunistic buying and selling.

In this study, we have examined whether solar parks with hydrogen storage

should be operated with a profit-orientation or a non-profit-orientation with the aim

to stabilize feed-in to the grid. We develop heuristics for both cases and compare

their effect in terms of selling decisions to the grid. We also studied how the volatility
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of electricity sold to the electricity grid is affected by different price elasticity levels

and grid connection capacities.

Our results show that while profit-oriented storage operations facilitate seasonal

storage buildup most of the time, the price-based opportunistic sales to the

grid cause unnecessary maximum utilization of the grid connection capacity,

while curtailment is needed at other times when storage is full. Moreover, the

profit-maximizing objective of the SPH facility creates unstable selling decisions

which lead to peaks in the utilization of the cable connection in case storage solutions

are also in place. In contrast, non-profit-oriented decisions which are independent of

prices and prioritize the use of storage also create similar seasonal storage patterns,

but enable much more stable selling decisions to the grid and result in lower storage

requirements. This is because prices do not affect the related storage decisions.

The results also reveal that grid connection capacity expansion should be done

with care. While it reduces the levels of curtailment and unmet demand for

both types of policies, it leads to selling decisions that introduce a much higher

variability of feed-in to the electricity grid. This is the case for both profit and

non-profit oriented storage, even though the selling decisions of the latter remain

more stable. Grid connection capacity expansion creates higher revenues for the

profit-oriented facility owner, but reduces revenues in case the facility is operated

when prioritizing the use of storage. This is unfavorable from the perspective of

the grid operator, because the considered non-profit oriented storage yields the most

stable selling decisions. While capacity expansion of the grid connection also reduces

the peaks in which the facility utilizes the maximum capacity, the higher levels

of supply-induced variability into the electricity network are not desirable from a

congestion management perspective and potential resulting congestion problems

elsewhere in the grid.

The elasticity of prices to net production levels do not affect the stability of the

amounts sold, while, as expected, they do have a negative impact on revenues and

lead to curtailment in the case of profit-oriented policies. Therefore, this suggests

that prices which react more strongly to the net energy availability are not beneficial

for both SPH facility operators and the grid, since these lead to reduced revenues,

curtailment and do not contribute to a stable grid feed-in.

In conclusion, the non-profit-oriented operation of the SPH facility that

prioritizes storage to cover shortages and overages is most beneficial in terms of
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stable feed-in to the grid. Expensive grid connection capacity expansion should

be done with care when storage is already installed, since it leads to more overall

variability of the grid feed-in for profit and non-profit oriented policies, and

higher storage requirements and reduced revenues for the non-profit-oriented SPH

facility operator. Therefore, a balance must be found in which a combination of

non-profit-oriented storage with capacity expansion reduces peak utilization of the

cable, curtailment and unmet demand, but prevents a high variability of feed-in to

the grid.
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Conclusions

In this thesis, we executed five studies that all contributed to the main research

question of this thesis: How should the decentralized storage and distribution of

biogas, solar, and wind energy be organized and adapted to enable effective embedding in

existing grid infrastructure? Together the studies addressed three different domains,

being ”Transportation logistics”, ”Seasonal matching of supply and demand”, and

”Operation of storage”.

In this chapter, we first draw conclusions starting with the detailed conclusions

from each of the studies. Next, we reflect on the theoretical and societal implications

for each of the distinguished domains and present opportunities for further research.

Since the conclusions have already been thoroughly discussed in each chapter, we

will limit this section to a summary of specific findings that are relevant to the

considered domains.

7.1 Conclusions

In this section, we start by summarizing the insights from each of the studies for

the related research domain and end with conclusions regarding our main research

question.
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7.1.1 Transportation logistics

Within the domain of transportation logistics, we answer two specific research

questions that contribute to gaining more understanding of transportation logistics

problems in the energy transition.

In Chapter 2, we have addressed the research question: How should biogas be

distributed using trucks with tube trailers from digesters to centralized upgrading facilities?

We studied a biogas inventory-constrained routing problem in continuous-time in

which trucks exchange empty cylinders for full ones at each farm to transport these

to an upgrading and injection facility. We provided a mathematical formulation

and introduced valid inequalities which were effective in reducing the computation

times on average with 93%. The solutions indicate that transportation time is

minimized when the number of available cylinders at each farm is larger than or

equal to the truck capacity. This enables the vehicle to visit fewer farms per tour.

Both the average transportation time and the average number of suppliers visited

per tour generally decrease for larger supplier storage capacities until the storage

capacity is larger than or equal to the vehicle capacity. In 95% of the studied

instances, the average content levels of the cylinders exceed 99.6% in the optimized

solutions. This indicates that there are limited benefits related to collecting cylinders

while partly filled to reduce the transportation time of the schedules.

In Chapter 3, we have addressed the research question: Under which conditions is

the application of LNG economically viable for LNG-fueled ships compared to conventional

ships? We have developed an investment appraisal model to compare the total

exploitation costs of LNG-fueled ships with conventional ships. We found that

fuel costs of LNG-fueled ships are often lower than conventional ships, even for

unfavorable LNG prices. The cost-effectiveness of LNG-fueled ships is strengthened

for larger ships that have higher overall fuel consumption levels and ships that have

a high presence in ECA zones. This also indicates that using biogas as bio-LNG can

be economically viable as a fuel in shipping.

7.1.2 Seasonal matching of supply and demand

In Chapter 4, we have addressed the research question: How should biogas, wind,

and solar energy be combined across seasons and how is this affected by the level of total

production capacity and storage capacity? We studied this question to realize the lowest
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production and storage capacity requirements when supplying a self-sufficient

community of households with locally produced electricity. We examined the shares

of each source for different combinations of production and storage capacity and

found that constant sources such as biogas in combination with wind energy are

most effective in reducing combined storage and production requirements. For

small total production levels, biogas can supply both peaks and base-load, leading

to relatively high storage requirements in which mostly biogas is stored. For higher

levels of total production, the optimal share of wind production increases, because

some excess production allows for curtailment of unfortunately-timed wind peaks,

which allows substantial reductions to be made in storage requirements. When the

total production capacity exceeds 130% of the total demand, the optimal share of

wind approaches zero, in which curtailment of electricity from biogas enables very

low storage requirements.

7.1.3 Operation of storage

In Chapter 5, we have addressed the research question: Under which conditions

should the owner of solar fields with hydrogen buy and sell from and to the grid to

maximize profits? We studied the problem of a solar park owner with hydrogen

storage that supplies electricity to a connected set of households and is also

connected to the electricity grid. Using a Markov Decision Process, we determine

the optimal daily buying and selling decision of the facility owner to maximize

the expected profits. We explicitly take into account seasonality differences in

supply and demand and the uncertainty associated with electricity prices, electricity

consumption, and solar energy production. We found that optimal policies are

characterized by price thresholds that separate different types of actions. These

include buying the maximum possible quantity, selling exactly overages or buying

exact shortages, storing overages or obtaining shortages from storage, or selling

the maximum amount possible. We also show that ignoring seasonal demand and

production patterns is suboptimal and that introducing hydrogen storage transforms

loss-making interactions with the grid into profitable ones. We found that the

distribution capacity should not be too small to prevent local grid congestion. In

contrast to what may be expected, a higher storage capacity increases the number of

buying actions from the grid, thereby causing more congestion, which is problematic

for the grid operator. Accordingly, profit-maximizing hydrogen storage operation
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alone is not an alternative to grid expansion to solve congestion, which is essential

knowledge for policy-makers and grid operators.

