
This is a repository copy of ICS protocol fuzzing: Coverage guided packet crack and 
generation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164941/

Version: Accepted Version

Proceedings Paper:
Luo, Zhengxiong, Zuo, Feilong, Shen, Yuheng et al. (3 more authors) (Accepted: 2020) 
ICS protocol fuzzing: Coverage guided packet crack and generation. In: Design 
Automation Conference (DAC). . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ICS Protocol Fuzzing: Coverage Guided Packet Crack and

Generation

Zhengxiong Luo†, Feilong Zuo†, Yuheng Shen†, Xun Jiao‡, Wanli Chang§, Yu Jiang†∗
†KLISS, BNRist, School of Software, Tsinghua University, ‡Villanova University, §University of York

{luozx19, zuofl19}@mails.tsinghua.edu.cn, syh1308@gmail.com,

xun.jiao@villanova.edu, wanli.chang@york.ac.uk, jiangyu198964@126.com

Abstract—Industrial Control System (ICS) protocols play an essential

role in building communications among system components. Recently,

many severe vulnerabilities, such as Stuxnet and DragonFly, exposed in

ICS protocols have affected a wide distribution of devices. Therefore, it is

of vital importance to ensure their correctness. However, the vulnerability

detection efficiency of traditional techniques such as fuzzing is challenged

by the complexity and diversity of the protocols.
In this paper, we propose to equip the traditional protocol fuzzing with

coverage-guided packet crack and generation. We collect the coverage

information during the testing procedure, save those valuable packets

that trigger new path coverage and crack them into pieces, based on

which, we can construct higher-quality new packets for further testing.

For evaluation, we build Peach* on top of Peach, which is one of the

most widely used protocol fuzzers, and conduct experiments on several

ICS protocols such as Modbus and DNP3. Results show that, compared

with the original Peach, Peach* achieves the same code coverage and

bug detection numbers at the speed of 1.2X-25X. It also gains final

increase with 8.35%-36.84% more paths within 24 hours and has exposed

9 previously unknown vulnerabilities.
Index Terms—Fuzzing, ICS Protocol, Vulnerability Detection

I. INTRODUCTION

Industrial Control System (ICS) refers to a system combining

hardware and software with network connectivity so as to support

critical infrastructure. In recent years, we have witnessed a wide

adoption of ICS, including energy, transportation, communications,

etc. To meet the demand of the developing industry, there is a

trend towards higher openness of ICS, with an increasing number

of ICS components available on the Internet. However, this openness

inevitably makes ICS, primarily due to greater awareness of ICS

protocols, easy prey for attackers who aim at compromising and

controlling those ICS devices. More concretely, ICS protocol is

designed to acquire measurements/status of remote physical devices

and control them via packets carrying special commands. The loose

protection of these protocols presents ICS to the miscreants low-

hanging fruits. Those severe security vulnerabilities revealed in ICS

protocols, such as Stuxnet [1], DragonFly [2], and their evolutions,

have affected a wide distribution of devices. Hence, guaranteeing the

correctness of those protocols is of imminent need.

Many techniques have been proposed to ensure the security of

those ICS protocols. Fuzzing, as an automated software testing

technique, has emerged as one of the most effective techniques for

detecting security vulnerabilities in real-world software. Given the

target program with parameters, fuzzers work as follows: generating

malformed inputs (as for ICS protocol programs, the protocol packet

can be considered as the input), feeding them to the program and

looking for abnormal behaviors such as crashes or hangs. Two

main approaches are utilized to generate those malformed inputs:

data mutation and data generation. Mutation-based fuzzers, such as

American Fuzzy Lop (or simply AFL) [3], generate new inputs by

randomly mutating existing inputs, while generation-based fuzzers,

including Peach [4] and Sulley [5] for protocol, construct inputs

by leveraging the knowledge of format specification provided by

users. Mutation-based fuzzers are popular due to their ease-of-use

and fantastic vulnerability-detecting power. Nevertheless, lacking

format specification, mutation-based fuzzers can easily get bogged

down because the validity verification code is a significant time

sink for them. Those applications that process highly-structured

inputs, such as protocol programs, make it a small probability of

success for them to discover vulnerabilities deep in the program

state space. As opposed to mutation-based fuzzers, generation-based

fuzzers are capable of generating valid inputs by utilizing the input

model, which specifies the format of the data chunks and integrity

constraints. Those generated valid inputs manage to carry the path

exploration beyond the parser code so that it is more likely to discover

vulnerabilities deep in the program’s processing logic.

