4,404 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Design, development and evaluation of the ruggedized edge computing node (RECON)

    Get PDF
    The increased quality and quantity of sensors provide an ever-increasing capability to collect large quantities of high-quality data in the field. Research devoted to translating that data is progressing rapidly; however, translating field data into usable information can require high performance computing capabilities. While high performance computing (HPC) resources are available in centralized facilities, bandwidth, latency, security and other limitations inherent to edge location in field sensor applications may prevent HPC resources from being used in a timely fashion necessary for potential United States Army Corps of Engineers (USACE) field applications. To address these limitations, the design requirements for RECON are established and derived from a review of edge computing, in order to develop and evaluate a novel high-power, field-deployable HPC platform capable of operating in austere environments at the edge

    Design and Service Provisioning Methods for Optical Networks in 5G and Beyond Scenarios

    Get PDF
    Network operators are deploying 5G while also considering the evolution towards 6G. They consider different enablers and address various challenges. One trend in the 5G deployment is network densification, i.e., deploying many small cell sites close to the users, which need a well-designed transport network (TN). The choice of the TN technology and the location for processing the 5G protocol stack functions are critical to contain capital and operational expenditures. Furthermore, it is crucial to ensure the resiliency of the TN infrastructure in case of a failure in nodes and/or links while the resource efficiency is maximized.Operators are also interested in 5G networks with flexibility and scalability features. In this context, one main question is where to deploy network functions so that the connectivity and compute resources are utilized efficiently while meeting strict service latency and availability requirements. Off-loading compute resources to large and central data centers (DCs) has some advantages, i.e., better utilization of compute resources at a lower cost. A backup path can be added to address service availability requirements when using compute off-loading strategies. This might impact the service blocking ratio and limit operators’ profit. The importance of this trade-off becomes more critical with the emergence of new 6G verticals.This thesis proposes novel methods to address the issues outlined above. To address the challenge of cost-efficient TN deployment, the thesis introduces a framework to study the total cost of ownership (TCO), latency, and reliability performance of a set of TN architectures for high-layer and low-layer functional split options. The architectural options are fiber- or microwave-based. To address the strict availability requirement, the thesis proposes a resource-efficient protection strategy against single node/link failure of the midhaul segment. The method selects primary and backup DCs for each aggregation node (i.e., nodes to which cell sites are connected) while maximizing the sharing of backup resources. Finally, to address the challenge of resource efficiency while provisioning services, the thesis proposes a backup-enhanced compute off-loading strategy (i.e., resource-efficient provisioning (REP)). REP selects a DC, a connectivity path, and (optionally) a backup path for each service request with the aim of minimizing resource usage while the service latency and availability requirements are met.Our results of the techno-economic assessment of the TN options reveal that, in some cases, microwave can be a good substitute for fiber technology. Several factors, including the geo-type, functional split option, and the cost of fiber trenching and microwave equipment, influence the effectiveness of the microwave. The considered architectures show similar latency and reliability performance and meet the 5G service requirements. The thesis also shows that a protection strategy based on shared connectivity and compute resources can lead to significant cost savings compared to benchmarks based on dedicated backup resources. Finally, the thesis shows that the proposed backup-enhanced compute off-loading strategy offers advantages in service blocking ratio and profit gain compared to a conventional off-loading approach that does not add a backup path. Benefits are even more evident considering next-generation services, e.g., expected on the market in 3 to 5 years, as the demand for services with stringent latency and availability will increase

    A Holistic Approach to Service Survivability

    Get PDF
    We present SABER (Survivability Architecture: Block, Evade, React), a proposed survivability architecture that blocks, evades and reacts to a variety of attacks by using several security and survivability mechanisms in an automated and coordinated fashion. Contrary to the ad hoc manner in which contemporary survivable systems are built--using isolated, independent security mechanisms such as firewalls, intrusion detection systems and software sandboxes--SABER integrates several different technologies in an attempt to provide a unified framework for responding to the wide range of attacks malicious insiders and outsiders can launch. This coordinated multi-layer approach will be capable of defending against attacks targeted at various levels of the network stack, such as congestion-based DoS attacks, software-based DoS or code-injection attacks, and others. Our fundamental insight is that while multiple lines of defense are useful, most conventional, uncoordinated approaches fail to exploit the full range of available responses to incidents. By coordinating the response, the ability to survive even in the face of successful security breaches increases substantially. We discuss the key components of SABER, how they will be integrated together, and how we can leverage on the promising results of the individual components to improve survivability in a variety of coordinated attack scenarios. SABER is currently in the prototyping stages, with several interesting open research topics
    • …
    corecore