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Abstract 

 

Urban environments are subject to numerous processes that directly influence the human 

life. The knowledge of the current state of urban habitats is of fundamental importance for 

its recording, analysis, prevention, and forecast. Surface materials are one of the basic 

indicators for a large number of these urban processes and therefore a comprehensive 

mapping of urban surface materials is demanded. Imaging spectroscopy data allows the 

identification of the reflected light from urban surface materials based on their 

characteristic spectral signature acquired in continuous narrow spectral bands. The spectral 

diversity of urban surface materials and typically small-scaled urban objects lead to 

spectral mixtures, where the quantity depends on the spatial resolution of the monitoring 

system. However, methods used for a detailed mapping of urban surface materials with 

imaging spectroscopy data require the prior knowledge of spectrally pure signatures of all 

surface materials occurring in the investigated area. Hence, the spatial resolution of the 

sensor system is decisive for the level of detail when mapping urban surface materials.  

This work focuses on the development of methods for mapping urban surface materials by 

means of imaging spectroscopy data with different spatial resolution. High spatial 

resolution imaging spectroscopy data from airborne platforms were used for the 

development of a method for the automated determination of spectrally pure surface 

material signatures as a basic prerequisite for the subsequent use of image analysis 

methods to obtain detailed urban surface material maps. In this context, it deals with the 

main limitations of the transferability of an urban image spectral library for the 

determination of spectrally pure material pixels. Subsequently generated maps of detailed 

surface materials enabled the determination of interpretable gradual material transitions for 

the analysis of the dominated material occurrences in a given test site. The relation with 

very complex spectral mixtures resulting from 30 m spatial resolution simulated 

spaceborne imaging spectroscopy data allows the determination and analysis of typical 

material compositions within certain administrative units.  

General findings from this work represent a sensor- and site-independent framework for 

the automated extraction of spectrally pure pixels using an urban image spectral library 

while coping with its potential incompleteness. The results reveal an important step 

towards the development of a generic urban spectral library. Results using 30 m imaging 
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spectroscopy data show an improved ability to analyse material compositions at a finer 

level of detail compared to previous studies using such kind of data. Potentials of 

spaceborne imaging spectroscopy data for regular area-wide mapping of urban surface 

materials is complemented by the fact that the used method does not require any prior 

determination of spectrally pure signatures of urban surface materials.  
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Zusammenfassung 

 

Unsere Städte rufen eine Vielzahl unterschiedlicher urbaner Prozesse hervor, die einen 

direkten Einfluss auf unser Leben haben. Für die Erfassung, Analyse, Prävention und 

Vorhersage dieser Prozesse ist der aktuelle Zustand der Städte von grundlegender 

Bedeutung und erfordert daher deren Kenntnis. Einer der grundlegenden Indikatoren für 

viele urbane Prozesse ist auf das Vorkommen von Oberflächenmaterialien zurückzuführen, 

wodurch eine umfassende Kartierung dieser unumgänglich ist. Die abbildende 

Spektroskopie ermöglicht aufgrund der zahlreichen kontinuierlichen Spektralbänder die 

Analyse erfasster Reflektanzen hinsichtlich charakteristischer spektraler Signaturen zur 

Kartierung urbaner Oberflächenmaterialien. Die spektrale Vielfalt urbaner 

Oberflächenmaterialien sowie die typischerweise kleinräumigen urbanen Objekte sind für 

die Entstehung spektraler Mischungen verantwortlich. Die Anzahl der spektralen 

Mischungen steht daher auch in direktem Zusammenhang mit der räumlichen Auflösung 

des Aufnahmesystems. Eine detaillierte Kartierung der städtischen Oberflächenmaterialien 

mit den Methoden der abbildenden Spektroskopie bedürfen jedoch der vorherigen 

Kenntnis spektral reiner Signaturen aller im Untersuchungsgebiet vorkommenden 

Oberflächenmaterialien. Demzufolge ist die räumliche Auflösung des Sensorsystems für 

die Kartierung von urbanen Oberflächenmaterialien entscheidend. 

Im Fokus dieser Arbeit stand die Entwicklung von Methoden zur Kartierung urbaner 

Oberflächenmaterialien mittels abbildender Spektroskopiedaten unterschiedlicher 

räumlicher Auflösung. Hochauflösende abbildende Spektroskopiedaten flugzeuggetragener 

Plattformen wurden für die Entwicklung eines Verfahrens zur automatisierten Extraktion 

spektral reiner Oberflächenmaterialsignaturen als Grundvoraussetzung für den späteren 

Einsatz von Bildanalyseverfahren zur Gewinnung detaillierter Kartierungen von urbanen 

Oberflächenmaterialien verwendet. In diesem Zusammenhang werden die grundlegenden 

Einschränkungen bei der Übertragbarkeit einer urbanen Bildspektralbibliothek für die 

Erfassung von spektral reinen Pixeln bewältigt. Anschließend generierte Karten von 

detaillierten Oberflächenmaterialien erlauben die Interpretation von Materialgradienten 

sowie die Analyse des dominierenden Materialvorkommens im Untersuchungsgebiet. Im 

Zusammenhang stehende komplexe Spektralmischungen, die sich aus der räumlichen 

Auflösung simulierter Hyperspektraldaten mit 30 m ergeben, manifestieren das 
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Vorkommen typischer Materialzusammensetzungen, die innerhalb abgrenzbarer 

Verwaltungseinheiten analysierbar sind. Allgemeine Erkenntnisse aus dieser Arbeit zeigen 

die Entwicklung eines sensor- und ortsunabhängigen Konzepts für die automatisierte 

Extraktion spektral reiner Pixel unter Verwendung einer urbanen Bildspektralbibliothek 

und der Berücksichtigung deren möglichen Unvollständigkeit. Im Allgemeinen stellen die 

Ergebnisse einen weiteren Schritt zur Entwicklung einer generisch nutzbaren urbanen 

Spektralbibliothek für räumlich hochauflösende Hyperspektraldaten dar. 

Ergebnisse unter Verwendung von Spektroskopiedaten mit 30 m räumlicher Auflösung 

ermöglichen eine detailliertere Analyse von Materialzusammensetzungen im Vergleich zu 

vorangehenden Studien bei der Nutzung von Daten mit selbiger räumlicher Auflösung. Die 

Potenziale der zukünftigen Hyperspektralsatelliten für die regelmäßige flächendeckende 

Kartierung urbaner Oberflächenmaterialien wird dabei durch die Tatsache ergänzt, dass die 

angewandte Methode keine vorherige Bestimmung spektral reiner Signaturen von urbanen 

Oberflächenmaterialien erfordert. 
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CHAPTER I 
 

 

Introduction 
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3 

1.1 Human settlements and urbanization 

 

Century of the City as Seto et al. (2010) designated the present century – associated with 

the rapid progress of urbanization and the continuous growth of the world population – 

gives a first impression of the demands on the population and the transformation processes 

inside and outside the cities. The world population was doubled from 3 billion in 1959 to 6 

billion in 1999 and is estimated to might reach the mark of 10 billion people in 2055 (UN, 

2017) with an annual global population growth of around 1.16% (The World Bank, 2018).  

Already in the Middle Ages the city was considered as a place of wealth and prosperity, 

resulting to a migration of the rural population to the city. The perspective of people 

migrating to the city has shifted mainly due to better education and job opportunities, 

globalization, economic, cultural and socio-political reasons (e.g. due to working places, 

quality of life, transportation, friends etc.). The trend continues, so that nowadays the 

majority of the world's population is residing in urban environments. In this context, more 

than half of the world’s population was registered to settle in urban areas in 2007, with an 

upward trend (Fig. 1; UN, 2018a). This trend, also known as urbanization, leads to a fast 

growing and dynamically changing urban landscape (Bell et al., 2010; Malheiros and Vala, 

2004; Sánchez-Rodríguez et al., 2005) with a dense agglomeration also in peri-urban areas. 

Thus, urbanization can be seen as a result from population increase, economic expansion 

and the need for space (Ravetz et al., 2013). In recent years, more and more cities have 

developed into so-called megacities, which result from a population of more than 10 

million inhabitants. In 2018, 33 cities around the world were recognized as megacities, and 

within the next 12 years it is estimated that another 10 cities will be added to this list (UN, 

2018b). This globally densification of cities in terms of population, formation of new and 

altering constructions, and the expansion of infrastructure is accompanied by a continuous 

change in the cityscape.  



 

4 

 

Fig. 1: Development and trend of the world’s urban and rural population from 1950-2050. (Source: Own 

illustration based on UN (2018a)). 

Although these changes take place in rather small spatial units on the earth’s surface, it has 

far-reaching effects on the global economy, society, and especially on the climate and 

pollution in the urban and non-urban ecosystems (Grimm et al., 2008). Several population-

induced effects are associated with physical and socio-economic impacts on individuals, as 

well as on a global level. For instance, an increasing imperviousness affects the 

hydrological processes in the city which is related to a reduced surface runoff (Leopold, 

1968; Weng, 2001; Cuo et al., 2008; Ampe et al., 2012; Wirion et al., 2017) that 

aggravates the risk of extreme flood events. The associated reduction of vegetation and 

urban green spaces is also a key factor that is decisive for the urban climate by reducing 

CO2 and greenhouse gases (Yang et al., 2003; Hoek et al., 2008; Kennedy et al., 2009) and 

temperature regulation in the city (Middel et al., 2014). Thus, urban surfaces and structures 

are responsible for microclimatic effects in the city (Arnfield, 2003). While the effects of 

the city on the climate were already recognized in the early years of the 19
th

 century 

(Howard, 1833), in recent years the phenomenon of the so called urban heat island (Oke, 

1973; Grimmond, 2007) is probably the most commonly studied aspect in climatic studies 

of urban environments. In order to investigate such effects caused by urban growth, a 

regular monitoring of the city is demanded to enable a fast response for decision makers 

and urban planners regarding sustainability and development.  
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1.2 Earth observation in urban areas and the 

implications of different spatial resolutions 

 

„Earth observation is the gathering of information about planet earth’s physical, chemical 

and biological systems. It involves monitoring and assessing the status of, and changes in, 

the natural and man-made environment.“ (Group on Earth observations, 2019). 