In practice, those generation-based fuzzers such as Peach have

exposed plenty of vulnerabilities in ICS protocols. Even so, as for

fuzzing of complex ICS protocols, there remain two challenges

heavily limiting their effectiveness: (i) despite awareness of input

structure, due to lack of rational utilizable way, existing fuzzers

discard those previously generated valuable inputs which achieve new

code coverage; and (ii) the random and pointless generation strategy

makes it less likely to produce high-quality inputs that are capable

of digging into deep paths of protocol state space.

To tackle these problems, we present Peach*, an automated

fuzzing tool targeted for ICS protocol. The key innovation of Peach*

is that, instead of speeding up the input generation process to produce

more inputs as some existing fuzzing approaches, it proposes a

novel utilizable way to leverage those previously generated inputs

so as to generate more high-quality inputs. Through investigation

of diverse ICS protocols, we found that the construction rules of

different types of protocol packets may have something in common:

some chunks, that belong to different types of ICS protocol packets,

may conform to similar/same construction rules. Moreover, those

different types of packets usually exercise different program traces in

the protocol application. Based on this feature, Peach* is designed

as follows: (i) Empowered by instrumentation, Peach* monitors

the program execution path taken by each generated input, and

identifies those inputs that contribute to new code coverage. (ii) To

learn from the success of those valuable inputs, Peach* constructs

a corpus by cracking them into pieces based on the information

of file format. These pieces can be used as donors to rule out

some meaningless repetitions of path exploration. (iii) To this end,

Peach* applies a novel semantic aware generation strategy. Instead

of starting from scratch, it derives new inputs by selecting appropriate

pieces from the constructed corpus in preference to instantiation from

the input model.

We implemented Peach* on top of Peach and evaluated its

performance on several well-fuzzed and open-source implementations



of widely-used ICS protocols – Modbus [6], DNP3 [7] and so on.

Experimental results demonstrate that, compared with the original

Peach, Peach* outperforms in terms of fuzzing speed (1.2X-25X, an

average of 5.7X) as well as path covered (8.35%-36.84%, an average

of 27.35% increase) within a time limit of 24 hours. Furthermore,

along with the coverage improvement, Peach* has already exposed

9 previously unknown vulnerabilities in those well-known protocols,

most of them are on the attack surface thus security-critical.

II. GENERATION-BASED FUZZING

Fuzzers treat the input file as a vector of input bytes thus the

modifications on the seed (the test case generated by fuzzers are

also called “seed”) file mainly concentrate on bits/bytes such as

bit-flip and splice, etc. For better effectiveness of protocol fuzzing,

generation-based fuzzers work on the file structure that is organized as

a tree where individual nodes are called chunks and different chunks

conform to its own format specification described in the configuration

file (e.g., Peach Pit [4] for Peach). Figure 1 shows a simple data

model which contains four attributes: ID, Size, Data, and CRC.

Specifically, Data consists of three individual chunks. The Size

field is a variant that is computed by the Relation function sizeof

and carries the size of Data field. The CRC field supports the error

check mechanism by the Fixup function Crc32Fixup.

TheDataModel

ID Size Data CRC

CompressionCode SampleRate ExtraData

Pit Relation:
sizeof

Fixup:
Crc32Fixup

Fig. 1: Simple data model M used in Peach, illustrated as a tree.

Those generation-based fuzzers construct seeds or packets by

leveraging the above tree format. Algorithm 1 provides an overview

of the process. In the beginning, the fuzzer is provided with a format

specification G, and the detailed data model set can be extracted

from it (line 2, one format specification usually contains several data

models, used for producing different types of valid inputs). Then the

fuzzer works in a continuous loop unless timeout or aborted (lines 3-

12). For each iteration, it works as follows: it first selects one data

modelM from set (line 4), and then analyzes the chunks required to

generate by traversing the format tree specified by M and collects

the individual nodes as implemented in method ANALYZE (line 5). In

general, those chunks adhere to specified data types such as String,

Number, etc, and they are generated separately based on their data

types in conjunction with given functions (e.g., Relation, Fixup in

Figure 1) with params, and new seed is thus produced by jointing

them in the order declared inM (lines 7-9). The method GENERATE

implements data generation based on pre-defined rules. For example,

Peach implements generation by those Mutators that are designed

for different data types. As a general view, Mutator generates data

in these ways: random generation, mutation on default value and

mutation on existing chunks (those from user-provided initial seeds

or previously generated seeds). New generated seed is further utilized

to run the target application and those seeds that crash or hang the

protocol program are recorded for further processing (lines 10-12).