In Chapter 6, we have addressed the research question: How should solar fields with

hydrogen storage be operated to alleviate congestion? We compare profit-oriented storage

operation strategies with the strategy that always prioritizes storage to cover net

overages or shortages. Profit-maximization by the storage owner creates an unstable

feed-in to the grid, which may lead to potential congestion problems elsewhere in the

grid. In contrast, the operation of storage by prioritizing the use of storage to cover

net production differences leads to a lower level of volatility of the feed-in to the grid.

It also reduces storage requirements by creating a similar seasonal storage pattern.

Expanding the distribution capacity for both profit-oriented and storage-prioritizing

operation strategies increases the volatility of grid feed-in. This reduces revenues for

storage-prioritizing strategies, which is unfavorable for the grid operator because

this negatively affects the economic viability of these price-independent strategies.

7.1.4 General conclusions

The findings of each study provided a small contribution to answering the main

research question How should the decentralized storage and distribution of biogas, solar,

and wind energy be organized and adapted to enable effective embedding in existing grid

infrastructure? It can be concluded that biogas production has a useful role in

decentralized energy systems both as a gas, in the form of LNG, and after conversion

to electricity. To enable effective embedding in existing infrastructure, the biogas can

serve to complement fossil methane in existing gas grids and provide a constant

electricity source by complementing other renewable sources. Biogas can be stored

in cylinders located close to biomass sources. Being further away from gas injection

points, it can be transported with vehicles with tube trailers. To minimize the

transportation time, biogas-producing farms should have sufficient storage capacity

to allow for full truckloads and single tours. Clean fuels such as (bio-) LNG also

have an important role in the transportation sector, in which LNG was found to

be an economically viable alternative to conventional oil-based fuels in shipping.

When biogas is converted to electricity, it can complement other renewable sources

by providing a base-load level of electricity for the local demand of households.

Wind and solar energy can then provide energy during peaks in electricity demand.

This helps to reduce the overall storage and production capacity requirements. In
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general, wind shows a better matching supply profile than solar as an addition

to base-load supply. While solar energy is a relatively cheap form of electricity,

it can also cause peak loads at the electricity grid connection and potentially lead

to congestion problems. Hydrogen storage is a solution to reduce peak loads but

also to bridge seasonality differences between supply and demand. Optimizing the

buying and selling decisions for a storage owner/operator can increase revenues and

help to increase the economic viability of hydrogen. However, operating storage to

benefit from price differences increases the volatility of the grid feed-in, which is

problematic from a broader perspective. Operating storage independent of prices

helps to stabilize the feed-in to the grid. However, this leads to lower revenues for

the facility owner, and thus requires further consideration.

The combined conclusions from the executed studies bring us some steps

forward in our thinking on how decentralized storage and distribution of biogas,

solar, and wind energy should be organized in the energy transition. Still, the

implications should be carefully considered before making any recommendations

on transition policies.

7.2 Implications and further research

In this section, we present a discussion in which we reflect on both the societal

and scientific implications of the research projects developed in this thesis and we

provide directions for further research. We present the discussion separately for each

of the three domains and the studies executed within these domains.

7.2.1 Transportation logistics related to biogas and LNG

In the research developed in Chapters 2 and 3, we study the distribution problem of

biogas to centralized upgrading and injection facilities and study the viability of one

application of biogas as LNG in the shipping sector.

Biogas distribution to upgrading facilities

Biogas can play an important role as an energy source in the energy mix of areas,

due to its constant output profile and due to its applicability in providing a stable

and constant electricity source with a Combined-Heat and Power (CHP) engine. It
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can also complement natural gas in existing gas grids after having been upgraded to

green gas. However, it is important in the supply chain of biogas, to keep production

close to biomass sources to avoid long-distance transportation of low-energy-density

feedstock (Pierie et al., 2015). Based on the findings by (Hoang et al., 2019), in

which the authors found that co-digestion causes higher nitrogen emissions than

mono-digestion, the production of biogas by mainly utilizing mono-digestion is

recommended. This limits environmental problems associated with excess nitrogen

flows in using digestate as fertilizer and limits the interference with existing

agricultural practices. However, mono-digestion is considered less economically

viable due to its lower biogas output.

In enhancing the economic viability of green gas supply chains, it is imperative to

minimize the required transportation related to biogas. In Chapter 2, we developed

a model to construct efficient transportation schedules and routes of trucks with

tube trailers in which transportation time is minimized. Based on the findings in

Chapter 2, we recommend that, in the studied transportation system, the number of

exchangeable cylinders at each farm should be at least equal to the vehicle capacity

to minimize the transportation time. This enables trucks to collect full cylinders

and make full use of the vehicle’s capacity. We advise transportation planners

to construct schedules and routes such that trucks visit single farms in which the

operator exchanges and collects as many cylinders as possible. We advise against

combining tours with multiple farms since this increases the transportation time and

thus leads to less efficient routes. From the perspective of the farm, it is advisable to

implement mono-digestion facilities, since mono-digestion in which local manure is

utilized limits the transportation of other low-energy-density feedstock compared to

co-digestion while the biogas with a high energy density is collected by trucks that

transport the biogas to upgrading and injection facilities.

It is important to note that, in the solutions found in Chapter 2, the trucks remain

idle for relatively long periods between tours. Therefore, it is important that the

trucks are used for other transportation purposes and that schedules are combined

with trucks performing other tours in schedule gaps. Based on the solutions in

Chapter 2, feasible and efficient schedules can be made when introducing time

windows that enable truck drivers to work during working hours. It is also

important to note that our model may create unevenly distributed arrival times of

cylinders at the upgrading and injection facility. This should be taken into account
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when implementing such transportation systems in practice. Within our study,

the utilization levels of upgrading facilities would directly result from the studied

supply quantities. In future studies, utilization may be an important performance

metric as low utilization levels are undesirable for the economic viability of the

facility. A similar consideration relates to the handling times of the cylinders

which need to be connected, disconnected, and loaded onto a truck. These were

not explicitly modeled in our studies since these times could be reflected in the

transportation time for each connection to the upgrading facility. But in future

practices, they may need explicit attention.

Further research

We recommend further research to focus on the above-mentioned aspects, which

include the examination of obtaining evenly distributed arrivals of cylinders at the

upgrading facility. Other research avenues include solving problem instances with

multiple vehicles, and the minimization of the needed cylinders. This could even be

made part of the objective function of the used model. Finally, future research may

focus on optimal fleet sizes of vehicles and the development of models that can solve

larger instances.