Ongoing processes of urbanization around the world are accompanied by continuous 

changes in the land cover - in, around and beyond the city (section 1.1). A regular 

monitoring of urban areas facilitates the assessment and estimation of urban processes and 

their direct and indirect impacts on humans, nature and the climate. Gathered information 

from water-, land-, air- or space-based platforms is therefore a substantial source for 

decision-makers and planners (National Research Council, 2007). The acquisition of data 

to monitor, detect and assess changes on the earth is known as earth observation (EO; 

Group on Earth Observation, 2019).  

Since decades, a comprehensive spatiotemporal monitoring of these rapid changes and its 

effects has been studied by means of EO. Data taken from remote sensing systems are a 

major component of EO that can provide a comprehensive and up-to-date monitoring of 

the rapidly changing urban environment. The monitoring of urban areas with remote 

sensing enables the mapping of land cover and the derivation of information on its land use 

(Roberts and Herold, 2004) for large areas. In general, such information might be gathered 

by different remote sensing techniques (active or passive) which are based on in-situ 

measurements, airborne (aircraft and unmanned aerial vehicles) or spaceborne platforms. 

The enormous temporal and spatial changes resulting from new constructions for housing, 

workplaces, leisure facilities and infrastructure lead to a constantly changing city scape and 

hamper the monitoring of changes in land cover and land use in the field. Airborne and 

spaceborne remote sensing systems aim to provide extensively detailed information about 

the earth’s surface for different research priorities. They are associated with different 

spatial, spectral, radiometric and temporal conditions (Jensen and Cowen, 1999). For a 

detailed introduction on remote sensing and the principle functioning of the different 

technologies it is referred to Hildebrandt (1996), Schowengerdt (1997), Richards and Jia 

(1999), Lillesand and Kiefer (2000), Mather (2004), and Albertz (2009). The different 

remote sensing technologies are very briefly introduced in this section. 
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Passive remote sensing systems (optical remote sensing systems) record the incoming 

sunlight that is reflected from the objects on the earth surface. While active sensor systems 

(radar remote sensing systems) emit a radar beam and record its incoming backscatter from 

an object on the earth's surface. Active remote sensing systems are able to record weather-

independent data during day- and night-time. While passive remote sensing systems are 

dependent on the sunlight and mainly on cloud free conditions to provide useful 

information from the earth’s surface. The numerous vertical objects such as facades are 

challenging for radar systems and result in effects such as layover (Dong et al., 1997) and 

occlusions of objects due to radar shadow (Soergel, 2010). However, due to the recording 

technology of radar systems the characterisation of built-up areas using these sensor 

systems is ideally suitable for analysing information of object structure and texture. 

Soergel (2010) gives a comprehensive overview on radar remote sensing in urban areas.  

Optical sensors are acquiring spectral information on the surface cover of urban objects in 

photograph-like images in the wavelength regions within 300 and 3000 nm. Based on the 

spectral detail that can be monitored, optical sensors are further separated in multispectral 

and hyperspectral systems. Multispectral systems are measuring the reflected sunlight in a 

few spectral bands from the electromagnetic spectrum with a rather broad bandwidth. 

There are numerous mainly spaceborne multispectral missions with different settings for 

spectral data acquisition, varying temporal and spatial resolutions ranging from sub-meters 

up to 1 km (e.g. WorldView, Quickbird, Spot, RapidEye, Sentinel, Landsat etc.).  

Very detailed spectral information of objects are recordable from hyperspectral sensor 

systems. Hyperspectral remote sensing is also often referred to as imaging spectroscopy 

(Schaepman et al., 2009). Such data enables a detailed differentiation, concerning the 

occurrence of surface materials (section 1.3.1) in impervious patterns and built-up areas, 

that cannot be differentiated with multispectral remote sensing sensors (Small, 2005; 

Jensen and Cowen, 1999; Herold et al., 2003; Gamba and Dell'Acqua, 2007). 

Hyperspectral sensors are characterised by the fact that they acquire spectral information 

through a large number of very narrow, contiguous spectral bands. Commonly very high 

spectral and spatial information are recorded from imaging spectrometers mounted on 

airborne platforms (e.g. AVIRIS, Green et al., 1998; HyMap, Cocks et al., 1998; HySpex, 

NEO, 1995; and APEX Jehle et al., 2010). The analysis of shape and absorption features 

from the spectral signature of the reflected irradiance allows a detailed differentiation of 

the spectral response function of urban surfaces (e.g. Ben-Dor et al., 2001; Segl et al., 

2003; Herold et al., 2004; Heiden et al., 2007; Heiden et al., 2012). The need for regular 
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monitoring of the spectral properties of the earth's surface is becoming increasingly 

important in order to infer more detailed information on the material composition of 

impervious and built-up surfaces for investigating urban processes (sections 1.3.1 and 

1.3.2). However, flight campaigns carrying imaging spectrometers are limited in the 

temporal resolution, as it is often difficult to obtain a permission to fly over populated 

areas, and the costs of a revisiting data acquisition is often prohibitive. Thus, imaging 

spectroscopy data from space are advantageous for regular and area-wide mapping 

purposes due to their temporal resolution that cannot be realized with airborne systems. In 

the past years and nowadays the availability of spaceborne imaging spectroscopy systems 

is still quite limited (e.g. Hyperion, Pearlman et al., 2003; CHRIS-PROBA, Duca and Del 

Frate, 2008; DESIS, Mueller et al., 2017). However, with the launch of EnMAP (Guanter 

et al., 2015), HyspIRI (Abrams and Hook, 2013), PRISMA (Guarini et al., 2017), HISUI 

(Matsunaga et al., 2014) in the next months and years, spaceborne data with high spectral 

and temporal resolution will be available. Nevertheless, the possibilities of acquiring 

thematically very detailed spectral information of urban areas will be hampered by a 

characteristic spatial resolution of 20 to 30 m (section 1.3.2).  

Different airborne and spaceborne remote sensing systems are associated with different 

spatial resolution capabilities for monitoring the earth’s surface. The spatial resolution is 

defined by a consistent areal size of the observation area on the earth's surface which is 

represented by an image element (pixel). Pixels can be composed of only one urban object 

that is covered by one surface materials or by different urban objects covered by different 

surface materials (Fig. 2). These so called mixed pixels result from a jointly recording of 

objects that are smaller than the spatial resolution of the sensor system (Jensen and Cowen, 

1999). The spectral signature of these mixed pixels is therefore a combination of the 

spectral characteristics of the corresponding surface materials (section 1.3.1) and their 

cover fractions. Thus the heterogeneity of the observed environment coupled with the 

characteristic spatial resolution of the monitoring sensor system is responsible for the 

number and mixing ratio of spectrally mixed pixels (Small and Lu, 2006). That means a 

decreasing spatial resolution of the sensor system leads to a continuously increasing 

number of mixed pixels in the image (Fig. 2). While at the same time, with coarser spatial 

resolution, the number of spectrally pure pixels, which represent only one urban object 

covered by one surface material (section 1.3.2), decreases. 

Very high spatial, spectral and temporal resolution would be the ideal case for monitoring 

urban environments but are not available yet. When using airborne or spaceborne 
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hyperspectral data, a compromise of spatial or temporal constraints must therefore always 

be made.  

 

Fig. 2: Exemplary illustration of varying spatial resolution for an image with 4 x 4 m (left; e.g. HyMap) and 

30 x 30 m (right; e.g. EnMAP) pixel size and its influence on the occurrence of mixed pixels (yellow and 

green outlined pixels) in urban areas (Source: Own illustration with background image from 

GoogleEarth®). 

1.3 Urban surface materials and mapping 

 

Ongoing urbanization processes paired with continuous population growth result in the 

formation of new housing and working facilities. Consequently, this is associated with a 

rapidly and continuously changing urban landscape with far-reaching impacts on the 

population and the environment worldwide (section 1.1). A detailed monitoring can be 

conducted by using remote sensing systems (section 1.2) that provide ideal conditions and 

image analysis techniques for a regular observation of such highly dynamic landscapes. 

This section outlines the relevance of this thesis to highlight the context of the innovative 

research parts (sections 2, 3 and 4) of this work that is related to the research needs of 

mapping urban surface materials. 
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1.3.1 Urban surface materials and their influence on urban processes 

 

Historical, structural and functional influences of the composition of abiotic and biotic 

components constitute urban areas as a distinct ecosystem (Sukopp and Weiler, 1998; 

Wittig et al., 1998; Niemela, 1999). The occurrences of urban surface materials varies due 

to geographical conditions (e.g. climate, trends) that are characteristic for certain regions. 

For instance, roofing tiles are commonly used in residential areas of European cities while 

in Northern American cities slates are typically used as roofing materials on smaller single 

and multi-family houses. Surface materials of mineral, hydrocarbon-based, metallic, 

opaque or biotic origin are used on different urban objects, while structural and chemical 

compositions of these materials vary from manufacturer to manufacturer. Processes such as 

the firing or drying of roofing tiles or different coatings lead to a huge material variability.  