III. MOTIVATION

Despite awareness of input structure, some research infers that, due

to the unique random generation strategy, generation-based fuzzers

Algorithm 1: Generation-Based Fuzzing

Input: G: input model specified by format specification

Input: P : program under test

Output: C✗ : seeds that crash or hang the program P
1 C✗ ← ∅

2 SM = EXTRACTDATAMODEL(G) // Data Model Set

3 while true do

4 M← CHOOSE(SM)
5 Chunks← ANALYZE(M)
6 seed← null

7 for Chunk ∈ Chunks do

8 component← GENERATE(M, Chunk)

9 seed← JOINT(seed, component)

10 Results← RUNTARGET(P, seed)
11 if CRASH(Results) or HANG(Results) then

12 C✗ ← C✗

⋃
{seed}

such as Peach and Defensics [8] may not perform very well on

complex ICS protocols or reveal the bugs hidden in the deep paths [9].

Since the generation of test cases is inherently random, we can

consider the generation-based fuzzing as the following model: given

the format specification, equivalently, those fuzzers are provided with

the universal set SI of all legal seeds. In each iteration of input

generation, they can be regarded as choosing one seed from SI
randomly as the program input. Hence, in theory, if given enough

time and resources, those fuzzers are able to enumerate all possible

situations exhaustively and detect all potential bugs. However, this

ideal case is usually unreachable as the set SI can be infinite

and the budgets are constrained forever. It is our hope to make

intelligent design decisions with optimal strategies wherever possible.

Through investigation of diverse ICS protocols, we found that it

is possible to augment existing generation-based fuzzers with some

guided information for further improvement.

ICS protocol is designed for a specific domain – industry control,

thus it possesses some specific features compared with other common

internet protocols. From the perspective of the field in the packet,

these protocols employ a special field to identify different packets,

called “function code” field (or “opcode” field) that encodes the

instruction to be performed by the devices, such as restart, write

inner register, report self status and so on. More importantly, after

diving into the input model used in ICS protocols, we found that

different types of packets would trigger different traces, but they

would share similar data chunks which would trigger similar parsing

code. Hence, we can replace the traditional data model based random

generation with the coverage guided packet crack and generation to

improve the fuzzing speed and depth. We use Figure 2 to illustrate

our insights in detail.

For a data model M, the organizing mode as a tree can be

translated into the linear model ML similar to Figure 2(a), where

the individual nodes of tree take up in line with the order specified

in M. As a consequence, Figure 2(a) shows the organization of

three types of packets with different opcode values. Each rectangle

represents the construction rule of the chunk as defined in M. In

light of our investigation, we found that some chunks that belong

to different types of packets may conform to similar or same

construction rules (chunks with the same color in Figure 2(a) means

they conform to similar construction rules). For instance, as shown

in Figure 2(a), the chunks generated by Rule α1 can also be parsed



by Rule α2 smoothly in most cases, and vice versa. In particular,

the rectangle with dashed outline refers to Fixup mechanism such

as Crc32Fixup shown in Figure 1. This feature is also reflected

in the Control Flow Graph (CFG) of the packet processing part in

the protocol program and Figure 2(b) shows the detail. Different

types of packets can cause different execution traces (indicated as

different colors), but those traces may contain some shared code

blocks used to decode corresponding chunks. The code blocks of

different traces may not be shared, but they may act similarly because

they are used to parse those chunks generated by similar rules.

Taking the packets in Modbus [6] for example, those operations such

as calculating the mapping address, calculating the data to write,

constructing a response message are all required for the packets

of write single register and write single coil. The

only difference between them is the place to write, one for register

while another for coil.

c Rule	�
1

a Rule	� Rule	�
1

b Rule	�
2

Rule	�
2

Fixup

(b)	Control	Flow	Graph	of	Packet	Parsing	Code

(a)	Structure	of		Different	Packets	with	Different	Opcode

�

�

�

Fixup

a

c

b

Fig. 2: Peach* insights. Crack those packets that trigger new path

into pieces, and construct higher quality new packets based on

these pieces to trigger more new paths in the control flow graph.

