7 research outputs found

    Optimal endmember-based super-resolution land cover mapping

    Get PDF
    Super-resolution mapping (SRM) aims to determine the spatial distribution of the land cover classes contained in the area represented by mixed pixels to obtain a more appropriate and accurate map at a finer spatial resolution than the input remotely sensed image. The image-based SRM models directly use the observed images as input and can mitigate the uncertainty caused by class fraction errors. However, existing image-based SRM models always adopt a fixed set of endmembers used in the entire image, ignoring the spatial variability and spectral uncertainty of endmembers. To address this problem, this letter proposed an optimal endmember-based SRM (OESRM) model, which considers the spatial variations in endmembers, and determines the best-fit one for each coarse resolution pixel using the spectral angle and the spectral distance as the spectral similarity indexes. A Sentinel-2A and a Landsat-8 multispectral images were used to analyze the performance of OESRM, by comparing with three other SRM methods which adopt a fixed endmember set or multiple endmember sets. The results showed that OESRM generated resultant land cover maps with more spatial detail, and reduced the confusion between land cover classes with similar spectral features. The proposed OESRM model produced the results with the highest overall accuracy in both experiments, showing its effectiveness in reducing the effect of endmember uncertainty on SRM

    Uncertainty Assessment of Spectral Mixture Analysis in Remote Sensing Imagery

    Get PDF
    Spectral mixture analysis (SMA), a scheme of sub-pixel-based classifications, is one of the widely used models to map fractional land use and land cover information in remote sensing imagery. It assumes that: 1) a mixed pixel is composed by several pure land cover classes (endmembers) linearly or nonlinearly, and 2) the spectral signature of each endmember is a constant within the entire spatial extent of analysis. SMA has been commonly applied to impervious surface area extraction, vegetation fraction estimation, and land use and land cover change (LULC) mapping. Limitations of SMA, however, still exist. First, the existence of between- and within-class variability prevents the selection of accurate endmembers, which results in poor accuracy of fractional land cover estimates. Weighted spectral mixture analysis (WSMA) and transformed spectral mixture analysis (TSMA) are alternate means to address the within- and between- class variability. These methods, however, have not been analyzed systematically and comprehensively. The effectiveness of each WSMA and TSMA scheme is still unknown, in particular within different urban areas. Second, multiple endmember SMA (MESMA) is a better alternative to address spectral mixture model uncertainties. It, nonetheless, is time consuming and inefficient. Further, incorrect endmember selections may still limit model performance as the best-fit endmember model might not be the optimal model due to the existence of spectral variability. Therefore, this study aims 1) to explore endmember uncertainties by examining WSMA and TSMA modeling comprehensively, and 2) to develop an improved MESMA model in order to address the uncertainties of spectral mixture models. Results of the WSMA examination illustrated that some weighting schemes did reduce endmember uncertainties since they could improve the fractional estimates significantly. The results also indicated that spectral class variance played a key role in addressing the endmember uncertainties, as the better performing weighting schemes were constructed with spectral class variance. In addition, the results of TSMA examination demonstrated that some TSMAs, such as normalized spectral mixture analysis (NSMA), could effectively solve the endmember uncertainties because of their stable performance in different study areas. Results of Class-based MEMSA (C-MESMA) indicated that it could address spectral mixture model uncertainties by reducing a lot of the calculation burden and effectively improving accuracy. Assessment demonstrated that C-MEMSA significantly improving accuracy. Major contributions of this study can be summarized as follow. First, the effectiveness of addressing endmember uncertainties have been fully discussed by examining: 1) the effectiveness of ten weighted spectral mixture models in urban environments; and 2) the effectiveness of 26 transformed spectral mixture models in three locations. Constructive guidance regarding handling endmember uncertainties using WSMA and TSMA have been provided. Second, the uncertainties of spectral mixture model were reduced by developing an improved MESMA model, named C-MESMA. C-MESMA could restrict the distribution of endmembers and reduce the calculation burden of traditional MESMA, increasing SMA accuracy significantly

    Deriving Landscape-Scale Vegetation Cover and Aboveground Biomass in a Semi-Arid Ecosystem Using Imaging Spectroscopy