The application and viability of LNG in shipping

LNG is recognized as a promising transition fuel in making the shipping sector

cleaner and replacing oil-based fuels. It is also an important fuel in complying with

IMO 2020 regulations which limit the use of those fuels with sulfur contents that

cannot exceed 0.1% m/m. However, the economic viability of LNG depends on the

combination of LNG prices, investment costs of the engines, and the execution of

optimal bunker strategies that make use of the time spent in Emission Controlled

Areas (ECA) during a tour in switching between different fuels.

Our findings suggest that LNG in the shipping industry can be economically

viable for ship-owners. It is important to examine the conditions under which

the total exploitation costs of LNG-fueled vessels are lower than conventional

vessels to facilitate the adoption of LNG dual-fuel engines. Based on the findings

in Chapter 3, this is the case if conventional Marine Gasoil (MGO) prices are

considerably higher than LNG and for ships that spent a high percentage of time
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in ECA zones. Moreover, LNG-fueled vessels were even more competitive than

conventional vessels at relatively unfavorable LNG prices. This indicates that LNG

is a promising fuel to comply with ECA regulations. However, there are still issues

associated with LNG, that hinder adoption. This includes the limited bunkering

infrastructure in ports worldwide. Moreover, the use of LNG in shipping is also

associated with possible small levels of methane slip, in which methane enters

the atmosphere. This is problematic since methane is a potent greenhouse gas.

Moreover, recent developments related to hydrogen as a fuel for ships may lead

to the adoption of hydrogen as one of the main future fuels in shipping. This may

compete with LNG as a future fuel, in which green hydrogen is a cleaner alternative

to LNG.

Further research

We recommend further research to focus on developing more comprehensive

frameworks to evaluate the use of LNG as a fuel that includes other aspects such

as the limited bunkering infrastructure and competing fuels, besides research into

the opportunities for hydrogen in the shipping industry.

7.2.2 The combination of biogas with wind and solar energy

In Chapter 4, we study the trade-off between installed production capacity and

storage capacity requirements when combining biogas with wind and solar energy

in supplying electricity to a self-sufficient community of households. This is useful,

because a high level of production capacity reduces the need for storage, but leads

to high curtailment due to excess availability of electricity. However, a lower

level of production capacity increases the amount of required storage to prevent

shortages. In matching the production profiles of biogas, wind, and solar energy

to the electricity demand profile, it is important to think carefully about the share

of each source of the installed capacity. Whereas biogas production is relatively

constant, solar and wind supply are dependent on the weather.

This study highlights the usefulness of having constant energy sources in the

electricity mix, even if these sources are supply-driven and inflexible. In particular,

this holds when matching constant energy sources to the electricity demand of

households. Constant energy sources can provide a baseload level of supply, and
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in combination with wind energy, can be better matched with demand as a result

of peaks in wind production. However, it is important to note that our study

suggests that the shares of wind and biogas to minimize combinations of storage and

production capacity are such, that this cannot be realized on a large scale in practice.

For example, large-scale biogas production does not provide sufficient electricity

and might require a lot of low-energy-density feedstock to be transported over large

distances. This also raises the question of whether biogas should be used to such an

extent for generating electricity. It is also important to consider biogas as a source to

contribute to heat demand. At the same time, this underlines the applicability and

usefulness of biogas in supplying energy to local communities and villages from a

logistics perspective. Local villages with an abundance of manure can effectively

use the manure for energy production, provided that the manure is not transported

over large distances. It is important to note that we have not considered the viability

aspect and avoided the inclusion of costs in our study to focus specifically on the

production and demand profiles.

Further research

Further research avenues include investigating how different shares of renewable

sources in the energy mix and storage capacity levels affect the electricity load sent

to the grid and lead to potential grid congestion problems. Since our study only

included electricity demand by households, future research may incorporate the

1) changing electricity demand profiles as a result of increased adoption of heat

pumps in transitioning from natural gas-based to electricity-based fulfillment of

heat demand, and the 2) energy demand in different forms such as hydrogen or

(upgraded) green gas.

7.2.3 The operation of solar parks with hydrogen storage and local
grid congestion

In Chapter 5-6, we study the operation of solar parks connected to local communities

which aim to be self-sufficient and the electricity grid. Since complete self-sufficiency

requires extremely high storage requirements, a connection with the grid is sensible.

However, the peak utilization of the grid connection and associated congestion due

to solar energy production in the summer is problematic, and hydrogen storage is
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a possible solution. The solar parks convert the generated electricity into hydrogen

and store it in a nearby facility. This raises the question of what kind of buying,

selling, and storing decisions are sensible for the facility owner who faces uncertain

electricity prices, demand, and solar energy production levels. These decisions have

important consequences for the utilization of the cable connection and the associated

congestion. Chapter 5 determines the profit-maximizing buying, selling, and storing

decisions and shows how these affect the peak utilization of the cable connection,

whereas Chapter 6 examines alternative strategies.

The results in Chapter 5 indicate that profit-maximizing hydrogen storage

transforms loss-making grid interactions into profitable ones. This is beneficial

from the standpoint of the economic viability of hydrogen and the development

of hydrogen markets. However, the results indicate that storage flexibility is not

necessarily effective in reducing congestion problems, since profit-oriented owners

of solar fields with hydrogen will also create congestion problems at the distribution

connection as a result of opportunistic trading with the grid. Based on the results

of Chapter 6, it is more effective to reduce local congestion when owners operate

their storage independently from prices by prioritizing the use of storage to cover

shortages or overages in the net production after the local electricity demand

of connected households has been fulfilled. While this is associated with lower

revenues, it reduces both the volatility of feed-in to the grid and the number of times

in which peak utilization of the distribution connection occurs. Therefore, additional

solutions must be studied which enable more stable grid interactions. One such

solution could be the operation of storage by non-commercial parties.

The results in Chapter 6 also indicate that grid operators should be careful

in expanding the distribution capacity of the grid connection, both when

profit-oriented and price-independent storage systems are applied. For both types

of storage operation strategies, the volatility of feed-in to the grid increases,

potentially increasing congestion elsewhere in the grid. While the storage owner

of the price-independent operation feeds electricity to the grid with the lowest

volatility, its profits decline when distribution capacity is expanded, which reduces

the incentive to utilize storage facilities connected to solar fields. It is important to

note that markets for flexibility aimed at mitigating congestion should incentivize

the profit-oriented facility operator to only feed in electricity when no congestion is

expected. In electricity markets for congestion flexibility, prices are reduced when
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the grid operator forecasts congestion in the network. However, the accuracy of

price responses to local congestion depends on the geographic resolution of prices

in the market. In the case of zonal prices, which are most common, a relatively

low geographic resolution applies and prices are uniform for a certain zone. In

this case, prices do not fully respond to congestion caused by the individual facility

operator within a zone. This creates opportunities for the facility owner to engage

in opportunistic trading. In contrast, higher-resolution nodal prices can alleviate

this, in which prices can be determined for single grid connections. However,

nodal markets are characterized by a low level of liquidity, because very few

market participants are active (Ehrenmann and Smeers, 2005). Moreover, the facility

owner can then possibly influence prices due to a low number of local market

participants. To the best of our knowledge, the interactions between electricity prices

and the offerings of storage facility owners, and the relationship with congestion

in nodal markets are not yet fully known. This is also the case for multiple

market participants that operate storage facilities, in which their interactions and

implications to congestion problems are not directly evident.