Based on this feature, we argue that the specification in the data

model can be further exploited for optimization. Since different types

of packet represent different commands and these different commands

require different parameters, the construction rules of these packets

can be regarded as different data models. Assuming that there are n

types of packets (usually denoted by the legal values of the opcode

field) in some ICS protocol, their data models can be donated as

M1,M2, ...,Mn. If one seed Iv generated by Mi is valuable

(usually labeled as valuable when a new path is triggered), then,

based on the similarity of different chunks, the cracked chunks of

Iv can be utilized to help optimize path exploration when generating

inputs using other data models Mj(1 ≤ j ≤ n, j 6= i). Based on

this, we can implement a more efficient packet generation strategy.

IV. SYSTEM DESIGN

In this section, we first introduce the workflow of Peach*. Then,

we present the details of each component.

A. Peach* Overview.

To illustrate the workflow and detailed design of Peach* better,

we first introduce the following two definitions.

Definition 1: Instantiation Tree. The Instantiation

Tree (or InsTree for short) of the data model M has the same

structure as the data model tree (e.g. Figure 1 shows a data model

tree). The only difference is that, the individual nodes of the data

model tree are construction rules of corresponding chunks, while the

homologous individual nodes of InsTree are instantiations of these

construction rules, namely realistic data chunks.

Definition 2: Puzzle. One puzzle refers to a combination of

all the individual nodes of any sub-tree of the InsTree, and these

chunks are organized in order as described in the data model. Suppose

that the individual nodes of the tree shown in Figure 1 are all replaced

with realistic data chunks, then those individual nodes ID, Size

are both puzzles, and the combination of those atomic chunks

CompressionCode, SampleRate and ExtraData in order is

also one puzzle.

File	Cracker

Testcase
Generation File	Fixup New	Seed

Valuable	Seed

Puzzles Instrumented	ProgramFormat
Specification

(e.g.,	Peach	Pit)	

Detected
Vulnerabilities

Pit

Trace	Feedback

(1)
(2)

(3)

Fig. 3: Peach* fuzzer overview, including coverage based valuable

packets identification, packet cracking to get useful puzzles, and

semantic aware new packets generation with necessary fixup.

Figure 3 describes the system overview of Peach*, which works

as follows: the fuzzing routine takes the same input as those tradi-

tional generation-based fuzzers, a target protocol program and packet

format specification, and then runs in a continuous loop. Initially, the

puzzle corpus is vacant, and Peach* generates new seed I in the

Testcase Generator module by leveraging the format specification

alone with the inherent generation strategies of Peach, and the File

Fixup module is needless at this stage. Once a new seed is generated,

it is then used to run the target program for potential vulnerability

detection. Moreover, lightweight instrumentation is inserted into the

target program to obtain coverage information, based on which,

Peach* is able to identify I’s contribution to new code coverage.

Peach* retains I if it is valuable, and then cracks I into puzzles

by the File Cracker module based on the format specification. In

this case, the puzzle corpus becomes available, and the Testcase

Generator module employs a new generation strategy (called “se-

mantic aware generation strategy”) to take full advantage of this

corpus. Meanwhile, the seeds generated by this new strategy may

be illegal, and the File Fixup module is used to repair it to ensure

validity. In the design of Peach*, the puzzle corpus is available

by File Cracker only in the case that a valuable seed is detected

based on the feedback collected from the target program. Thereafter,

in the following iteration of seed generation, the proposed generation

strategy will be employed. Otherwise, the generation strategy to apply

remains inherent. Peach* consists of three main components as

shown in Figure 3: (1) collecting coverage information and detecting

valuable seed; (2) cracking valuable seed into puzzles; (3) applying

semantic aware generation with necessary file repairment. In the

following sections, we dive into details of the design of each part.

