14 research outputs found

    Wind turbine control and model predictive control for uncertain systems

    Get PDF

    The analysis and design of multirate sampled-data feedback systems via a polynomial approach

    Get PDF
    This thesis describes the modelling, analysis and design of multirate sampled-data feed-back via the polynomial equations approach. The key theoretical contribution constitutes the embedding of the principles underpinning and algebra related to the switch and frequency decomposition procedures within a modern control framework, thereby warranting the use of available computer-aided control systems design software. A salient feature of the proposed approach consequently entails the designation of system models that possess dual time- and frequency-domain interpretations. Expositionally, the thesis initially addresses scalar systems excited by deterministic inputs, prior to introducing stochastic signals and culminates in an analysis of multivariable configurations. In all instances, overall system representations are formulated by amalgamating models of individual sub-systems. The polynomial system descriptions are shown subsequently to be compatible with the Linear Quadratic Gaussian and Generalised Predictive Control feedback system synthesis methods provide causality issues are dealt with appropriately. From a practical perspective, the polynomial equations approach proffers an alternative methodology to the state-variable techniques customarily utilised in this context and affords the insights and intuitive appeal associated with the use of transfer function models. Numerical examples are provided throughout the thesis to illustrate theoretical developments

    An adaptive autopilot design for an uninhabited surface vehicle

    Get PDF
    An adaptive autopilot design for an uninhabited surface vehicle Andy SK Annamalai The work described herein concerns the development of an innovative approach to the design of autopilot for uninhabited surface vehicles. In order to fulfil the requirements of autonomous missions, uninhabited surface vehicles must be able to operate with a minimum of external intervention. Existing strategies are limited by their dependence on a fixed model of the vessel. Thus, any change in plant dynamics has a non-trivial, deleterious effect on performance. This thesis presents an approach based on an adaptive model predictive control that is capable of retaining full functionality even in the face of sudden changes in dynamics. In the first part of this work recent developments in the field of uninhabited surface vehicles and trends in marine control are discussed. Historical developments and different strategies for model predictive control as applicable to surface vehicles are also explored. This thesis also presents innovative work done to improve the hardware on existing Springer uninhabited surface vehicle to serve as an effective test and research platform. Advanced controllers such as a model predictive controller are reliant on the accuracy of the model to accomplish the missions successfully. Hence, different techniques to obtain the model of Springer are investigated. Data obtained from experiments at Roadford Reservoir, United Kingdom are utilised to derive a generalised model of Springer by employing an innovative hybrid modelling technique that incorporates the different forward speeds and variable payload on-board the vehicle. Waypoint line of sight guidance provides the reference trajectory essential to complete missions successfully. The performances of traditional autopilots such as proportional integral and derivative controllers when applied to Springer are analysed. Autopilots based on modern controllers such as linear quadratic Gaussian and its innovative variants are integrated with the navigation and guidance systems on-board Springer. The modified linear quadratic Gaussian is obtained by combining various state estimators based on the Interval Kalman filter and the weighted Interval Kalman filter. Change in system dynamics is a challenge faced by uninhabited surface vehicles that result in erroneous autopilot behaviour. To overcome this challenge different adaptive algorithms are analysed and an innovative, adaptive autopilot based on model predictive control is designed. The acronym ‘aMPC’ is coined to refer to adaptive model predictive control that is obtained by combining the advances made to weighted least squares during this research and is used in conjunction with model predictive control. Successful experimentation is undertaken to validate the performance and autonomous mission capabilities of the adaptive autopilot despite change in system dynamics.EPSRC (Engineering and Physical Sciences Research Council

    Fault tolerant flight control system design for unmanned aerial vehicles

    Get PDF
    Safety and reliability of air vehicles is of the utmost importance. This is particularly true for large civil transport aircraft where a large number of human lives depend on safety critical design. With the increase in the use of unmanned aerial vehicles (UAVs) in our airspace it is essential that UAV safety is also given attention to prevent devastating failures which could ultimately lead to loss of human lives. While civil aircraft have human operators, the pilot, to counteract any unforeseen faults, autonomous UAVs are only as good as the on board flight computer. Large civil aircraft also have the luxury of weight hence redundant actuators (control surfaces) can be installed and in the event of a faulty set of actuators the redundant actuators can be brought into action to negate the effects of any faults. Again weight is a luxury that UAVs do not have. The main objective of this research is to study the design of a fault tolerant flight controller that can exploit the mathematical redundancies in the flight dynamic equations as opposed to adding hardware redundancies that would result in significant weight increase. This thesis presents new research into fault tolerant control for flight vehicles. Upon examining the flight dynamic equations it can be seen, for example, that an aileron, which is primarily used to perform a roll manoeuvre, can be used to execute a limited pitch moment. Hence a control method is required that moves away from the traditional fixed structure model where control surface roles are clearly defined. For this reason, in this thesis, I have chosen to study the application of model predictive control (MPC) to fault tolerant control systems. MPC is a model based method where a model of the plant forms an integral part of the controller. An optimisation is performed based on model estimations of the plant and the inputs are chosen via an optimisation process. One of the main contributions of this thesis is the development of a nonlinear model predictive controller for fault tolerant flight control. An aircraft is a highly nonlinear system hence if a nonlinear model can be integrated into the control process the cross-coupling effects of the control surface contributions can be easily exploited. An active fault tolerant control system comprises not only of the fault tolerant controller but also a fault detection and isolation subsystem. A common fault detection method is based on parameter estimation using filtering techniques. The solution proposed in this thesis uses an unscented Kalman filter (UKF) for parameter estimation and controller updates. In summary the main contribution of this thesis is the development of a new active fault tolerant flight control system. This new innovative controller exploits the idea of analytical redundancy as opposed to hardware redundancy. It comprises of a nonlinear model predictive based controller using pseudospectral discretisation to solve the nonlinear optimal control problem. Furthermore a UKF is incorporated into the design of the active fault tolerant flight control system