Measurements with imaging spectroscopy systems (sections 1.2 and 1.3.2) demonstrate the 

variations of chemical, physical and structural compositions of surface materials in their 

spectral signatures. Degradation processes caused by the sun, wind, and rain are a further 

influencing factor on the spectral diversity of urban surface materials. Variations in the 

illumination (incident sunlight), orientation of objects (shaded roof side), object structure 

(texture), and the inclination angle (roofing inclination) towards the sensor are also 

affecting the spectral variability of an urban surface material due to so called bidirectional 

reflectance distribution function (BRDF) effects (Schott, 1997; Lucht et al., 2000; 

Lacherade et al., 2005; Schaepman-Strub et al., 2006). Thus, urban areas are highly 

complex environments with an enormous spatially and spectrally variability of urban 

objects and their surface covering materials within and between the material classes. The 

spectral diversity within a material class (e.g. due to weathering and minor differences in 

coating) and towards spectrally similar materials (e.g. asphalt and concrete; Herold et al., 

2004; Heiden et al., 2007) is known as spectral intra- and inter-class variability. In figure 3 

the spectral variability of clay roofing tiles and asphalt is exemplarily illustrated. The 

spectra were acquired from HyMap sensor in three German cities. 
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Fig. 3: Spectral variability of clay roofing tiles (left) and asphalt (right) acquired from HyMap data in 

Munich, Dresden, and Potsdam, Germany. 

Detailed information on urban surface materials serve as a basic source of information for 

a variety of analysis for understanding urban processes. In Heldens et al. (2011) a 

comprehensive overview of the relevance of material information for applications related 

to urban development and planning, evaluation of urban growth, risk and vulnerability 

assessment, urban climate or for methodological research in the field of mapping urban 

land cover or for algorithms in spectral analysis is given. In such studies it is demonstrated 

that, among several human- and object-related characteristics (e.g. human activities, size, 

location, and orientation of urban objects), the physical and chemical properties of the 

covering materials such as reflection properties (albedo) have an influence on the urban 

climate (Hoyano et al., 1999). For example, temperature differences in cities can be traced 

back to occurring surface materials, which are linked to different surface temperatures due 

to the material-specific reflection and absorption degrees of the incident sunlight. The 

analysis of varying temperatures over urban areas is a key factor for the determination of 

the urban heat island (Wilby, 2003; Wilby, 2007) and is further decisive for other urban 

climatic processes such as wind speed, humidity and even air quality (Heldens, 2010). 

Another urban application, based on a detailed material mapping, can serve to calculate 

hydrological models (Carlson and Arthur, 2000; Ampe et al., 2012; Wirion et al., 2017) to 

evaluate the city’s water balance and its surface runoff (Weng, 2001) due to rain masses in 

cities on the basis of their material-specific characteristics of water permeability (Gill et 

al., 2007; Alberti et al., 2007; Carle et al., 2005). Surface material maps are therefore 

frequently requested as an important source of information for several risk and 

vulnerability assessments as well.  
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1.3.2 Surface material mapping with imaging spectroscopy data  

 

Beside time- and cost-intensive restrictions, surface material mapping in the field can be 

almost not conducted for large-scale applications. Thus, remote sensing has been proven as 

an ideal tool for monitoring urban areas (section 1.2). Specifically hyperspectral remote 

sensing data are best suited for an area-wide mapping of urban surface materials due to the 

high spectral sensitivity of the sensors.  

The number of spectrally mixed pixels is directly related to the rather small-scaled urban 

objects, the spectral complexity of urban surfaces, and the spatial resolution of the 

acquisition system (sections 1.2 and 1.3.1). For the detailed mapping of urban surface 

materials high spatial and spectral resolution properties, available from airborne imaging 

spectroscopy data, are required (Jensen and Cowen, 1999; Gamba and Dell’Acqua, 2006). 

An overview on the specific requirements for mapping urban surface materials with 

imaging spectroscopy data is given in Herold et al. (2003). However, the spatial resolution 

of remote sensing systems cannot overcome the effects of illumination, shadowing and 

object displacements of vertical structures that hampers the analysis of urban areas (van 

der Linden and Hostert, 2009; Adeline et al., 2013; Yang et al., 2015; van der Linden et al., 

2018). Nevertheless, a high spectral resolution enables the differentiation of spectral 

ambiguities resulting from spectral inter- and intra-class variabilities of urban surface 

materials (Small, 2003; Herold et al., 2004; van der Linden et al., 2007). While a high 

spatial resolution reduces the number of highly complex mixed pixels (section 1.2) that 

needs to be deconvolved for a detailed mapping of urban surface materials. The more 

materials contributing to the spectral signature of a mixed pixel the higher is the 

uncertainty of the deconvolution (Winter et al., 2003). To give an impression on the 

number of mixed pixels related to the spatial resolution, Heldens et al. (2017) identified 

more than half of the pixels as mixed pixels using a 4 m spatial resolution data set. Thus, 

deconvolution of mixed pixels to map urban surface materials is still challenging even with 

high spatial and spectral resolution data sets.  

Over the last decades, detailed urban surface material maps and the determination of 

material-related information have been already proven and highlight the potentials of using 

airborne imaging spectroscopy (e.g. Ben-Dor, 2001; Roessner et al., 2001; Herold, et al., 

2003; Segl et al., 2003; Herold et al., 2004; Heiden et al., 2007; Franke et al., 2009; Heiden 

et al., 2012; Demarchi et al., 2014; Priem and Canters, 2016; Chen et al., 2017; Degerickx 
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et al., 2019 etc.). In these research studies a variety of methods were developed for tackling 

the heterogeneity of urban environments due to their spatial and spectral complexity. Thus, 

for example, Roessner et al. (2001) developed an spatial and spectral region growing 

approach that considers spectral variations of determined endmembers for an automated 

differentiation of urban surface materials. Benediktsson et al. (2005) determines 

morphological profiles for classifying urban environments, where Gamba et al. (2007) 

identified object boundaries for mapping purposes and Heiden et al. (2007) differentiate 

urban surface materials by determining material-specific spectral features in the spectral 

signature. In van der Linden et al. (2007) machine learning techniques were proposed for 

classifying urban land cover, while Franke et al. (2009) developed and a hierarchical 

MESMA approach (Multiple Endmember Spectral Mixture Analysis; Roberts et al., 1998) 

for extracting endmembers in urban environments.  

Endmembers (EMs) are defined as the “spectral signatures, the radiance or reflectance 

values over hundreds of contiguous spectral bands, of the pure, constituent materials in a 

hyperspectral scene” (Zare and Ho, 2014, pp. 95). The endmember terminology does not 

incorporate spectral variabilities of a material class e.g. due to differences in the 

illumination, degradation or chemical properties (section 1.3.1). However, the variability 

of EMs (also known as bundles of EMs) is important for an accurate estimation of material 

fractions in mixed pixels (Somers et al., 2011; Zare and Ho, 2014). Especially in urban 

areas where some material classes are spectrally very similar (e.g. asphalt, concrete, soil) 

automated EM determination (see below) is often incomplete. The high spectral- inter- and 

intra-class variability of urban surface materials (Fig. 3) needs to be considered for detailed 

and accurate surface urban material mapping. For this reason, this work avoids using the 

term EM, since the spectral variability of material classes is fundamental for an accurate 

mapping of urban surface materials. Further it should be noted that if the term EM is used 

in the context of urban surface materials, it corresponds to the meaning of spectrally pure 

urban surface materials (or spectrally pure pixels), including the spectral inter- and intra-

class variability for a thematically namable material. 

Most recently spectral unmixing techniques are used for deconvolving mixed pixels to 

determine urban surface materials on a sub-pixel scale. From a methodological point of 

view the imaging spectroscopy community has placed great emphasis on the development 

of linear and non-linear spectral mixture analysis techniques (Keshava, 2003; Keshava and 

Mustard, 2002; Adams and Gillespie, 2006; Shimabukuro et al., 1991). Spectral unmixing 

techniques were used for decomposing mixed pixels from various natural and urban 
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environments (e.g. Adams and Smith, 1986; Asner and Lobell, 2000; Okin et al., 2001; 

Asner and Heidebrecht, 2002; Neville et al., 2003; Roth et al., 2012; Roberts et al., 2017). 

Such unmixing techniques strive on the determination of the corresponding material 

fractions so called abundances (Keshava and Mustard, 2002) of pure material spectra (that 

are also known as EM), in spectrally mixed pixels (Adams et al., 1993; Settle and Drake, 

1993) independently of the spatial, spectral or radiometric resolution of the imagery.  

The decomposition of mixed pixels in their material abundances requires prior knowledge 

of all spectrally pure signatures (EM) of material components existing in the study area. 

Prior determination of spectrally pure pixels plays a key role for spectral unmixing 

techniques but they are also relevant for other methodological approaches such as for 

training purposes in image classification (Clark et al., 2003; van der Linden et al., 2007; 

Plaza et al., 2009), or simply for data mining reasons (Okujeni et al., 2017) e.g. to archive 

spectral references. Therefore, the determination of spectrally pure pixels delineates a 

fundamental step in most of the approaches of mapping urban environments while using 

imaging spectroscopy data. Spectral references of pure urban surface materials, can be 

obtained by spectroscopic measurements in the field (e.g. Ben-Dor et al., 2001; Herold et 

al., 2004; Roberts et al., 2004), in the laboratory (e.g. Roberts et al., 1993), determined 

from image data (e.g. Bateson et al., 2000; Plaza et al., 2002; Dennison and Roberts, 2003) 

or by simulations (e.g. Dennison et al., 2006; Eckmann et al., 2008; Sonnentag et al., 

2007).  