B. Valuable Seeds Identification

Code coverage information is a feedback that is wildly used in

traditional software unit test generation [10] and has been confirmed

effective. Hence, as shown in the component (1) in Figure 3, we try

to augment the traditional generation-based fuzzers with a feedback

loop, and use the code coverage as the feedback to evaluate whether

a seed is valuable. We use the edge coverage and obtain this



information by injecting instrumentation at branch points in the target

protocol program as follows:
✞ ☎
cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ˆ prev_location]++;

prev_location = cur_location >> 1;
✝ ✆

The variable cur_location, with a random value generated

during compilation time, is used to specify the basic block. The

shared_mem[] array is a shared memory region used to track

coverage. (A >> 1) ⊕ B, a kind of hash for simplification, can be

thought of as an edge from basic block A to B, and the byte set at this

position in shared_mem[] records the times of transition from A to

B. Empowered by instrumentation, Peach* can track the execution

flow exercised by the newly generated seed I, and determine whether

I reaches a new program execution state that has not appeared before.

If so, the seed I is considered valuable and would be cracked into

puzzles to improve the generation of new seeds.

C. Packet Cracker

Algorithm 2: File Cracker Algorithm

Input: G: input model specified by format specification

Input: Iv: valuable seed detected

Output: Corpus: set of puzzles after crack

1 Algorithm

2 Corpus← ∅

3 SM = EXTRACTDATAMODEL(G)
4 for M∈ SM do

5 InsTree← PARSE(M, Iv)
6 if LEGAL(InsTree) then

7 Root← GETROOT(InsTree)
8 DFS(Root)

9 Procedure DFS(TreeNode)

10 SubTreePuzzle← ∅

11 Children← GETCHILDREN(TreeNode)
12 if Children is empty then

13 SubTreePuzzle← GETCONTENT(TreeNode)
14 else

15 for Child ∈ Children do

16 SubTreePuzzle←
JOINT(SubTreePuzzle,DFS(Child))

17 Corpus← Corpus
⋃

SubTreePuzzle

18 return SubTreePuzzle

To make the best of the detected valuable seed Iv , we design

the File Cracker module to split it into puzzles. Algorithm 2

provides an overview of this module. Given the format specification

G, we first extract the detailed data model set (line 3) and try to

use these models to crack Iv one by one (line 4). For the selected

model M, the method PARSE implements the parse of Iv and

obtains Instantiation Tree InsTree (line 5). If InsTree

is legal (line 6), we use Depth First Search (DFS) algorithm to

traverse InsTree and collect the puzzle corpus from each sub-

tree (lines 9-18). For the sub-tree with root TreeNode, if it is an

individual node, the puzzle represented by this sub-tree is the chunk

content of itself (lines 12-13); otherwise, if it is an internal node,

then the puzzle is the combination of the puzzles of its child

nodes (lines 14-16). For instance, assuming that the tree shown in

Figure 1 is Instantiation Tree, then the puzzle of sub-

tree with root ID is itself and the puzzle of sub-tree with root

Data is the combination of CompressionCode, SampleRate

and ExtraData. To ensure the order of chunks in puzzle, the

order to traverse (line 15) should adhere to the format specification.

After obtaining the puzzle corpus of the detected valuable seed

Iv , the new proposed generation strategy – semantic aware generation

strategy, will be applied in the following iteration of test case

generation based on this high-quality corpus.

D. Semantic Aware Generation and File Fixup

As mentioned in the motivation section, though different types of

packets exercise different program paths, there are some chunks in

them conforming to same/similar construction rules and parsing code

blocks. Motivated by this, we argue that, a valuable seed Iv with one

value of the opcode can be used to optimize seed generation for other

values of the opcode. More specifically, the puzzles produced by

cracking Iv can be donated to the data model that used to generate

packets with other values of the opcode. Algorithm 3 provides our

semantic aware generation strategy.

Algorithm 3: Semantic Aware Generation Algorithm

Input: ML: linear data model

Input: Corpus: puzzle corpus

Output: Seeds: set of seeds generated

1 Algorithm

2 Seeds← ∅

3 Size← GETSIZE(ML)
4 Construct(1, Size,∅)

5 Procedure Construct(CurPos, Size, CurSeed)

6 if EQUAL(CurPos, Size+ 1) then

7 Seeds← Seeds
⋃

CurSeed

8 else

9 Rule← GETCONSTRUCTIONRULE(ML, CurPos)
10 Candidates← GETDONOR(Rule, Corpus)
11 if Candidates is not empty then

12 for Candidate ∈ Candidates do

13 Construct(CurPos+ 1, Size,
JOINT(CurSeed, candidate))

14 else

15 Construct(CurPos+ 1, Size,
JOINT(CurSeed, GENERATE(Rule)))

16 return

For Algorithm 3 in detail, given the linear data model ML and

constructed puzzle corpus, we first get the number of chunks

required to generate (line 3) and then construct seeds in a recursive

way as implemented in the procedure Construct: we construct

each data chunk in order until all of their values are assigned (line 6).

