34 research outputs found

    Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution

    Full text link
    Constraint solution reuse is an effective approach to save the time of constraint solving in symbolic execution. Most of the existing reuse approaches are based on syntactic or semantic equivalence of constraints; e.g. the Green framework is able to reuse constraints which have different representations but are semantically equivalent, through canonizing constraints into syntactically equivalent normal forms. However, syntactic/semantic equivalence is not a necessary condition for reuse--some constraints are not syntactically or semantically equivalent, but their solutions still have potential for reuse. Existing approaches are unable to recognize and reuse such constraints. In this paper, we present GreenTrie, an extension to the Green framework, which supports constraint reuse based on the logical implication relations among constraints. GreenTrie provides a component, called L-Trie, which stores constraints and solutions into tries, indexed by an implication partial order graph of constraints. L-Trie is able to carry out logical reduction and logical subset and superset querying for given constraints, to check for reuse of previously solved constraints. We report the results of an experimental assessment of GreenTrie against the original Green framework, which shows that our extension achieves better reuse of constraint solving result and saves significant symbolic execution time.Comment: this paper has been submitted to conference ISSTA 201

    Targeted Greybox Fuzzing with Static Lookahead Analysis

    Full text link
    Automatic test generation typically aims to generate inputs that explore new paths in the program under test in order to find bugs. Existing work has, therefore, focused on guiding the exploration toward program parts that are more likely to contain bugs by using an offline static analysis. In this paper, we introduce a novel technique for targeted greybox fuzzing using an online static analysis that guides the fuzzer toward a set of target locations, for instance, located in recently modified parts of the program. This is achieved by first semantically analyzing each program path that is explored by an input in the fuzzer's test suite. The results of this analysis are then used to control the fuzzer's specialized power schedule, which determines how often to fuzz inputs from the test suite. We implemented our technique by extending a state-of-the-art, industrial fuzzer for Ethereum smart contracts and evaluate its effectiveness on 27 real-world benchmarks. Using an online analysis is particularly suitable for the domain of smart contracts since it does not require any code instrumentation---instrumentation to contracts changes their semantics. Our experiments show that targeted fuzzing significantly outperforms standard greybox fuzzing for reaching 83% of the challenging target locations (up to 14x of median speed-up)

    Benchmarking Symbolic Execution Using Constraint Problems -- Initial Results

    Full text link
    Symbolic execution is a powerful technique for bug finding and program testing. It is successful in finding bugs in real-world code. The core reasoning techniques use constraint solving, path exploration, and search, which are also the same techniques used in solving combinatorial problems, e.g., finite-domain constraint satisfaction problems (CSPs). We propose CSP instances as more challenging benchmarks to evaluate the effectiveness of the core techniques in symbolic execution. We transform CSP benchmarks into C programs suitable for testing the reasoning capabilities of symbolic execution tools. From a single CSP P, we transform P depending on transformation choice into different C programs. Preliminary testing with the KLEE, Tracer-X, and LLBMC tools show substantial runtime differences from transformation and solver choice. Our C benchmarks are effective in showing the limitations of existing symbolic execution tools. The motivation for this work is we believe that benchmarks of this form can spur the development and engineering of improved core reasoning in symbolic execution engines

    Proof-Producing Symbolic Execution for Binary Code Verification

    Full text link
    We propose a proof-producing symbolic execution for verification of machine-level programs. The analysis is based on a set of core inference rules that are designed to give control over the tradeoff between preservation of precision and the introduction of overapproximation to make the application to real world code useful and tractable. We integrate our symbolic execution in a binary analysis platform that features a low-level intermediate language enabling the application of analyses to many different processor architectures. The overall framework is implemented in the theorem prover HOL4 to be able to obtain highly trustworthy verification results. We demonstrate our approach to establish sound execution time bounds for a control loop program implemented for an ARM Cortex-M0 processor

    How software engineering research aligns with design science: A review

    Full text link
    Background: Assessing and communicating software engineering research can be challenging. Design science is recognized as an appropriate research paradigm for applied research but is seldom referred to in software engineering. Applying the design science lens to software engineering research may improve the assessment and communication of research contributions. Aim: The aim of this study is 1) to understand whether the design science lens helps summarize and assess software engineering research contributions, and 2) to characterize different types of design science contributions in the software engineering literature. Method: In previous research, we developed a visual abstract template, summarizing the core constructs of the design science paradigm. In this study, we use this template in a review of a set of 38 top software engineering publications to extract and analyze their design science contributions. Results: We identified five clusters of papers, classifying them according to their alignment with the design science paradigm. Conclusions: The design science lens helps emphasize the theoretical contribution of research output---in terms of technological rules---and reflect on the practical relevance, novelty, and rigor of the rules proposed by the research.Comment: 32 pages, 10 figure
    corecore