Further research

Further research avenues include the investigation of the interaction between

electricity prices and the offerings of storage facility owners and the relationship

with grid congestion in nodal price-based electricity markets. Multi-objective

optimization models might provide further insights into the possibilities to

combine the objectives of maximizing storage profits with minimizing congestion

problems. Moreover, the interaction between multiple market participants with

storage facilities on congestion throughout electricity networks is another relevant

research direction. Finally, future research may address the role and activities

of distribution system operators (DSO) in combination with storage facilities in

mitigating congestion and ensuring sufficient revenues and the economic viability

of hydrogen storage facilities.

7.2.4 Implications for the energy transition

This thesis was initiated from the ADAPNER project to successfully organize the

energy transition from both an environmental and logistics perspective. In doing so,
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we address solutions for five logistics problems, which contribute to this goal. We

first addressed a biogas transportation problem and an economic viability problem

related to a cleaner fuel such as LNG in shipping. This was followed by combining

multiple energy sources and settings that include hydrogen storage. When looking

at the thesis as a whole, it becomes clear that all the challenges and insights are

interrelated. Below, we present our view on the organization and application of

decentralized renewable energy systems.

Useful role of biogas

Firstly, we argue that biogas does have a useful role in electricity systems and

the application of transition fuels in the transportation sector. This is because

1) its constant supply profile enables reduced storage and production capacity

requirements in the electricity supply chain, 2) manure which is abundantly

available in rural areas the energy potential, and 3) (bio-) LNG can be a

suitable transition fuel in other sectors such as in the shipping industry. While

mono-digestion limits excess nitrogen flows when using the digestate as fertilizer

(Hoang et al., 2019), it is important to mention that the use of digestate instead of

manure to fertilize soils is interfering with the present agricultural practices (Hoang

et al., 2019). These issues should be addressed before biogas production on dairy

farms can take place at large scales. Furthermore, combining the production of

electricity with a CHP engine with biogas upgrading and injection into pipeline grids

creates opportunities for short-term flexibility, since CHP engines can be turned on

or off and create heat that can be captured when operated.

Multi-commodity energy systems

Secondly, our view on energy systems is that they should be multi-commodity

energy systems that consist of multiple sources and which are stored in multiple

forms. This enables increased opportunities for flexibility and is in line with other

literature (D’Souza et al., 2018; Mancarella, 2014; van der Burg et al., 2015). Since we

recommended avoiding unnecessary conversion steps, multi-commodity systems

are needed, because energy is demanded by consumers in multiple forms, and the

different profiles of different sources and consumer demand create opportunities

for reducing the needed storage and production capacity. Storage and production
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capacity have an important relationship, in which high production capacity leads

to low storage requirements, but high curtailment and vice versa. This relationship

and the role of different renewable sources are important to consider when designing

multi-commodity energy systems.

Grid connection capacity balanced with storage

Thirdly, we argue that energy systems should have electricity grid infrastructure

in which the grid connection capacity is balanced with storage systems to avoid

the expensive investment in overcapacity of either electricity grids or storage

facilities. To remain adaptive for future changes in production and consumption

levels, this balance is especially important, since future increases in production and

consumption levels would require sufficient storage and electricity grid connection

capacity levels. The successful functioning of these systems depends on the

development of markets for flexibility in which prices are established with a

sufficient geographical resolution, and that respond such that they provide the

proper incentives to profit-maximizing facility owners with storage facilities to avoid

congestion. Future research must address the organization of these markets that

include storage facilities. Other options include the operation of storage facilities by

a Distribution Service Operator (DSO) to exercise control over the in- and out-feed

of storage. This also alleviates issues related to illiquidity in nodal price markets and

the high market power of storage owners when storage is owned by a private market

participant. Storage can then be seen as an alternative to grid extension available to

the DSO.

The above-mentioned aspects underline the importance of considering the

energy transition from multiple domains to effectively organize the decentralized

storage and distribution of biogas, solar, and wind energy and enable effective

embedding in existing grid infrastructure.
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Korpås, Magnus, Christopher J. Greiner. 2008. Opportunities for hydrogen

production in connection with wind power in weak grids. Renewable Energy 33(6)

1199 – 1208.

Koudouris, Giannis, Panayiotis Dimitriadis, Theano Iliopoulou, Nikos Mamassis,

Demetris Koutsoyiannis. 2017. Investigation on the stochastic nature of the solar

radiation process. Energy Procedia 125 398 – 404.



208

Kumar, Ashwani, S.C. Srivastava, S.N. Singh. 2005. Congestion management in

competitive power market: A bibliographical survey. Electric Power Systems

Research 76(1) 153 – 164.

Lahyani, Rahma, Leandro C Coelho, Mahdi Khemakhem, Gilbert Laporte, Frédéric

Semet. 2015. A multi-compartment vehicle routing problem arising in the

collection of olive oil in Tunisia. Omega 51 1–10.

Lamy, Claude. 2016. From hydrogen production by water electrolysis to its

utilization in a pem fuel cell or in a so fuel cell: Some considerations on the energy

efficiencies. International Journal of Hydrogen Energy 41(34) 15415 – 15425.

Larrain, Homero, Leandro C Coelho, Alejandro Cataldo. 2017. A variable mip

neighborhood descent algorithm for managing inventory and distribution of cash

in automated teller machines. Computers & Operations Research 85 22–31.

Lauer, Markus, Jason K. Hansen, Patrick Lamers, Daniela Thrän. 2018. Making

money from waste: The economic viability of producing biogas and biomethane

in the idaho dairy industry. Applied Energy 222 621–636.

Law, Averill M, W David Kelton, W David Kelton. 2000. Simulation modeling and

analysis, vol. 3. McGraw-Hill New York.

Lee, Jui-Yuan, Kathleen B. Aviso, Raymond R. Tan. 2018. Optimal sizing and design

of hybrid power systems. ACS Sustainable Chem Eng 6(2) 2482–2490.

Li, Danny H.W., Liu Yang, Joseph C Lam. 2013a. Zero energy buildings and

sustainable development implications – a review. Energy 54 1–10.

Li, Kunpeng, Bin Chen, Appa Iyer Sivakumar, Yong Wu. 2014. An inventory–routing

problem with the objective of travel time minimization. European Journal of

Operational Research 236(3) 936 – 945.

Li, Yanhui, Hao Guo, Lin Wang, Jing Fu. 2013b. A hybrid genetic-simulated

annealing algorithm for the location-inventory-routing problem considering

returns under e-supply chain environment. The Scientific World Journal

2013(125893) 1–10.



BIBLIOGRAPHY 209

Li, Zhenhao, Chun Sing Lai, Xu Xu, Zhuoli Zhao, Loi Lei Lai. 2021. Electricity trading

based on distribution locational marginal price. International Journal of Electrical

Power & Energy Systems 124 106322.

Liu, Bailing, Hui Chen, Yanhui Li, Xiang Liu. 2015. A pseudo-parallel

genetic algorithm integrating simulated annealing for stochastic

location-inventory-routing problem with consideration of returns in e-commerce.