    High gain and bandwidth current-mode amplifiers : study and implementation

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaEsta tese aborda o problema do projecto de amplificadores com grandes produtos de ganho por largura de banda. A aplicação final considerada consistiu no projecto de amplificadores adequados à recepção de sinais ópticos em sistemas de transmissão ópticos usando o espaço livre. Neste tipo de sistemas as maiores limitações de ganho e largura de banda surgem nos circuitos de entrada. O uso de detectores ópticos com grande área fotosensível é uma necessidade comum neste tipo de sistemas. Estes detectores apresentam grandes capacidades intrínsecas, o que em conjunto com a impedância de entrada apresentada pelo amplificador estabelece sérias restrições no produto do ganho pela largura de banda. As técnicas mais tradicionais para combater este problema recorrem ao uso de amplificadores com retroacção baseados em configurações de transimpedância. Estes amplificadores apresentam baixas impedâncias de entrada devido à acção da retroacção. Contudo, os amplificadores de transimpedância também apresentam uma relação directa entre o ganho e a impedância de entrada. Logo, diminuir a impedância de entrada implica diminuir o ganho. Esta tese propõe duas técnicas novas para combater os problemas referidos. A primeira técnica tem por base uma propriedade fundamental dos amplificadores com retroacção. Em geral, todos os circuitos electrónicos têm tempos de atraso associados, os amplificadores com retroacção não são uma excepção a esta regra. Os tempos de atraso são em geral reconhecidos como elementos instabilizadores neste tipos da amplificadores. Contudo, se usados judiciosamente, este tempos de atraso podem ser explorados como uma forma da aumentar a largura de banda em amplificadores com retroacção. Com base nestas ideias, esta tese apresenta o conceito geral de reatroacção com atraso, como um método de optimização de largura de banda em amplificadores com retroacção. O segundo método baseia-se na destruição da dualidade entre ganho e impedância de entrada existente nos amplificadores de transimpedância. O conceito de adaptação activa em modo de corrente é neste sentido uma forma adequada para separar o detector óptico da entrada do amplificador. De acordo com este conceito, emprega-se um elemento de adaptação em modo de corrente para isolar o detector óptico da entrada do amplificador. Desta forma as tradicionais limitações de ganho e largura de banda podem ser tratadas em separado. Esta tese defende o uso destas técnicas no desenho de amplificadores de transimpedância para sistemas de recepção de sinais ópticos em espaço livre.This thesis addresses the problem of achieving high gain-bandwidth products in amplifiers. The adopted framework consisted on the design of a free-space optical (FSO) front end amplifier able to amplify very small optical signals over large frequency bandwidths. The major gain-bandwidth limitations in FSO front end amplifiers arise due to the input circuitry. Usually, it is necessary to have large area optical detectors in order to maximize signal reception. These detectors have large intrinsic capacitances, which together with the amplifier input impedance poses a severe restriction on the gain-bandwidth product. Traditional techniques to combat this gain-bandwidth limitation resort to feedback amplifiers consisting on transimpedance configurations. These amplifiers have small input impedances due to the feedback action. Nevertheless, transimpedance amplifiers have a direct relation between gain and input impedance. Thus reducing the input impedance usually implies reducing the gain. This thesis advances two new methods suitable to combat the above mentioned problems. The first method is based on a fundamental property of feedback amplifiers. In general, all electronic circuits have associated time delays, and feedback amplifiers are not an exception to this rule. Time delays in feedback amplifiers have been recognized as destabilizing elements. Nevertheless, when used with appropriate care, these delays can be exploited as bandwidth enhancement elements. Based on these ideas, this thesis presents the general concept of delayed feedback, as a bandwidth optimization method suitable for feedback amplifiers. The second method is based on the idea of destroying the impedance-gain duality in transimpedance amplifiers. The concept of active current matching is in this sense a suitable method to detach the optical detector from the transimpedance amplifier input. According to this concept, a current matching device (CMD) is used to convey the signal current sensed by the optical detector, to the amplifier’s input. Using this concept the traditional gainbandwidth limitations can be treated in a separate fashion. This thesis advocates the usage of these techniques for the design of transimpedance amplifiers suited for FSO receiving systems

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Enhancing the Robustness of GPC via a Simple Choice of the Youla Parameter

    No full text
    corecore