The importance of selecting EMs for a subsequent mapping of “spatial distribution, 

associations and abundances” (Martínez et al., 2006; pp. 93) has led to the development of 

a variety of semi- and fully automated methods for the extraction of EMs from imaging 

spectroscopy data (e.g. Pixel Purity Index, Boardman et al., 1995; N-FINDR, Winter, 

1999; Iterative Error Analysis, Plaza et al., 2004). Somers et al. (2016) give an overview 

on EM extraction methods from image data. Such techniques are extensively studied (e.g. 

Martínez et al., 2006; Plaza et al., 2004) and yield to overcome major drawbacks of time- 

and cost-intensive fieldwork. These methods allow one EM per material class to be 

extracted from an image (Zare and Ho, 2014; Iordache et al., 2014). However, advanced 

EM extraction tools such as MESMA (Roberts et al., 1998) further focus on the selection 

of EMs in terms of type and number and also take into account the spectral inter- and intra-

class variability of EMs (Zhang et al., 2006). The knowledge of the full spectral inter- and 

intra-class variability of EMs that characterizes the study area is of great importance and is 

known to influence the successful use of spectral unmixing models (Smith et al., 1994; 
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Bateson et al., 2000; Roth et al., 2012). Somers et al. (2011) discussed in detail the 

influence of EM variability to spectral mixture analysis.  

EMs and spectrally pure pixels are commonly assembled in a so-called spectral library that 

serve as data container for storing previously labelled spectral signatures of extracted or 

measured spectrally pure materials as reference spectra. Spectral libraries are therefore the 

basis for most of the unmixing or classification methods to determine information on urban 

surface materials. For a successful use of spectral libraries the spectral characteristics of 

the study area needs to be fully described by the reference spectra in the spectral library. 

There are a few urban spectral libraries containing spectral signatures of selected artificial 

surface materials developed from field and laboratory measurements as well as from image 

determination (e.g. Ben-Dor et al., 2001; Herold et al., 2004; Clark et al., 2007; Heiden et 

al., 2007; Okujeni et al., 2013; Kotthaus et al., 2014). The use of image spectral libraries 

have the advantage that determined spectrally pure pixels from the image data themselves 

contain beside the site-specific spectral signatures also the variations from temporal (e.g. 

illumination, orientation, atmosphere) and sensor specifications (e.g. bandwidth, spectral 

bands, field of view, flight direction). Reference spectra of spectral libraries, needs to be 

identified and labelled manually even when using (semi-) automated endmember 

extraction algorithms. This requires a profound spectral, spatial and temporal expertise of 

the acquired urban surface materials and is therefore still a challenging task. The 

comprehensive mapping of urban surface materials using spectral libraries is directly 

influenced by the available and the spectral intra- and inter-class variability of reference 

spectra. Any incompleteness in the used spectral library with regard to missing spectrally 

pure materials and an incomplete representation of inter- and intra-class variabilities of the 

materials occurring in the study area leads to disregarding these spectrally pure pixels in 

the further mapping of urban surfaces. This hampers the transferability of urban spectral 

libraries to a new urban area, but the demand for a universal use of an urban spectral 

library is still ongoing. First advances towards a generic application of an urban spectral 

library were tested in Okujeni et al. (2017), Wetherley et al. (2017) and Dudley et al. 

(2015) where reference spectra were combined with different spectral, spatial and temporal 

resolutions. However, the incompleteness of an urban spectral library will still persist as it 

will be impossible to establish an urban spectral library containing the spectral variability 

of all surface materials of cities around the world. The use of an urban spectral library for a 

detailed analysis of urban surface materials is still limited to urban areas whose spectral 

diversity can be explained by the corresponding urban spectral library. 
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A further issue arises while analysing urban areas using spaceborne imaging spectrometers. 

Although upcoming spaceborne imaging spectrometers will offer a high temporal 

resolution, enabling regular and area-wide mapping of urban areas, the spatial resolution of 

20 to 30 m will lead to an image dominated by highly complex spectrally mixed pixels 

(section 1.2, Fig. 2). Hence, the spectral complexity of mixed pixels cannot be sufficiently 

expressed by available spectrally pure pixels and therefore requires advanced techniques to 

quantify the occurrence of urban surface materials. There are only a couple of studies using 

spaceborne imaging spectroscopy data due to the limited number of former or operating 

sensor systems in space (section 1.2; e.g. Xu and Gong, 2007; Cavalli et al., 2008; Duca 

and Del Frate, 2008; Weng et al., 2008; Licciardi and Del Frate, 2011; Demarchi et al., 

2012a; Demarchi et al., 2012b; Fan and Deng, 2014; Zhang, 2016). However, in the next 

years new hyperspectral satellites will be launched (see section 1.2) which will enhance the 

data availability and provide new opportunities for a regular monitoring of urban areas. 

First studies are already using simulated imageries to investigate the potentials of these 

new sensor systems for urban applications (e.g. Roberts et al., 2012; Okujeni et al., 2015; 

Rosentreter et al., 2017). The issue of deconvolving highly complex spectral mixtures led 

in all studies to the determination of generalized material classes in broader land cover 

classes. For instance, Weng et al., 2008 extended the well-known VIS-model (vegetation, 

impervious and soil; Ridd, 1995) by further differencing between high and low albedo 

classes. While Okujeni et al., 2015 distinguishes into the classes roof, pavements, low 

vegetation (such as grassland and shrubs) and trees. A more detailed mapping of urban 

surface materials with spaceborne imaging spectroscopy data could not yet be 

implemented. An overview on recent progress using imaging spectroscopy data – airborne 

and spaceborne – for mapping urban areas is given in van der Linden et al. (2018). 

The main challenges associated with the potentials and limitations of the use of airborne 

and spaceborne imaging spectroscopy data for monitoring urban areas are related to:  

 Spatial resolution 

 Spectrally mixed pixels 

 Prior determination of spectrally pure pixels (EM) 

 Prerequisite spectral expertise on urban surface materials 

 Temporal resolution and revisit time 

 Huge spectral diversity of urban surface materials 
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1.4 Research objectives 

 

The high spectral variability of urban surface materials often on small scaled urban objects 

leads to spectral mixtures when monitoring them with remote sensing systems. A detailed 

mapping of urban surface materials using classification or spectral unmixing techniques 

still requires the spectral knowledge of occurring surface materials in the investigation 

area. The spatial scale is therefore a leading factor to map urban surface materials with 

imaging spectroscopy. The use of spectral libraries overcomes the challenging task of 

manual identification (labelling) of pure material spectra in spatial high resolution data 

sets. However, the use of spectral libraries has been so far limited to sensor and site 

specifications such as sensor and illumination properties. In addition, it requires a complete 

collection of all occurring surface materials and their spectral variations in the study site in 

order to achieve the most accurate mapping result of urban surface materials (section 

1.3.2). Thus, the transferability of spectral libraries to a new test site is so far limited. This 

thesis addresses the site and sensor limitations when using a spectral library for mapping 

urban surface materials.  

With upcoming spaceborne imaging spectrometers a higher temporal but a coarser spatial 

resolution of up to 30 m will be available that open up the possibility of a regular area-

wide monitoring of the rapidly changing urban environments. However, spectrally pure 

pixels in such data are rare or completely absent, so that the mapping of urban surface 

materials on the same level of detail as with airborne data is not possible. Hence, broader 

categories of material groups were analysed in recent research studies (e.g. Weng et al., 

2008; Okujeni et al., 2015; Rosentreter et al., 2017; Okujeni et al., 2017). However, the 

changing perspective to the spatial unit of urban neighbourhoods demonstrates similar 

compositional and structural characteristics. Neighbourhood specific compositions of 

urban surface materials were still found in high resolution data sets (e.g. Heiden et al., 

2003, 2012; Heldens, 2010; Bochow et al., 2007). Therefore, this work also focuses on the 

investigation of material compositions related to certain neighourhoods in order to analyse 

complex spectral mixtures on a more detailed level.  

This rather methodically oriented work aims on the development of methods for mapping 

urban surface materials with imaging spectroscopy data with different spatial resolutions. 

In particular, it focused on the applicability to overcome the limitations in the use of urban 

spectral libraries for automated determination of spectrally pure pixels from airborne 
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imaging spectroscopy data. In addition, the possibilities in the analysis of very complex 

spectral mixtures are investigated in order to analyse urban material compositions in more 

detail. The following three research objectives for mapping urban surface materials with 

imaging spectroscopy data on different spatial resolution data sets are addressed:  

 Can an initial urban spectral library be used to automatically extract and identify 

sensor- and site-independent, scene-based endmembers from high spatial resolution 

imaging spectroscopy data that are required for further mapping techniques? 

 Can an image-based spectral library be used to determine spectrally pure pixels in 

urban areas despite a potential incompleteness of the spectral library, so that it can 

be transferred to an unknown urban area? 

 Do complex urban spectral mixtures of spaceborne imaging spectroscopy data with 

a spatial resolution of 30 m form gradual material transitions and can they be 

mapped and analysed? 

1.5 Thesis organization 

 

The main research objectives of this thesis, outlined in section 1.4, are individually 

addressed in chapter II-IV. These chapters are structured as stand-alone manuscripts 

published in international peer-reviewed journals (chapter III and IV) or as reviewed 

conference proceedings in a prestigious digital online library (chapter II). For a consistent 

presentation of this thesis only formatting changes in chapter II, III, and IV were made. 