Discrete Dynamics in Nature and Society 2015(586581) 1–15.

Liu, Shu-Chu, Chich-Hung Chung. 2009. A heuristic method for the vehicle routing

problem with backhauls and inventory. Journal of Intelligent Manufacturing 20(1)

29–42.

Lund, Peter D, Juuso Lindgren, Jani Mikkola, Jyri Salpakari. 2015. Review of energy

system flexibility measures to enable high levels of variable renewable electricity.

Renewable and sustainable energy reviews 45 785–807.
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Wild Ingenieurbüro. 2005. Determination of energy cost of electrical energy

on board sea-going vessels. URL http://www.effship.com/PartnerArea/

MiscPresentations/Dr_Wild_Report.pdf.

Won, Wangyun, Hweeung Kwon, Jee-Hoon Han, Jiyong Kim. 2017. Design

and operation of renewable energy sources based hydrogen supply system:

Technology integration and optimization. Renew Energy 103 226–238.

Woo, Chi-Keung, Ira Horowitz, Arne Olson, Brian Horii, Carmen Baskette. 2006.

Efficient frontiers for electricity procurement by an LDC with multiple purchase

options. Omega 34(1) 70 – 80.

Yamashita, Denise, Bruno Jensen Virginio da Silva, Reinaldo Morabito, Paulo César

Ribas. 2019. A multi-start heuristic for the ship routing and scheduling of an oil

company. Computers & Industrial Engineering 136 464 – 476.

Yang, Yuqing, Stephen Bremner, Chris Menictas, Merlinde Kay. 2018. Battery

energy storage system size determination in renewable energy systems: A review.

Renewable and Sustainable Energy Reviews 91 109–125.

Yuan, Z., M. R. Hesamzadeh, D. R. Biggar. 2018. Distribution locational marginal

pricing by convexified acopf and hierarchical dispatch. IEEE Transactions on Smart

Grid 9(4) 3133–3142.

Zakaria, A., Firas B. Ismail, M.S. Hossain Lipu, M.A. Hannan. 2020. Uncertainty

models for stochastic optimization in renewable energy applications. Renewable

Energy 145 1543 – 1571.

Zhang, Yang, Pietro Elia Campana, Anders Lundblad, Jinyue Yan. 2017.

Comparative study of hydrogen storage and battery storage in grid connected

photovoltaic system: Storage sizing and rule-based operation. Applied Energy 201

397–411.



216

Zhao, Bo, Xuesong Zhang, Peng Li, Ke Wang, Meidong Xue, Caisheng Wang. 2014.

Optimal sizing, operating strategy and operational experience of a stand-alone

microgrid on Dongfushan Island. Applied Energy 113 1656–1666.

Zhao, Qiu-Hong, Shuang Chen, Cun-Xun Zang. 2008. Model and algorithm for

inventory/routing decision in a three-echelon logistics system. European Journal

of Operational Research 191(3) 623–635.

Zhou, Yangfang (Helen), Alan Scheller-Wolf, Nicola Secomandi, Stephen Smith.

2019. Managing wind-based electricity generation in the presence of storage and

transmission capacity. Production and Operations Management 28(4) 970–989.
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Summary

Supply chain and operations management decisions are important in the transition

from fossil-based energy sources to renewable energy. This thesis addresses

decision-making problems related to balancing and organizing the storage and

distribution of biogas, hydrogen, and electricity from solar energy, and wind energy

for energy producers. The decisions aim at balancing and operating storage,

production, and transportation in rural areas to avoid excess production or storage

capacity, electricity grid congestion, and curtailment. They also aim to provide

a stable supply of renewable energy to rural communities. Moreover, this thesis

addresses the use of LNG in the transportation sector, by showing under which

conditions LNG-fueled ships are more economically viable than conventional ships.

The need for a more sustainable energy system and the shift to renewable energy and

less polluting fuels causes logistics problems related to the renewable energy supply.

In particular, the transition towards more renewables creates problems related to

supply-driven energy generation, location differences between energy production

and energy demand, and the mismatch in production and demand profiles over

time. This leads to curtailment of energy, irregular feed-in to the electricity grid,

and transportation challenges related to the distribution of biogas.

From both a logistics and societal standpoint, it is sensible that the

production-related logistics problems should be addressed based on a decentralized

approach, in which energy that is produced locally is consumed locally as much

as possible. This enables avoiding transmission losses, excessive feed-in to the

electricity grid, curtailment, and transportation. From a societal perspective, a

decentralized approach also addresses the desires of local communities that reside

close to renewable energy production facilities who do not want to live near energy

facilities when the produced energy is consumed elsewhere.
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While production and consumption can both occur locally, a decentralized

approach still requires efficient transportation systems to connect the supply to the

demand elsewhere. This is needed, because (partly) self-sufficient systems with

fewer actors create fewer possibilities for flexibility. Additionally, (peak) energy

production of wind, solar, and biogas needs sufficient distribution infrastructure in

the form of an electricity or pipeline grid. This makes the organization of logistics

imperative.

In the transition period, transportation of gasses by trucks and ships may be

expected. This requires the transportation industry to also adapt to the transition

towards cleaner fuels, by making more use of less polluting fuels such as hydrogen,

LNG, and biogas. In particular, ships are increasingly adopting alternative fuels to

reduce emissions. However, the adoption of new fuels creates decision problems for

ship-owners related to the investment in ships and infrastructure.

In the transition to cleaner fuels, storage plays an important role in which it

can act as a temporary buffer for the transportation of hydrogen, LNG, or biogas.

Storage is also important for the bridging of seasonal and short-term differences

between supply and demand in electricity, and to avoid curtailment and electricity

grid congestion. Short-term storage can be realized in the form of batteries that can

mitigate intra-day fluctuations in production and consumption. Seasonal storage of

electricity requires storage in a converted form such as hydrogen or methane.

This thesis is based on the project entitled “ADAPNER” (Adaptive logistics in a

circular economy) which aims to ”Determine optimized adaptable and sustainable

configurations for different distribution alternatives regarding biomass and biogas in

a circular economy”. The objective of this thesis is to determine these configurations

for different decentralized renewable energy production, storage, and distribution

alternatives. These include wind, photovoltaic (PV), biogas, LNG, and hydrogen.

Our main research question is: How should the decentralized storage and distribution of

biogas, solar energy, and wind energy be organized and adapted to enable effective embedding

in existing grid infrastructure?

In five different chapters, we have contributed with the above research question

to three domains that include 1) Transportation logistics, 2) Seasonal matching of

supply and demand, and 3) Operation of storage facilities. Each chapter contributes

to different aspects of these domains.

Chapter 2 and 3 focus on the domain ”Transportation logistics”. In Chapter
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2, we have addressed the research question: How should biogas be distributed using

trucks with tube trailers from digesters to centralized upgrading facilities? Accordingly, we

have addressed the routing and inventory decisions of vehicles that transport biogas

in cylinders from decentralized farms to centralized upgrading facilities that inject

the gas into the pipeline grid. We have provided a mathematical formulation and

introduced valid inequalities that have been effective in reducing computation times

with 93% on average. We found that the transportation time is minimized when

vehicles make single uncombined tours in visiting the farms and when the storage

capacity in the number of cylinders at each farm exceeds the vehicle capacity. We

also found that there are no benefits related to collecting cylinders that are partially

filled.