    Get PDF
    Environmental disturbances in semi-arid ecosystems have highlighted the need to monitor current and future vegetation conditions across the landscape. Imaging spectroscopy provide the necessary information to derive vegetation characteristics at high-spatial resolutions across large geographic areas. The work of this thesis is divided into two sections focused on using imaging spectroscopy to estimate and classify vegetation cover, and approximate aboveground biomass in a semi-arid ecosystem. The first half of this thesis assesses the ability of imaging spectroscopy to derive vegetation classes and their respective cover across large environmental gradients and ecotones often associated with semi-arid ecosystems. Optimal endmember selection and endmember bundling are coupled with classification and spectral unmixing techniques to derive vegetation species and abundances across Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho at high spatial resolution (1 m). Results validated using field data indicated classification of aspen, Douglas fir, juniper, and riparian classes had an overall accuracy of 57.9% and a kappa coefficient of 0.43. Plant functional type classification, consisting of deciduous and evergreen trees, had an overall accuracy of 84.4% and a kappa coefficient of 0.68. Shrub, grass, and soil cover were predicted with an overall accuracy of 67.4% and kappa coefficient of 0.53. I conclude that imaging spectroscopy can be used to map vegetation communities in semi-arid ecosystems across large environmental gradients at high-spatial resolution and with high accuracy. The second half of this thesis focuses on monitoring the changes of aboveground biomass (AGB) from the 2015 Soda Fire, which burned portions of southwest Idaho and southeastern Oregon. Classifications derived in the first study are used to estimate AGB loss within a portion of RCEW, and these estimates are used to compare to gross estimates made over the full extent of the Soda Fire. I found that there was an AGB loss of 174M kg within RCEW and approximately 1.8B kg lost over the full extent of the Soda Fire. Additionally, a post-fire analysis was performed to provide insight into the amount of AGB that returned to both RCEW and the full extent of the Soda Fire. An estimated 2,100 – 208,000 kg of AGB had returned to the burned portion of RCEW one-year post fire, and approximately 3.2M kg of AGB had returned over the full extent of the Soda Fire. These AGB loss and re-growth estimates can be used by researchers and practitioners to monitor carbon flux across the Soda Fire and as baseline data for wildfires in semi-arid ecosystems

    Mapping urban surface materials with imaging spectroscopy data on different spatial scales

    Get PDF
    This work focuses on the development of methods for mapping urban surface materials by means of imaging spectroscopy data with different spatial resolution. General findings from this work represent a sensor- and site-independent framework for the automated extraction of spectrally pure pixels using an urban image spectral library while coping with its potential incompleteness. The extraction of spectrally pure pixels serves as a basic prerequisite for the subsequent use of image analysis methods to obtain detailed urban surface material maps. These material maps enabled the determination of gradual material transitions that were finally related to complex spectral mixtures resulting from 30 m spatial resolution imaging spectroscopy data to analyse typical material compositions within certain administrative units. The findings demonstrate the great potential of using upcoming spaceborne imaging spectroscopy data for a regular area-wide mapping of surface materials in urban areas. Im Fokus dieser Arbeit stand die Entwicklung von Methoden zur Kartierung urbaner Oberflächenmaterialien mittels abbildender Spektroskopiedaten unterschiedlicher räumlicher Auflösung. Das vorgestellte Konzept zur automatisierten sensor- und ortsunabhängigen Extraktion spektral reiner Pixel aus flugzeuggetragenen Fernerkundungsdaten berücksichtigt dabei die mögliche Unvollständigkeit einer urbanen Bildspektralbibliothek. Die Extraktion spektral reiner Pixel dient als Grundvoraussetzung für den späteren Einsatz von Bildanalyseverfahren zur Gewinnung detaillierter Kartierungen urbaner Oberflächenmaterialien. Aus diesen sind Materialgradienten ableitbar, die mit den komplexen Spektralmischungen aus Hyperspektraldaten mit 30 m räumlicher Auflösung in Verbindung gebracht wurden. Die Analyse typischer Materialzusammensetzungen innerhalb städtischer Verwaltungseinheiten zeigt das enorme Potential zukünftiger Hyperspektralsatelliten für die Erfassung des Materialvorkommens von Städten

    Coastal Deposits: Environmental Implications, Mathematical Modeling and Technological Development

    Get PDF
    This Special Issue on "Coastal Deposits: Environmental Implications, Mathematical Modeling, and Technological Development" includes seven high-quality, innovative research papers dealing with many scientific aspects regarding the coast, through mathematical modelling and innovative techniques in the study and preservation of the coastline from erosion, such as coastal watch camera installations, remote sensing, the use of biocementation, or analytical techniques, to assess incompatibilities in the sustainable use of the coast, including worrying issues as pollution of the marine environment and ecosystem deterioration
    corecore