For each chunk to generate, the construct rule is extracted from

ML (line 9) and the subset of Corpus containing puzzles that

conform to this rule is marked as Candidates (line 10). Those

puzzles in Candidates are used to initialize this field one by

one when Candidates is not empty (lines 11-13). Otherwise, we

use the inherent Rule to provide the content of this field (lines 14-

15). Suppose there are only two fields, namely a and b, in some ICS

protocol packet, and the size of the set Candidates of field a is p

while the size of Candidates of b is q (if the set Candidates

is empty, then the size is considered as 1 because the inherent



construction rule will be applied). Then p × q new seeds will be

generated by our generation strategy.

After obtaining new seeds, we need to apply necessary file fixup

for them. Protocol packets usually employ integrity constraints, such

as size-of, length-of, and checksums, to ensure data integrity. The

integrity of the seeds generated by our strategy may be compromised,

therefore, we design the File Fixup module to re-establish their

integrity. Actually, we can use the Fixup and Relation mechanism

of Peach directly for file repair.

V. EVALUATION

We have implemented a prototype of Peach* based on the widely

used generation-based fuzzer Peach 3.0.202 [4]. In Valuable Seeds

Identification part, we implemented Peach*-clang, which is a

wrapper of clang and enables inserting an additional LLVM pass

to under-test-program to collect coverage information. The Packet

Cracker part added a memory to store all the chunks of the seed being

generated and utilized this stored chunk corpus to build puzzle

corpus. For the Semantic Aware Generation and File Fixup part, we

added a new generation strategy for Peach as stated in Section IV-D,

and the File Fixup module is based on the fixup mechanism of Peach.

We evaluate Peach* experimentally to answer the following two

research questions:

1) Is Peach* more efficient than Peach, when augmented with

the coverage guided packet crack and generation?

2) Is Peach* effective in exposing previously unknown vulnera-

bilities in real-world ICS protocol applications?

A. Experiment setup

We evaluated the performance of Peach* on several open-source

ICS protocol projects, including libmodbus [6], IEC104 [11], li-

biccp [12], opendnp3 [7], libiec61850 [13], and lib60870 [14]. Those

ICS protocols with different code scales are widely applied in various

industrial scenarios at present.

We used the path coverage achieved and the number of detected

unique bugs as metrics. The first metric is commonly used to

measure the effectiveness of fuzzers while the second metric indicates

the ability to detect vulnerabilities. For comparison, we added the

path coverage framework on both Peach* and Peach to obtain

the coverage ratio while fuzzing. We used the existing pit file of

Peach, which specifies the input format and is a requisition for Peach

execution. In real practice, the input model does not have to be

elaborate, explaining those key information such as coarse-grained

data chunk information is enough.

B. Fuzzing Performance

We ran each fuzzing tool on each selected project with a 24-

hour time budget and repeated each 24-hour experiment 10 times to

establish statistical significance of results. Figure 4 plots the average

number of paths covered for each project and fuzzing tool.

Figure 4 demonstrates that, on all the selected projects, Peach*

achieves the upper bound in path coverage with a rapid increase,

showing a sizeable lead on these projects. These projects are represen-

tative because they are widely used and also own diverse complexity

and code scale, which is also reflected in the paths covered after

24 hours as shown in Figure 4 – Peach*, as well as Peach, can

achieve thousands of paths on project libiec61850, while hundreds

of paths for opendnp3 and dozens of paths for IEC104. Take the

result of libiec61850 as an example, because of the largest scale

of project code, the paths covered of libiec61850 is increasing all

the time during our 24-hour experiment. Still, Peach* achieves an

average of 8.35% more paths covered than Peach after 24 hours,

showing its wide applicability and scalability.