In Chapter 3, we addressed the research question: Under which conditions are

the application of LNG economically viable for LNG-fueled ships compared to conventional

ships? We developed an investment appraisal model and compared the total

exploitation costs of LNG-fueled ships with conventional ships. We found that

fuel costs of LNG-fueled ships are often lower than conventional ships, even for

unfavorable LNG prices relative to other marine fuels. The cost-effectiveness

of LNG-fueled ships is strengthened for larger ships that have higher overall

fuel consumption levels and ships that have a high presence in ECA (Emission

Controlled Areas). This also indicates that using biogas as bio-LNG can potentially

be economically viable as a fuel in shipping.

In Chapter 4, we focus on balancing local supply and local demand of electricity

in a rural environment across seasons. We addressed the research question: How

should biogas, wind, and solar energy be combined and how is this affected by the level of

total production capacity and storage capacity? The main goal is to realize the lowest

production and storage requirements when supplying self-sufficient households

with electricity produced locally. We investigated the shares of electricity production

from wind, solar, and biogas for different combinations of storage and production

capacity. We found that for relatively low production levels, biogas can supply both

peaks and base-load, leading to relatively high storage requirements in which mostly

electricity based on biogas is stored. For higher levels of total production, the optimal

share of wind production increases, because some excess production allows for

curtailment of unfortunately-timed wind peaks, which allows substantial reductions

to be made in storage requirements. When the total production capacity exceeds
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130% of the total demand, however, the optimal share of wind approaches zero, in

which curtailment of electricity from biogas enables very low storage requirements.

In Chapter 5, we addressed the research question: Under which conditions should

the owner of solar fields with hydrogen buy and sell from and to the grid to maximize

profits? We considered the problem of a solar park owner with facilities for hydrogen

production and storage that supplies electricity to a set of connected households and

the electricity grid. Using a Markov Decision Process, we determined the optimal

daily buying and selling decision of the facility owner to maximize the expected

profits. We explicitly take into account seasonality differences in supply and demand

and the uncertainty associated with electricity prices, electricity consumption, and

solar energy production. We found that optimal policies are characterized by

price thresholds that separate different types of actions. These include buying

the maximum possible quantity from the grid, selling exact overages or buying

exact shortages, storing overages or obtaining shortages from storage, or selling

the maximum amount possible to the grid. We also show that ignoring seasonal

demand and production patterns is suboptimal and that introducing hydrogen

storage transforms loss-making interactions with the grid into profitable ones. We

found that the distribution capacity should not be too small to prevent local grid

congestion. In contrast to what may be expected, a higher storage capacity increases

the number of buying actions from the grid, thereby causing more local congestion

at the grid connection, which is problematic for the grid operator. Accordingly,

profit-maximizing hydrogen storage operation alone is not an alternative to grid

expansion to solve congestion, which is essential knowledge for policy-makers and

grid operators.

In Chapter 6, we have addressed the research question: How should solar fields with

hydrogen storage be operated to alleviate congestion? We compare profit-oriented storage

operation strategies with the strategy that always prioritizes storage to cover net

overages or shortages. Profit-maximization by the storage owner creates an unstable

feed-in to the grid, which may lead to potential congestion problems elsewhere in the

grid. In contrast, the operation of storage by prioritizing the use of storage to cover

net production differences leads to a lower level of volatility of the feed-in to the grid.

It also reduces storage requirements by creating a similar seasonal storage pattern.

Expanding the distribution capacity increases the volatility of grid feed-in for both

profit-oriented and storage-prioritizing operation strategies. This reduces revenues
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for storage-prioritizing strategies, which is unfavorable for the grid operator because

this negatively affects the economic viability of these price-independent strategies.

It can be concluded that biogas production has a useful role in decentralized

energy systems both as a gas, in the form of bio-LNG, and after conversion to

electricity. To enable effective embedding in existing infrastructure, the biogas can

serve to complement fossil methane in existing gas grids and provide a constant

electricity source by complementing other renewable sources. It can be transported

in tubes and upgraded and injected into the pipeline grid. This requires sufficient

storage capacity at each farm so that vehicles can make single uncombined tours.

When biogas is converted to electricity, it can complement other renewable sources

by providing a base-load level of electricity for the local demand of households.

Wind and solar energy can then provide energy during peaks in electricity demand.

This helps to reduce the overall storage and production capacity requirements. In

general, wind shows a better matching supply profile than solar as an addition

to base-load supply. While solar energy is a relatively cheap form of electricity,

it can also cause peak loads at the electricity grid connection and potentially lead

to congestion problems. Hydrogen storage is a solution to reduce peak loads but

also to bridge seasonality differences between supply and demand. Optimizing the

buying and selling decisions for a storage owner/operator can increase revenues and

help to increase the economic viability of hydrogen. However, operating storage to

benefit from price differences increases the volatility of the grid feed-in, which is

problematic from a broader perspective. Operating storage independent of prices

helps to stabilize the feed-in to the grid. However, this leads to lower revenues for

the facility owner, and thus requires further consideration.

Overall, we conclude that the combined results from the executed studies

bring us some steps forward in our thinking on how decentralized storage and

distribution of biogas, solar, and wind energy should be organized in the energy

transition. Still, the implications should be carefully considered before making any

recommendations on transition policies.





Samenvatting

Beslissingen op het gebied van logistiek zijn belangrijk bij de overgang van

fossiele energiebronnen naar hernieuwbare energie. Dit proefschrift behandelt

besluitvormingsproblemen met betrekking tot het balanceren en organiseren van

de opslag en distributie van biogas, waterstof en elektriciteit uit zonne-energie

en windenergie voor energieproducenten. De beslissingen zijn gericht op het

balanceren en beheren van opslag, productie en transport in landelijke gebieden

om overproductie of teveel opslagcapaciteit, congestie op het elektriciteitsnet en

teveel-geproduceerde energie te voorkomen. Deze beslissingen streven ook naar

een stabiele levering van hernieuwbare energie aan plattelandsgemeenschappen.

Bovendien behandelt dit proefschrift het gebruik van LNG in de transportsector,

door te laten zien onder welke omstandigheden LNG-aangedreven schepen

economisch rendabeler zijn dan conventionele schepen.

De behoefte aan een duurzamer energiesysteem en de verschuiving naar

hernieuwbare energie en minder vervuilende brandstoffen zorgt voor logistieke

problemen met betrekking tot een duurzame energievoorziening. Met name

de overgang naar meer hernieuwbare energiebronnen zorgt voor problemen

met betrekking tot aanbod-gestuurde energieopwekking, locatieverschillen tussen

energieproductie en energievraag, en de verschillen in productie- en vraagprofielen

over tijd. Dit leidt tot teveel geproduceerde energie, onregelmatige teruglevering

aan het elektriciteitsnet en transportuitdagingen in verband met de distributie van

biogas.