The mapping of urban surface materials using imaging spectroscopy data is strongly 

dependent on the spatial resolution of the data set. The use of spectral unmixing algorithms 

and classification approaches has one thing in common: they require the prior 

determination of spectrally pure pixels for all occurring surface materials in order to enable 

a detailed mapping of urban surface materials per pixel. Consequently, the determination 

of spectrally pure pixels is a major task prior spectral unmixing or classification techniques 

can be conducted. Thus, in chapter II a new framework, called LUISA (Learning urban 

image spectral archive) using an image-based spectral library for the automated 

determination and identification of spectrally pure pixels in urban environments was 

developed. The transferability of a spectral library to a new study site is usually associated 

with the incompleteness of the spectral library. In this concept, this limitation is taken into 

account by an approach that also identifies unknown spectrally pure pixels that are missing 
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in the spectral library (chapter III). This approach facilitates a framework towards the 

generation of a generic spectral library. In chapter II the LUISA framework is outlined, 

while chapter III focuses on the automated determination of unknown artificial spectrally 

pure pixels using an initial spectral library. LUISA was developed for the use of airborne 

imaging spectroscopy data that are associated with a high spatial resolution.  

However, a decreasing spatial resolution of imaging spectrometers is directly associated 

with the increasing occurrence of spectral mixtures in the pixels and simultaneously 

reduces the number of spectrally pure pixels in the investigation area. Future spaceborne 

imaging spectrometers will achieve a spatial resolution of around 30 m, which will reduce 

the occurrence of spectrally pure pixels in urban areas to a minimum or even lead to a 

complete loss of it. This hinders the mapping of urban surface materials with common 

methods and requires a new strategy that allows such an analysis of complex spectral 

mixtures without the need for spectrally pure pixels. Thus, in chapter IV a method 

originated from vegetation ecology was adapted that assumes the environment as a fuzzy 

continuum of itself. Spectral mixtures are analysed based on the composition of surface 

materials that form interpretable urban surface material gradients. Gradients were 

determined on the basis of a detailed map of urban surface materials that could be 

generated using extracted pure pixels from the LUISA framework. Subsequent mapping of 

urban surface material gradients were linked to administrative planning units and could be 

analysed for their commonly co-occurrence of urban surface materials.  

The relation and context of mapping urban surface materials on different spatial scales 

from this work is outlined in Fig. 4. The mapping of urban surface materials with air- and 

spaceborne imaging spectroscopy data and their specifically addressed research 

developments are exemplified by separate case studies as follows. 

Chapter II – Identifying pure urban image spectra using a learning urban image spectral 

archive (LUISA) – conceptualized a framework of a learning urban image spectral archive 

that is designed to automatically extract predominantly pure urban image spectra that can 

be used for further spectral analysing techniques such as spectral unmixing or classification 

methods. The framework is designed for generic use in any urban environment acquired by 

an airborne imaging spectrometer with high spatial resolution.  

Chapter III – Detecting unknown artificial urban surface materials based on spectral 

dissimilarity analysis – aims on the development of a method to overcome the limitations 

of an incomplete urban spectral library. Therefore, a concept was developed that extracts 
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predominantly unknown pure material spectra by spectral similarity and dissimilarity 

analysis in high-resolution imaging spectroscopy data and categorizes them in unique 

material classes using spectral and spatial cluster analysis. 

Chapter IV – Gradients in urban material compositions: A new concept to map cities with 

spaceborne imaging spectroscopy data – examines the highly complex spectrally mixed 

pixels from spaceborne imaging spectroscopy data with a spatial resolution of 30 m for the 

composition of urban surface materials. In this study, characteristic material compositions 

are analysed and utilized as an indicator for the delineation of certain types of urban 

structures.  

In chapter V the findings are synthesised from a more general perspective and outlines 

prospective research directions. 

 

Fig. 4: Overview of the peer-reviewed publications (corresponding chapters are marked with Roman 

numerals) of this thesis and their relation to map urban surface materials. 
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1.6 Author’s contribution to individual chapters  

 

Chapter II 

Marianne Jilge conceived the experiments, designed and performed the analysis, collected 

the data and wrote the paper. Uta Heiden helped to conceive the experiments, contributed 

to the design of the paper, provided the initial spectral library and revised the paper. Martin 

Habermeyer helped with software development and revised the paper. André Mende 

contributed with preliminary tests of the concept by developing a classifier to 

automatically map urban surface materials from HyMap data. Carsten Jürgens contributed 
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Chapter III 

Marianne Jilge conceived and designed the analysis, collected data and prepared data, 

developed the analysis tools, performed the analysis and wrote the paper. Uta Heiden 

contributed to the design of the experiments and helped with writing and revised the paper. 

Martin Habermeyer helped with software development and revised the paper. André 

Mende contributed with preliminary tests of the concept by developing a classifier to 

automatically map urban surface materials from HyMap data. Carsten Jürgens contributed 

on a conceptual level and revised the paper. 

 

Chapter IV 

The concept and design of the analysis in the paper was jointly conceived and designed by 

Marianne Jilge, Uta Heiden and Hannes Feilhauer. Marianne Jilge performed all analyses 

and wrote the paper. Uta Heiden provided advice regarding the data (surface material 

map), contributed to the interpretation of the results (gradients) and partly wrote and 

revised the paper. Carsten Neumann contributed to preliminary tests and first data analysis 

and revised the paper. Hannes Feilhauer further contributed with the provision of gradient 

analysis tools and partly wrote and revised the paper. 
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Abstract 

In this study a learning urban image spectral archive (LUISA) has been developed, 

that overcomes the issue of an incomplete spectral library and can be used to derive scene-

specific pure material spectra. It consists of a well described starting spectral library 

(LUISA-A) and a tool to derive scene-based pure surface material spectra (LUISA-T). The 

concept is based on a three-stage approach: (1) Comparing hyperspectral image spectra 

with LUISA-A spectra to identify scene-specific pure materials, (2) extracting unknown 

pure spectra based on spatial and spectral metrics and (3) provides the framework to 

implement new surface material spectra into LUISA-A. The spectral comparison is based 

on several similarity measures, followed by an object- and spectral-based ruleset to 

optimize and categorize potentially new pure spectra. 

The results show that the majority of pure surface materials could be identified using 

LUISA-A. Unknown spectra are composed of mixed pixels and real pure surface materials 

which could be distinguished by LUISA-T.  

 

Keywords: spectral archive, pure pixels, urban areas, hyperspectral remote sensing 
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1. Introduction 

Urban areas are complex in their structure and are frequently characterized by a large 

variety of diverse surface materials [1]. The cityscape is influenced by an ever-increasing 

number of dwellings, and a congestion of housing and places of work due to the worldwide 

detectable ongoing urbanization processes. Continuously, newly developed construction 

materials or modified material compositions are edging into the market. The material 

appearance is also governed by coating and degradation processes. However, geographical, 

cultural, and climatic trends can be observed in the material occurrence of a city. 

Urban surface materials are biasing a number of urban processes such as surface runoff [2], 

[3] and urban climate [4], [5], [6]) in various ways due to their physical characteristics. In 

[7] the dominant urban applications necessitating knowledge about urban surface materials 

are specified. Therefore, the awareness of occurring urban surface materials is of high 

interest. In relation to the rapid urban changes a field-based assessment of surface materials 

is almost impossible due to time and costs, especially when analyzing large urban areas. 

Urban monitoring with remote sensing data has been extensively proven. However, the 

high diversity of urban surface materials associated with a typically high spectral 

variability, including high variations within a material class (intra-class variability) and 

between material classes (inter- class variability), and the spatial object heterogeneity 

necessitates the potentials of high resolution hyperspectral sensor systems. Due to the 

complexity of urban areas only a small number of studies have already applied 

hyperspectral remote sensing data to detect urban surface materials (e.g. [8], [9], [10], 

[11]). Automated endmember extraction methods have been developed and successfully 

applied, however, for labelling the extracted endmembers expert knowledge is required. 

Furthermore, the theory behind automated endmember extraction methods representing 

spectral extrema of materials is not valid for all urban surface materials. Some urban 

surface materials are not characterized by strong absorption bands and are basically 

differentiable by their reflectance (e.g. roofing tiles and roofing bitumen). Therefore, 

adapted endmember extraction methods have been developed (e.g. SSEE [12], OSP [13]). 

The spectral variability of a material class in a given test site is represented by appropriate 

pure material pixels. Thus we used the term ‘pure pixels or pure material spectra’ for the 

various instances of endmember sets. 

Libraries containing image spectra are commonly used to identify pure material spectra as 

training data for further analysis such as spectral unmixing or classification. Hence, no 
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expert knowledge for the pixel labeling is required. Scene- based spectral libraries are very 

useful since they contain identical conditions such as illumination or status of degradation. 

In the domain of hyperspectral remote sensing of urban areas [8] developed a spectral 

library for investigating the city of Tel-Aviv, Israel, [14], [10] and [1] make use of library 

spectra derived from airborne data and in situ measurements for studying urban material 

appearance in Dresden and Potsdam, Germany, and [9] determine Santa Barbara, USA 

with library spectra acquired by in situ measurements. Pure pixels from an urban imagery 

can be extracted by a spectral comparison of image spectra with reference spectra using 

similarity measures [15], distance measures [9] or analyzing material-specific spectral 

features [16], [17], [10]. Accordingly, spectral libraries have to represent site-specific 

spectral variability of occurring surface material classes. A successful extraction of urban 

surface materials for any urban area would necessitate a complete and well described urban 

spectral library containing all material classes and their spectral variations. Such a spectral 

library is not existent due to the reasons given above. In this paper we present an approach 

to overcome this limitation. The objectives of this paper are: 

 The development of a generic urban spectral archive which takes the 

incompleteness of a spectral library into account. 