(a) libmodbus (b) IEC104

(c) libiec61850 (d) lib60870

(e) libiccp (f) opendnp3

Fig. 4: Average number of paths covered by Peach* and Peach

within 24 hours for 10 repetitions on each ICS protocol program.

We can also infer from the figure that, both Peach* and Peach are

effective at the beginning of execution, showing a rapid increase in

path coverage. However, after a while, Peach tends to get bogged

and reach a state where path coverage becomes hard to grow

ever since, while the coverage-guided packet crack and generation

strategy of Peach* can help alleviate this situation by sustainedly

providing high-quality seeds. Overall, compared with the original

Peach, Peach* achieves the same code coverage at the speed of

1.2X-25X. Within 24 hours, it also gains sustained increase with

27.35% more paths on average (up to 36.84% for a single project).

This is a dramatic improvement in performance because, as suggested

by some prior works, after a certain amount of coverage is achieved,

even small increases in code coverage can yield more vulnerability

detection ability [15].

The experiment results confirm that, the coverage guided packet

crack and generation strategy is valuable and makes a significant

contribution by accelerating fuzzing and exploring more paths within

a limited time period. This improvement owes to Peach*’s capability

that identifies valuable seeds and applies file crack along with

semantic aware generation to learn from the success of these valuable

seeds, making more high-quality seeds appear at an early stage.

C. Previously Unknown Vulnerabilities

Along with the coverage improvement, Peach* has detected 9

previously unknown security vulnerabilities in those extensively used



open-source implementations. Table I summarizes those confirmed

vulnerabilities detected by Peach* and corresponding patches from

vendors are released or in progress. The column “Vulnerability Type”

indicates the cause of vulnerabilities.

TABLE I: Vulnerabilities Exposed by Peach*

Project Vulnerability Type Number Status

lib60870 SEGV 3 Confirmed

libmodbus
Heap Use after Free 1

Confirmed
SEGV 1

libiec iccp mod
SEGV 3

Confirmed
Heap Buffer Overflow 1

These bugs exposed by Peach* cause potential hazards to the

devices that running those ICS protocols. For example, Listing 1

illustrates a segmentation violation (SEGV) vulnerability found in

the lib60870. We used GNU Project Debugger (gdb) to analyze this

vulnerability, as shown in Listing 2. The bug occurs in the function

CS101_ASDU_getCOT, which tries to calculate the return value

using part of the received packet’s ASDU field without verification.

Hence, when the particular field is malformed or missing, the program

will access an illegal memory location, thereby resulting in a bad

address operation and leading to a segmentation fault. If this bug is

exploited for malicious proposes, the servers that run this protocol

may encounter a crash, causing an immediate shutdown to the whole

system. This bug has been confirmed and fixed by the vendor.
✞ ☎
306 CS101_ASDU_getCOT(CS101_ASDU self)

307 {

308 return (CS101_CauseOfTransmission) (self->asdu[2] &

0x3f);

309 }
✝ ✆

Listing 1: Code snippet of lib60870
✞ ☎
Thread 5 "simple_server" received signal SIGSEGV,

Segmentation fault.

SUMMARY: AddressSanitizer: SEGV /root/temp/iec/lib60870/

lib60870-C/src/iec60870/cs101/cs101_asdu.c:308:47 in

CS101_ASDU_getCOT
✝ ✆

Listing 2: A segmentation violation vulnerability in lib60870

VI. RELATED WORK

Grammar-based fuzzers generate inputs by leveraging the given

context-free grammar [16], [17], [18]. These fuzzers are also capable

of producing valid inputs within the grammar model. However, due

to the limitation of context-free grammar, these fuzzers have trouble

in encoding those integrity constraints such as size-of, checksums,

all of which are wildly used in ICS protocol programs.

Symbolic execution has been widely utilized to optimize fuzzing

tools [19], [20]. To maximize code coverage, these tools utilize sym-

bolic execution by collecting constraints along unexplored program

path and generating inputs that satisfy those constraints. However, the

application of symbolic execution is challenged by the path explosion

problem, especially for those large programs such as ICS protocols

running in an industrial production environment [21].