Zowel vanuit logistiek als maatschappelijk oogpunt is het verstandig om de

productiegerelateerde logistieke problemen decentraal aan te pakken, waarbij lokaal

geproduceerde energie zoveel mogelijk lokaal wordt verbruikt. Hierdoor kunnen

transportverliezen, overmatige teruglevering aan het elektriciteitsnet, overproductie
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en onnodig transport worden vermeden. Vanuit een maatschappelijk perspectief

komt een gedecentraliseerde aanpak ook tegemoet aan de wensen van lokale

gemeenschappen die dicht bij productiefaciliteiten voor hernieuwbare energie

wonen. Deze willen vaak niet wonen naast hernieuwbare energie productie

faciliteiten terwijl de geproduceerde energie elders wordt geconsumeerd.

Hoewel productie en consumptie van hernieuwbare energie lokaal kan

plaatsvinden, vereist een decentrale aanpak nog steeds efficiënte transportsystemen

om het aanbod en de vraag elders te verbinden. Dat is nodig, omdat (deels)

zelfvoorzienende systemen met minder participanten minder mogelijkheden voor

flexibiliteit bieden. Daarnaast heeft de (piek) energieproductie van wind, zon en

biogas voldoende distributie-infrastructuur nodig in de vorm van een elektriciteits-

of pijpleidingnet. Dit maakt de organisatie van de logistiek noodzakelijk.

In de overgangsperiode is transport van gassen per vrachtwagens en schepen

te verwachten. Dit vereist dat ook de transportsector zich aanpast door meer

gebruik te maken van minder vervuilende brandstoffen zoals waterstof, LNG en

biogas. Vooral schepen gebruiken steeds vaker alternatieve brandstoffen om de

uitstoot te verminderen. De invoering van nieuwe brandstoffen zorgt echter voor

beslissingsproblemen voor reders met betrekking tot investeringen in schepen en

infrastructuur.

Bij de transitie naar schonere brandstoffen speelt opslag een belangrijke rol

waarbij opslag kan fungeren als tijdelijke buffer voor het transport van waterstof,

LNG en biogas. Ook bij elektriciteit is opslag van energie belangrijk voor het

overbruggen van seizoens- en korte termijnverschillen tussen vraag en aanbod en

om overproductie en congestie van het elektriciteitsnet te voorkomen. Opslag

van elektriciteit voor de korte termijn kan worden gerealiseerd met batterijen die

fluctuaties in het verbruik gedurende de dag kunnen opvangen; energie opslag

voor fluctuaties in seizoenen moet in de vorm van methaan of waterstof worden

gerealiseerd.

Dit proefschrift is gebaseerd op het project getiteld ”ADAPNER” (Adaptieve

logistiek in een circulaire economie) dat tot doel heeft ”Geoptimaliseerde aanpasbare

en duurzame configuraties te bepalen voor verschillende distributie-alternatieven

met betrekking tot biomassa en biogas in een circulaire economie”. Het doel

van dit proefschrift is om configuraties te bepalen voor verschillende decentrale

alternatieven voor de productie, opslag en distributie van hernieuwbare energie.
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Deze omvatten wind, zonne-energie (PV), biogas, LNG (Liquefied Natural Gas)

en waterstof. Onze hoofdonderzoeksvraag is: Hoe moet de decentrale opslag en

distributie van biogas, zonne-energie en windenergie worden georganiseerd en aangepast

om een effectieve inbedding in bestaande netinfrastructuur mogelijk te maken?

In vijf verschillende hoofdstukken hebben we met bovenstaande

onderzoeksvraag een bijdrage geleverd aan drie domeinen waaronder 1)

Transportlogistiek, 2) Seizoen afstemming van vraag en aanbod, en 3) Beheer

van opslagfaciliteiten. Elk hoofdstuk draagt bij aan verschillende aspecten van deze

domeinen.

Hoofdstuk 2 en 3 richten zich op het domein ”Transportlogistiek”. In hoofdstuk

2 hebben we de onderzoeksvraag beantwoord: Hoe moet biogas worden gedistribueerd

met behulp van vrachtwagens met opleggers die gas cilinders vervoeren van biogas

vergisters naar gecentraliseerde gas opwaardeerfabrieken? We hebben de route- en

voorraadbeslissingen behandeld van voertuigen die biogas vervoeren in cilinders

van gedecentraliseerde boerderijen tot centrale opwaarderingsfaciliteiten die het gas

in het pijpleidingnet injecteren. Het doel is hier om transportschema’s te maken die

herhaaldelijk kunnen worden uitgevoerd, waarbij de totale reistijd geminimaliseerd

is. Om deze beslissingen te optimaliseren, hebben we hebben een wiskundige

formulering ontwikkeld die effectief is gebleken in het verminderen van rekentijden

met gemiddeld 93%. We ontdekten dat de transporttijd is geminimaliseerd

wanneer voertuigen enkele ritten maken bij het bezoeken van de boerderijen

(waarbij boerderijen dus niet worden gecombineerd in een enkele rit) en wanneer

de opslagcapaciteit in aantal cilinders op elke boerderij de voertuigcapaciteit

overschrijdt. We ontdekten ook dat er geen voordelen zijn verbonden aan het

vervoeren van cilinders die maar gedeeltelijk gevuld zijn.

In Hoofdstuk 3 hebben we de onderzoeksvraag beantwoord: Onder

welke voorwaarden is de toepassing van LNG economisch haalbaar voor

LNG-aangedreven schepen in vergelijking met conventionele schepen? We hebben

een investeringsbeoordelingsmodel ontwikkeld en vergeleken de totale

exploitatiekosten van LNG-aangedreven schepen met conventionele schepen.

We ontdekten dat de brandstofkosten van LNG-aangedreven schepen vaak

lager zijn dan die van conventionele schepen, zelfs bij ongunstige LNG-prijzen

in vergelijking met andere scheepsbrandstoffen. De kosteneffectiviteit van

LNG-aangedreven schepen wordt versterkt voor grotere schepen met een
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hoger algemeen brandstofverbruik en schepen die veel aanwezig zijn in ECA

(emissie-gecontroleerde) zones. Dit geeft ook aan dat het gebruik van biogas

als bio-LNG mogelijk economisch levensvatbaar kan zijn als brandstof in de

scheepvaart.

Hoofdstuk 4 richt zich op het domein “Seizoen afstemming van vraag en

aanbod”. Hier hebben we de onderzoeksvraag beantwoord: Hoe moeten biogas, wind-

en zonne-energie over de seizoenen heen worden gecombineerd en hoe wordt dit beı̈nvloed

door het niveau van de totale productiecapaciteit en opslagcapaciteit van elektriciteit? Het

hoofddoel is het realiseren van de laagste productie- en opslagbehoefte bij het

voorzien van zelfvoorzienende huishoudens van lokaal geproduceerde elektriciteit.