 A fully automated image based identification of urban surface materials using high 

resolution hyperspectral images. 

 Utilization of extracted pure material spectra for further applications (such as 

spectral unmixing or supervised classification). 

The paper describes the development of a generic approach of a learning urban image 

spectral archive (LUISA) to be used for the universal recognition of pure pixels in urban 

areas by tackling the issue of an incomplete spectral library. This work is structured by 

introducing the concept of LUISA (chapter 2.1) and their modules LUISA-A and LUISA-T 

(chapter 2.1.1 and 2.1.2). Chapter 2.2 outlines the study area and datasets used for the 

application of LUISA and the appropriate results (chapter 3) and discussion (chapter 4). A 

conclusion and an outlook are finally given in chapter 5.   
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2. Methods 

2.1 LUISA 

The major drawback of using spectral libraries to derive pure material spectra is that 

only pixels can be identified as pure if the library comprises all instances of material 

spectra which occur in the test site. That means that objects covered by a pure material 

which are not represented in a spectral library by a corresponding reference spectra or 

material instance, will be not identified as pure material spectra due to a low similarity 

between the image spectra and the reference spectra. Thus, pure pixels with missing 

reference spectra in a spectral library are in a sense unknown (‘unknown pure pixels‘) and 

are not taken into account as pure pixels by traditional spectral similarity analysis. 

The learning urban image spectral archive (LUISA) is conceptualized to extract and 

identify image-based pure urban material spectra, even the unknown pure pixels, and is 

composed of modules: 1) LUISA-A and 2) LUISA-T. LUISA-A is basically the ‘archive‘ 

of the entire concept of LUISA. It represents a comprehensive universally structured 

spectral archive tailored for urban areas and is accurately described in chapter 2.1.1. The 

second LUISA module is depicted by LUISA-T, in the proper senses the ‘tools‘ of LUISA 

for an automatically image-based identification of urban surface materials on the basis of a 

high resolution hyperspectral image. LUISA-T can be generally divided in the two target-

aimed components for a) identifying pure material spectra by a spectral comparison of 

image pixels with LUISA-A spectra, followed by b) analyzing spectral dissimilarities in 

combination with spatial and spectral metrics for extracting unknown pure material spectra 

due to a certain incompleteness of LUISA-A and provide the prerequisites for an 

expansion of LUISA-A with identified pure pixels. Resulting image based pure urban 

material classes are usable for instance for a material based classification of the image 

(chapter 2.3 and 3.1) or for spectral unmixing such as MESMA [18] to derive material 

abundances. Furthermore, derived pure material spectra can be implemented as new 

reference spectra in LUISA-A to learn and expand the archive for further analysis. The 

accuracy of the extracted surface material classes can be tested by applying a post-

classification on the image and validate it by comparing the result with validation data 

(chapter 2.3). In Figure 1 the generic concept of LUISA is outlined as well LUISA-A and 

LUISA-T are explained in detail in chapter 2.1.1 and 2.1.2. LUISA was applied and 

validated for a test-site in Germany (chapter 3 and 3.1) for which no location-based 
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spectral reference data were implemented in LUISA-A to test the generic usability of the 

archive. 

 
Fig. 1: Concept of LUISA 

2.1.1 LUISA-A 

Spectral libraries are commonly used for a spectral comparison with image data. At 

that pixels with the highest similarity to reference spectra or by a certain probability 

threshold are labeled automatically to their appropriate material class. For an accurately 

and complete identification of pure pixels the composed reference spectra in the spectral 

library should feature the intra-class variability of the study area. That implies a spectral 

library with composed reference spectra specifically acquired from the study area to cover 

all occurring material variations. Library spectra acquired from the image itself implicate 

equivalent conditions and thus are optimally representing the test-site specific spectral 

characteristics. A comprehensive starting spectral library of pure urban surface materials 

derived from three German cities (Munich, Dresden, and Potsdam) was built. Therefore, 

more than 5,200 reflectance spectra were extracted from HyMap scenes acquired in 
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different years and pre-processing schemes to consider spectral variations of recorded 

materials [10]. Wavelengths containing water vapor bands and noisy bands were removed 

to avoid random errors in the pixel-based similarity analysis (chapter 2.1.2). Thus, the 

starting spectral archive consists of 113 spectral bands ranging from 455 nm to 2,449 nm 

and is composed of 22 natural and manmade material classes and reference spectra for 

shadowed areas. The reference spectra are organized in a spectral archive and generically 

structured in an advanced class hierarchy to ensure a universal application. This 

categorized spectral archive represents the collection of distinct spectral variations of pure 

urban material spectra and forms LUISA-A. For structuring LUISA-A spectra we 

developed an enhanced universal class hierarchy on the basis of the hierarchical concept of 

EAGLE which is composed of land cover and land characteristics [19]. The LUISA 

hierarchy is developed with main focus on urban surface materials. Nevertheless, it enables 

a continuous extension of hierarchical class instances as well as the integration of new 

derived pure material spectra into LUISA-A. In table 1 the utilized class hierarchy is 

exemplarily introduced to organize reference spectra in LUISA-A. 
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Table 1: Generic class hierarchy for LUISA-A 

Types of 

ecosystems 

Land cover 

component

s 

Land cover types Land cover 

elements 

Bio-geo- 

chemical types 
Material classes Spectral 

variations 

Abiotic Natural Surfaces Unconsolidated Exposed soil Non-

contaminated 
Soil  

 

 

 

 

 

 

 

 

 

 

 

[instances] 

Sand 

Contaminated  

Gravel   

Consolidated Rocks   

Artificial surfaces Impervious and 

partially pervious 
Overbuilt Mineral Clay tiles 

Concrete 

Metallic Copper 

Aluminum 

Zinc 

Hydrocarbon Polyethylene 

Bitumen 

Tar paper 

Polyvinylchloride 

Biomass  

Opaque  

Non-overbuilt 

(other 

constructions) 

Mineral Concrete 

Cobblestone 

Lose chippings 

Hydrocarbon Tartan 

Synthetic turf 

Asphalt 

Pervious (not 

partially pervious) 
Waste materials   

Other artificial 

surfaces 

  

Biotic Woody vegetation Trees Broadleaf Deciduous tree   

 

 

[instances] 

Coniferous Coniferous tree 

Palm trees  

Bushes/ shrubs    

Herbaceous Graminaceous    

Succulents/ others     

Lichen/ Mosses     

Water Liquid Inland Lake/ Ponds    

 

[instances] 

Rivers   

Pools   

Coastal    

Open sea    

Solid Snow/ Glacier    

Incidentally LUISA is conceptualized to cope with an incomplete spectral archive that 

means in addition that spectra structured on the basis of the class hierarchy are not 

necessarily subdivided in seven hierarchical levels. Primarily reference spectra related to 

ecosystem type ‘water‘ or ‘biotic‘ are not arranged in seven hierarchical levels due to a 

lower study interest. The lowest distinguishable hierarchical level, containing spectral 

instances for most of those ecosystem types are constituted by level four or five. Even so, 

the class hierarchy is at any time extendable to guarantee a universal application and 

structured reference spectra in LUISA-A. Reference spectra are addressed by numeric class 

codes signifying corresponding class level instances. The class codes can additionally be 
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used for organizing and identifying LUISA-A spectra in a spectral information system 

(chapter 5) such as SPECCHIO [20]. 

There are still a large number of redundant reference spectra (extremely high intra-class 

variability) in LUISA-A due to the combination of different site-specific spectral libraries 

or by implementing new reference spectra extracted by LUISA (chapter 2.1.2). LUISA-A, 

as a centerpiece of LUISA provides the option to reduce spectral redundant reference data 

mainly for computational reasons but also for ensuring a certain inter-class variability to 

avoid errors in the similarity analysis (chapter 2.1.2). For the purpose of reducing spectral 

redundant data from LUISA-A the frequently used unsupervised clustering technique 

ISODATA [21], [22] was applied to determine appropriate material instances which are 

considering the spectral variability of a material class. Therefore, each material class of the 

spectral archive is investigated by the ISODATA algorithm to cluster similar spectra by an 

automatically defined threshold. The mean spectra of each cluster optimally represents a 

material instance and remains as reference spectra in LUISA-A. Furthermore, an 

automatically spectral resampling of LUISA-A spectra provides a generic use, independent 

of the recording sensor system and sensor calibration of the study area, because image 

spectra are characterizing the spectral sensor properties with which the spectra were 

recorded. To ensure the per-pixel based spectral comparison (chapter 2.1.2) of image data 

with LUISA-A reference spectra to identify pure pixels, LUISA-A spectra were 

automatically adjusted to the spectral characteristics of the input hyperspectral image. 

Therefore, a spectral resampling of LUISA-A spectra with a bandwidth of 1 nm and a 

subsequent upscaling to the appropriate sensor characteristics of the underlying 

hyperspectral image enables sensor-independent applications. 