Recently, mutation-based fuzzers [3], [22] have also been widely

adopted in practice for traditional software testing. Being unaware

of file format, those fuzzers remains limited in generating valid

inputs and covering large regions of code, especially for protocol

programs that process highly-structured packets. To deal with this,

several recent research, such as Polar [9], focuses on the critical

information in the protocol. Polar augments mutation-based fuzzers

with the function code information as well as security-sensitive points

detected in the protocol program to optimize fuzzing. However, it is

challenging to obtain drastic effectiveness due to limited awareness

of the packet format, and our work focuses on optimizing generation-

based fuzzers with guided packet crack and generation.

VII. CONCLUSION

In this paper, we present Peach*, a coverage-guided generation-

based fuzzing tool for ICS protocol vulnerability detection. Based

on coverage information collected during fuzzing, Peach* is able

to identify those valuable seeds that achieve new code coverage,

then it constructs a corpus based on the cracked packet pieces and

applies semantic aware generation strategy to optimize the input

generation process. We implemented Peach* on top of Peach and

evaluated it on several widely used ICS protocols such as Modbus

and DNP3. Compared with the baseline Peach, Peach* manages

to achieve higher path coverage at a faster speed and has exposed

9 previously unknown bugs. Peach* is fully automatic and has

also been applied to many other ICS protocols such as s7comm

for vulnerability detection. Our future work mainly focuses on two

aspects: the first is to extend the instrumentation module by utilizing

those binary instrumentation tools like PIN [23], and the second is to

customize our work into other generation- or mutation-based fuzzers.

ACKNOWLEDGMENT

This research is sponsored by National Key Research and De-

velopment Project (No. 2019YFB1706200), NSFC Program (No.

61802223, U1911401), Huawei-Tsinghua Trustworthy Research

Project (No. 20192000794), Equipment Pre-research Project (No.

61400010107), and Beijing MSTC Project (No. Z191100007119010).

REFERENCES

[1] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security

& Privacy, 2011.
[2] N. Nelson, “The impact of dragonfly malware on industrial control

systems,” SANS Institute, 2016.
[3] M. Zalewski, “American fuzzy lop,” 2015.
[4] Tool, “Peach fuzzing platform.” Website, https://www.peach.tech.
[5] P. Amini and A. Portnoy, “Sulley,” https://github.com/OpenRCE/sulley.
[6] S. Raimbault, “libmodbus,” https://github.com/stephane/libmodbus.
[7] A. Crain, “opendnp3,” Website, https://github.com/dnp3/opendnp3.
[8] synopsys, “Defensics fuzz testing.” Website, https://www.synopsys.com/

software-integrity/security-testing/fuzz-testing.html.
[9] Z. Luo, F. Zuo, Y. Jiang et al., “Polar: Function code aware fuzz testing

of ics protocol,” ACM Trans. Embedded Comput. Syst., 2019.
[10] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test

generation using evosuite,” ACM Trans. Softw. Eng. Methodol., 2014.
[11] dj chen, “Iec104,” Website, https://github.com/airpig2011/IEC104.
[12] F. Covatti, “libiccp,” https://github.com/fcovatti/libiec iccp mod.
[13] “libiec61850,” https://github.com/mz-automation/libiec61850.
[14] M. Automation, “lib60870,” https://github.com/mz-automation/lib60870.
[15] T. Avgerinos et al., “Enhancing symbolic execution with veritesting,”

Commun. ACM, 2014.
[16] P. Godefroid et al., “Grammar-based whitebox fuzzing,” in PLDI, 2008.
[17] X. Yang et al., “Finding and understanding bugs in c compilers,” in

PLDI, 2011.
[18] J. Wang et al., “Skyfire: Data-driven seed generation for fuzzing,” IEEE

Security & Privacy, 2017.
[19] C. Cadar et al., “Klee: Unassisted and automatic generation of high-

coverage tests for complex systems programs,” in OSDI, 2008.
[20] V.-T. Pham et al., “Model-based whitebox fuzzing for program binaries,”

ASE, 2016.
[21] C. Cadar and K. Sen, “Symbolic execution for software testing: three

decades later,” Commun. ACM, 2013.
[22] Y. Chen, Y. Jiang et al., “Enfuzz: Ensemble fuzzing with seed synchro-

nization among diverse fuzzers,” in {USENIX} Security, 2019.
[23] C.-K. Luk et al., “Pin: building customized program analysis tools with

dynamic instrumentation,” in PLDI, 2005.

View publication statsView publication stats