We hebben de aandelen van elektriciteitsproductie uit wind, zon en biogas

onderzocht voor verschillende combinaties van opslag- en productiecapaciteit. We

ontdekten dat biogas bij relatief lage productieniveaus zowel pieken als basislast

van de elektriciteitsvraag kan leveren, wat leidt tot relatief hoge opslagniveaus

van elektriciteit waarin vooral energie uit biogas wordt opgeslagen. Voor hogere

totale productieniveaus neemt het optimale aandeel van de windproductie toe,

omdat een deel van de totale overproductie het mogelijk maakt om windpieken op

ongunstige momenten verloren te laten gaan en niet op te slaan. Hierdoor kunnen

de opslagvereisten aanzienlijk worden verminderd. Wanneer echter de jaarlijkse

totale productiehoeveelheid groter is dan 130% van de totale vraag, vermindert

het optimale aandeel van windenergie aanzienlijk, waarbij overproductie van

elektriciteit uit biogas een zeer lage opslagbehoefte mogelijk maakt.

In Hoofdstuk 5 en 6 hebben we een bijdrage geleverd aan het domein

“Beheer van opslagfaciliteiten”. In Hoofdstuk 5 hebben we de onderzoeksvraag

beantwoord: Onder welke voorwaarden moet de eigenaar van zonnevelden met faciliteiten

voor waterstof-productie en -opslag op het elektriciteitsnet kopen en verkopen om de

winst te maximaliseren? We onderzoeken het probleem van een eigenaar van

een zonnepark met waterstofopslag en brandstofcellen die elektriciteit levert

aan een aantal aangesloten huishoudens en het elektriciteitsnet. Met behulp

van een Markov-beslissingsproces bepalen we de optimale dagelijkse koop- en

verkoopbeslissing van de opslag eigenaar om de verwachte winst te maximaliseren.

We houden expliciet rekening met seizoensverschillen in vraag en aanbod en de

onzekerheid die gepaard gaat met elektriciteitsprijzen, elektriciteitsverbruik en

zonne-energieproductie. We ontdekten dat optimaal beleid wordt gekenmerkt door
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prijsdrempels die verschillende soorten acties scheiden. Deze omvatten het kopen

van de maximaal mogelijke hoeveelheid elektriciteit, het verkopen van overschotten

of het kopen van tekorten aan elektriciteit, het opslaan van overschotten of

het verkrijgen van tekorten uit opslag aan elektriciteit, of het verkopen van de

maximaal mogelijke geproduceerde en opgeslagen hoeveelheid elektriciteit. We

laten ook zien dat het negeren van seizoensgebonden vraag- en productiepatronen

suboptimaal is en dat het gebruik van waterstofopslag verliesgevende interacties

met het elektriciteitsnet kan omzetten in winstgevende beslissingen. We vonden

dat de distributiecapaciteit van de verbinding met het net niet te klein mag zijn

om lokale netcongestie te voorkomen. In tegenstelling tot wat mag worden

verwacht, verhoogt een hogere opslagcapaciteit het aantal inkoopacties van het

net, waardoor er meer lokale congestie ontstaat, wat problematisch is voor de

netbeheerder. Daarom is alleen winst-gedreven waterstofopslag geen alternatief

voor netuitbreiding om congestie op te lossen, wat essentiële informatie is voor

beleidsmakers en netbeheerders.

In Hoofdstuk 6 hebben we de onderzoeksvraag beantwoord: Hoe moeten

zonnevelden met waterstofopslag worden beheerd om congestie te verminderen? We

vergelijken winst gedreven strategieën voor opslagbeheer met een opslagstrategie

die altijd prioriteit geeft aan opslag om die te gebruiken voor overschotten of

tekorten gedurende het jaar. Winstmaximalisatie door de opslageigenaar zorgt

voor een instabiele teruglevering aan het net, wat kan leiden tot mogelijke

congestieproblemen elders in het net. Daarentegen leidt het gebruik van opslag,

waarbij prioriteit wordt gegeven aan het afdekken van netto productieverschillen

tussen vraag een aanbod, tot een lagere volatiliteit in de teruglevering aan het net.

Het vermindert ook de opslagvereisten door een opslagpatroon te creëren die alleen

seizoensverschillen in vraag en aanbod opslaat. Bij beide opslag strategieën, zowel

die winstgericht zijn als degene die opslag prioriteit geven, neemt de volatiliteit

van de teruglevering van het net toe wanneer men de distributiecapaciteit uitbreidt.

Uitbreiding van de distributiecapaciteit kan dus de inkomsten verminderen voor

opslageigenaars die niet winst gedreven zijn. Dit is ongunstig is voor de

netbeheerder en de opslageigenaar.

Geconcludeerd kan worden dat biogasproductie een nuttige rol speelt in

decentrale energiesystemen, zowel als gas, in de vorm van bio-LNG, en na

conversie naar elektriciteit. Om een effectieve inbedding in bestaande infrastructuur
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mogelijk te maken, kan biogas dienen als een aanvulling op fossiel methaan in

bestaande gasnetwerken en door als constante elektriciteitsbron energie te leveren

en hierbij andere hernieuwbare bronnen aan te vullen. Het kan in cilinders worden

vervoerd naar faciliteiten waar de kwaliteit van biogas kan worden opgewaardeerd,

waarna het in het pijpleidingnet kan worden geı̈njecteerd. Dit vereist voldoende

opslagcapaciteit bij elk vertrekpunt, zodat voertuigen enkele ritten kunnen maken

die niet met elkaar gecombineerd worden. Wanneer biogas wordt omgezet in

elektriciteit, kan het andere hernieuwbare bronnen aanvullen door een basisniveau

van elektriciteit te leveren voor de lokale vraag van huishoudens. De meer grillige

patronen van wind- en zonne-energie zorgen ervoor dat deze dan energie kunnen

leveren tijdens pieken in de elektriciteitsvraag. Dit helpt om de totale vereisten

voor opslag- en productiecapaciteit te verminderen. Wind laat over het algemeen

een beter passend aanbodprofiel zien dan zon als aanvulling op het basisaanbod.

Zonne-energie is weliswaar een relatief goedkope vorm van elektriciteit, maar kan

ook voor piekbelastingen op de elektriciteitsnetaansluiting zorgen en mogelijk tot

congestieproblemen leiden. Waterstofopslag is een oplossing om piekbelastingen

te verminderen, maar ook om seizoensverschillen tussen vraag en aanbod te

overbruggen. Het optimaliseren van de aan- en verkoopbeslissingen voor een

opslageigenaar of exploitant kan de inkomsten verhogen en de economische

levensvatbaarheid van waterstof helpen vergroten. Het exploiteren van opslag om

te profiteren van prijsverschillen verhoogt echter de volatiliteit van de teruglevering

aan het net, wat vanuit een breder perspectief problematisch is. Door opslag

onafhankelijk van de prijs te exploiteren, wordt de teruglevering aan het net

gestabiliseerd. Dit leidt echter tot lagere inkomsten voor de opslag eigenaar en

exploitant en vraagt dus om nadere afwegingen.

Uiteindelijk kunnen we concluderen dat de gecombineerde resultaten van

de uitgevoerde studies ons een stap dichter brengen in het denken over hoe

gedecentraliseerde opslag en distributie van energie uit biogas, zon en wind moet

worden georganiseerd in de energietransitie. Daarentegen is het belangrijk dat

de implicaties voorzichtig worden overwogen voordat er aanbevelingen worden

gedaan over het transitiebeleid.
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