 

2.1.2 LUISA-T 

LUISA-T forms the second module of LUISA and contains a number of tools for 

identifying image based pure material spectra using a well-organized and comprehensive 

spectral archive (LUISA-A) regardless missing reference spectra. It is separated into two 

leading components to a) identify known pure material spectra using a similarity analysis 

and an automatic thresholding technique with the assistance of reference spectra archived 

in LUISA-A (chapter 2.1.1) and b) to derive and categorize unknown pure pixels due to the 

incompleteness of the spectral archive (LUISA-A) by means of a spatial and spectral 
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cluster analysis. Pure pixels of an image are discernible by a certain spectral conformity 

compared to tagged reference spectra. The similarity determination between two spectra 

(image and reference spectra) is the assigned task of a similarity analysis. Therefore, 

similarity measures are aiming to mathematically describe spectral signatures in an n-

dimensional hyperspace and subsequently evaluate their congruence numerically. The 

numerical evaluation of two spectra is commonly represented by a normalized range 

between 0 and 1, where a similarity value of 0 means congruent (high similarity values) 

and a value of 1 stands for completely different (low similarity values). LUISA provides a 

selection of commonly used and proposed similarity measures such as Spectral Angle 

Mapper (SAM [15]), Spectral Information Divergence (SID [23]), the hybrid mixed 

measure SID-SAM [24], Spectral Correlation Measure (SCM [25]), Spectral Correlation 

Angle (SCA [26]), an hybrid measure SID-SCA [27], Jeffries-Matusita Distance (JMD 

[28]), and the hybrid measure JMD-SAM [29] for the similarity analysis. In the similarity 

analysis image spectra are evaluated and linked to corresponding material classes by their 

highest similarity or the statistically dominant similarity class by a pixel-wise comparison 

with LUISA-A spectra. To extract appreciable similarity values LUISA-A reference 

spectra ware ranked in descending order (from high similarity values to low similarity 

values). The first ten similarity values of the ranking were used for defining the statistically 

dominant similarity class by using the highest similarity value of the material class which 

occurs most often in the ranking. This target class is used due to the simple reason of a 

higher probability that this pixel was more frequently found to be represented by this 

material class. 

For the subsequent automated pure pixel thresholding separated pixel masks containing 

abiotic or biotic pixels, derived from the image pre-classification (classification based on 

similarity values), were used. The automated pure pixel thresholding relies on histogram 

statistics of similarity values. The region with the highest change in the occurrence of 

similarity values represents the thresholding point to delimit known pure pixels from the 

pre-classified image by the optimal tradeoff between similarity and dissimilarity. This 

point can be easily found by deriving the local maxima in this region of the histogram’s 

second derivative function. As a preprocessing step, a simple median filter to remove noise 

from the histogram is proposed. The known pure pixel thresholding approach is suggested 

to be applied on abiotic and biotic pixels individually to ensure the typical differences in 

spectral variations of abiotic and biotic material classes. 
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Different material classes are constituted by distinct spectral signatures and differ from 

reference spectra in LUISA-A. Potentially pure unknown material spectra were therefore 

delimited based on pixels with low similarity values. This extraction of potentially pure 

unknown material spectra uses the dissimilarity analysis proposed in [30]. There is no 

fixed number of remaining pure unknown pixels, even so, at least 1% of the image. 

Correspondingly, 1% of the pixels with the lowest similarity values detected from the 

ranking of the statistical dominant material class were derived as potentially pure unknown 

pixels. Remaining unknown pure pixels are incorporated as second similarity analysis of 

the image where the extracted potentially pure unknown pixels act as temporary spectral 

library. Resulting similarity values are compared with the similarity values of the first 

similarity analysis and assigned to the mask of potentially pure unknown pixels, if the 

similarity is higher to the temporary spectral library spectra. Again a separation into biotic 

and abiotic material classes is proposed. The masks of potentially pure unknown pixels 

also implicate mixed pixels. Mixed pixels typically occur along object borders due to 

material mixtures with adjacent objects. In addition single pixels frequently do not 

represent pure material spectra regarding the spectral scale of objects and the spatial 

resolution of the sensor. Therefore, pixels in the mask of potentially pure unknown pixels 

are spatially clustered to remove mixed pixels from object borders by means of a moving 

window. This process uses the von Neumann neighborhood [31] to investigate direct pixel 

neighbors for the same type (mask element) and removes pixels from the mask if a mask 

pixel has not at least four adjacent mask pixels. Especially in urban areas which are 

composed of different sized object (e.g. storage halls, detached houses, streets etc.), the 

removal of object borders may be critically and should be treated ad hoc. 

Remaining mask pixels are considered as unknown pure pixels of unknown affiliation to a 

material class. In the spatial and spectral cluster analysis unknown pure pixels are 

categorized to unknown material classes. For this purpose pure pixels were again spatially 

clustered and a cluster ID is assigned to each pixel aggregation. Subsequently, based on a 

user defined SAM threshold each cluster is analyzed for its spectral intra-class 

homogeneity. Cluster elements are detached if spectral intra-class homogeneity is 

exceeded. This analysis considers different materials on one object. The same material can 

be used on different objects, therefore the spectral inter-class of objects is analyzed and 

objects are linked if a user defined SAM threshold of cluster elements is not reached. 

Determined clusters are representing the spectral intra- class variability of a new unknown 

material class. A combination of known and unknown pure material spectra may be used 
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as endmember sets for a spectral unmixing or as training data in supervised classification 

methods (chapter 2.3). Extracted pure pixel spectra may be further used to integrate them 

in LUISA-A as new material instances or new material classes. 

 

2.2 Study Area and Hyperspectral Image Data 

For evaluating the universality of LUISA, it was applied on a test site where no site 

specific reference spectra where implemented into LUISA-A. As study area the medium-

sized town Ludwigsburg located in the federal state of Baden- Wuerttemberg in Germany 

was used. The city founded in the Baroque is located approximately 12 km in the north of 

Stuttgart on the plateau of the river Neckar basin between the fort Hohenasperg in the west 

and the Neckar valley in the east (approximately 48.9°N, 9.2°E). Ludwigsburg is 

structured in the central city (center, north, east, south, and west) and seven further 

districts. In 2010 the city was characterized by 78.50% residential areas and 21.50% 

commercial and industrial areas [32] covering large halls predominantly used for 

automotive industry and machine engineering. For this study we selected a snippet from 

the south-western part of the city (Ludwigsburg West and the district Pflugfelde). The 

extent illustrated in figure 2 represents the typical complexity of urban areas. It is 

composed of a wide range of urban surface materials occurring in differently sized and 

dense industrial areas mainly in the upper part and residential buildings in the southern part 

of the region. The outer region is composed of agricultural fields and individually wooded 

areas. 

To extract pure material spectra with LUISA-T for the test site a hyperspectral image from 

an air campaign with the HyMap sensor was carried out in August 4, 2010 by the German 

Aerospace Center (DLR). Six flight lines over Ludwigsburg were flown. The whiskbroom 

sensor recorded the test site in a spectral range from 450 nm to 2500 nm with 128 spectral 

bands and a spatial resolution of 4 meters. More information about the characteristics of 

the HyMap sensor can be found in [33]. The data were pre-processed to Level 2A. That 

includes the removal of three bad band as well as the removal of the same spectral bands 

removed from LUISA-A to enable an adequate spectral similarity analysis. The remaining 

110 spectral bands were corrected for atmospheric effects and converted to reflectance data 

within the atmospheric correction software ATCOR [34]. Additionally, the image was 

corrected for radiometric effects and geometric distortion and finally georeferenced to the 



 

36 

UTM WGS 84 coordinate system. In figure 2 a subset of the first flight line, covering the 

previously described Ludwigsburg study area is illustrated. The used data set is not a 

perfect example due to the systematically detectable low reflectance values which are 

resulting from the relatively high noise level of the data. 

 

Fig. 2: Study area: District Ludwigsburg west and Pflugfelde, Germany. 

Furthermore, the typically high intra-class variability of urban objects was reduced by 

utilizing the iterative adaptive smoothing filter (IAS) [35]. The IAS algorithm based on the 

SAM and root mean square error to reduce noise and intra- class variability, while spatially 

and spectrally detectable object borders remain. Thus, the typically high intra-class 

variability of urban areas [36], [37] for instance due to a high diversification especially in 

roofing materials [10] mainly caused by coating and aging will persist. Intra-class 

variability can lead to undetected spectral differences of spectrally similar material classes 

[35] and can hamper the differentiation of classes. 

 

2.3 Validation 

For evaluating the usability of extracted pure pixels by LUISA-T a supervised post-

classification by using the derived pure pixels as training data was used. The maximum 

likelihood classifier is the most commonly used supervised classification algorithm in the 

field of remote sensing [38]. The algorithm assigns pixels with the highest probability to a 

class based on a statistical heuristic of the probability density. A specified probability 
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threshold [39] for each material class can be defined to only classify the image by the 

respective material class if the probability threshold is retained. 

For evaluating the accuracy of the post-classification by a confusion matrix and Cohen’s 

kappa coefficient [40] validation data are required. Therefore, abiotic and biotic objects 

were assessed by ground truth inventories, photographs, Google Earth® images and 

spectral expert knowledge were used as validation data. For this purpose, small areas of 

objects were digitalized and allocated by the respective material class. Entire object 

outlines as validation data are avoided due to the issue of a high probability to represent 

mixed pixels along object borders (chapter 2.1.2) and due to small scaled objects of 

different material types allocated on the object itself (e.g. dormers). Thus, also spectral 

variations in an object due to differing roofing orientations are well avoided. 

 

3. Results 

For applying LUISA on the test site in Ludwigsburg, Germany (chapter 2.2) a spectral 

resampling of LUISA-A (chapter 2.1.1) to the spectral calibration characteristics of the 

underlying HyMap scene was carried out. In addition, redundant reference spectra of 

material classes were reduced by ISODATA clustering (chapter 2.1.1) individually for 

each material class. At that too similar spectral variations to the determined material class 

instances were eliminated. The final archive (LUISA-A) was consisting of 151 reference 

spectra categorized to the LUISA class hierarchy outlined in chapter 2.1.1. 

As similarity measure for the similarity analysis to extract known pure material spectra the 

SID-SCA (chapter 2.1.2) which promises higher accuracies [27] for the pre-classification 

was used. The pre-classification result of the statistical dominant material class was 

applied to build abiotic and biotic pixel masks which are individually used for the known 

pure pixel thresholding. A known pure pixel threshold of 0.000378329 was extracted for 

abiotic materials and a threshold of 0.000055524 for biotic materials using the median 

filtered histogram statistics of the respective statistical dominant material classes to 

identify the tradeoff between similarity and dissimilarity (chapter 2.1.2). By using the 

automated thresholding approach to identify pure pixels 11.8% of the abiotic pixel mask 

and 17.2% of the biotic pixel mask were recognized as pure material spectra. 

For extracting remaining unknown pure pixels, 1% of the pixels with the lowest detectable 

similarity values of the statistical dominant material class were derived as potentially pure 
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unknown pixels. These pixels were used as reference signatures (temporary spectral 

library) in a second similarity analysis of the hyperspectral image. Subsequently, a case 

analysis of the newly derived similarity values with the similarity values of previous 

similarity analysis is carried out. Pixels with a higher similarity value (values closer to 0) 

achieved by the second analysis were added to the mask of potentially pure unknown 

pixels. This includes outliers of potentially unknown pure pixels to the mask. The mask of 

potentially pure unknown pixels was again separated by abiotic and biotic material classes 

for a more precise categorization of unknown pure pixels in the end. Hence, the removal of 

mixed pixels by eliminating single pixels and the deletion of border pixels along objects 

due to a higher probability to be express mixed pixels was individually applied on the 

abiotic and biotic pixels. Pixels pre-classified as shadowed areas were not further 

considered. Remaining pixels are considered as unknown pure pixels. For discriminating 

their affiliation of material classes pure unknown pixels were subject of spatial clustering 

and spectral homogeneity analysis. For that, unknown pure pixels with adjacent unknown 

pure pixels (using the von Neumann neighborhood) were spatially clustered and a unique 

cluster ID was assigned. The spectral homogeneity analysis based on an empirically 

defined SAM threshold of 0.1 for the spectra intra-class homogeneity and the inter-class 

homogeneity. As a result, spatial clusters were separated if the spectral similarity of pixels 

exceeded the intra-class homogeneity by the given threshold, or spatial clusters were 

linked if the spectral similarity of cluster pixels were within the allowed inter-class 

homogeneity. Achieved clusters of unknown pure material spectra are representing the 

spectral variations of a new unknown material class. For biotic pure pixels one unknown 

material class and for abiotic pure pixels nine unknown material classes were encountered. 

Extracted unknown pure material spectra may be used for learning LUISA-A with new 

reference spectra after identifying the descriptive material.  

 

3.1 Validation of LUISA results 

For validating the usability of extracted pure material spectra by LUISA-T a maximum 

likelihood classification using the identified material classes as training data was applied. 

However, not all extracted material classes could be entered as training data class for the 

classification due to not sufficiently covered training pixels of a represented class. There 

were not enough pure pixels representing the class sand, coniferous tree, tartan, roofing 
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paper and zinc. Unfortunately, also six of the newly detected unknown abiotic material 

classes were not adequately indicated by pure pixels for using them as training data in the 

maximum likelihood classification. However, in this study the main focus lies on urban 

surface materials. Therefore, and due to unavailable particularized ground truth data of 

land cover elements for biotic classes (i.e. differentiation of coniferous trees and deciduous 

trees), a combination of vegetated classes (trees and grassland) were used as training data 

class ‘vegetation’. Thus, we applied the maximum likelihood classifier on the class 

vegetation, asphalt, paving concrete, roofing concrete, partially red loose chippings, 

aluminum, roofing bitumen, polyethylene, PVC, roofing clay tiles, one biotic unknown 

class, and three abiotic unknown material classes. Furthermore, a probability threshold of 

95% for each material class for classifying the image was set. Hence not the entire image 

was assigned to a material class. Unclassified areas were indicated by a lower probability 

to represent a certain material class. Therefore, these unclassified areas may represent 

unknown surface materials due to the missing training data of some material classes (e.g. 

the mentioned material classes above) or mixed pixels. Figure 3 illustrates the post-

classification of the study area using the maximum likelihood algorithm by applying the 

extracted pure material classes from LUISA-T. 

 

Fig. 3: Post-classification using maximum likelihood classifier on the basis of extracted pure pixels from 

LUISA-T. 
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3.2 Accuracy assessment of post-classification 

The post-classification accuracy is determined by calculating a confusion matrix [41] 

for the known material classes on the basis of the validation polygons introduced in chapter 

2.3. Concrete appearance as roofing material or paving material is not just discriminable by 

its spectral material characteristic, therefore ancillary information such as a building mask 

is required. Accordingly material classes of roofing and paving concrete were merged for 

evaluating the post-classification accuracies of known material classes. The confusion 

matrix in table 2 is based on reference polygons. Due to the setup of validation data a 

utilization of validation pixels would not provide meaningful results. 

Table 2: Confusion matrix for post-classification of known material class using validation polygons. 

 

An overall accuracy of 79.8% and a kappa of 0.76 were achieved for known material 

classes. Classified areas as unknown abiotic material classes were evaluated manually. The 

abiotic object classified in dark blue in the lower left corner of the post-classification 

(figure 3) is representing a sports area covered by a greenish surface. Based on the spectral 

characteristics this material class could be identified as ‘green tartan’ which is often found 

as surface material on sports areas. This class was found as unknown abiotic material class 

because the tartan reference spectra in LUISA-A just provide material instances of red 

tartan. So this area was correctly identified as unknown material class and was used to 

learn LUISA-A by new material instances for the tartan class. 

The second detectable object covered by another unknown abiotic material class was found 

in the north-east of the image (depicted in light blue; figure 3) as roofing material of a 

large hall. During the field work this rooftop was recognized as rusty corrugated sheet for 

which also no reference spectra existed in LUISA-A, and was therefore correctly found as 

new material class. 
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4. Discussion 

Although the used hyperspectral images do not provide perfect conditions due to a 

relatively high level of noise (chapter 2.2), several known and unknown pure material 

spectra were found. Particularly the accuracy assessment of known material classes used as 

training data for the post-classification provides a kappa of 0.76. This result shows the 

suitability of extracted pure material spectra by LUISA for further urban applications to 

analyze urban surfaces. The displayed confusion matrix (table 2) exemplifies the accuracy 

of the known material classes. It can be observed that especially material classes with 

strong absorption features were almost accurately found. Also the manual inspection of 

accuracies of unknown material classes found by LUISA-T (chapter 2.1.2) achieved 

promising outcomes to learn LUISA-A with new material spectra or material instances. 

The findings show that LUISA enables to universally extract pure material spectra of urban 

areas using by an incomplete but well described spectral archive (LUISA-A). 

However, there are still some limitations which are influencing the results. The extraction 

of pure pixels by means of a similarity analysis does not sufficiently differentiate between 

the classes asphalt and concrete. This is a commonly emerging issue using similarity 

measures [9]. Asphalt and concrete spectra are relatively similar in their spectral shape. 

The reflection intensity (albedo) is the best criteria for differencing between these two 

spectra [10]. Our results show that SID as part of the underlying hybrid similarity measure 

does not sufficiently consider the albedo differences between two spectra. So far, in our 

knowledge there is no similarity measure available which does sufficiently consider the 

albedo differences between two spectra. However, for a reliable differentiation of asphalt 

and concrete spectra the consideration of the albedo is crucial and has to be taken into 

account. One possibility would be considering the mean albedo of each spectral signature 

and define a threshold to assign the spectra to the class asphalt or concrete. Furthermore, 

uncultivated fields were not found as pure pixels despite soil reference spectra consist in 

LUISA-A. As a consequence not enough pixels were found to build sufficiently 

represented training data for the post-classification. That’s because of too little spectral 

variations of existing reference soil spectra which are included in LUISA-A. This issue is 

also observable in the pre-classification of the statistical dominant similarity values where 

most uncultivated fields exhibit a higher probability to be concrete or tartan. This lead to 

the issue that these areas were incorrectly integrated to the mask of abiotic material classes 

for extracting pure pixels. In addition these areas were not found as pure unknown pixels 
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due to the simple fact that the dissimilarity between soil and concrete was too low to be 

integrated in the mask of potentially pure pixels. New instances of soil spectra were not 

found in the derivation of unknown pure material spectra due to the fact that the extraction 

of unknown pure material classes by LUISA-T is based on the dissimilarity analysis 

mentioned in chapter 2.1.2. Therefore, only unknown materials with a certain dissimilarity 

to reference spectra of LUISA-A can be derived. This issue was found on some rooftops 

covered by fiber cement, which is a missing material class in LUISA-A. However, its 

material composition and therefore the spectral shape is too similar to existing roofing 

concrete spectra so that fiber cement was not found as new (unknown) material class. 

Therefore, a manual updating of new material classes such as fiber cement to LUISA-A 

would promises higher accuracies in the allocation of spectral similar material classes. In 

addition, it was found that one of the determined abiotic unknown material classes is rather 

a class of remaining unknown pure pixels where the respective spectra do not correspond 

between each other. This results by the defined SAM threshold for the inter- and intra-class 

homogeneity analysis to separate or link similar unknown pure material classes. However, 

a refined threshold overestimates spectral cluster similarities and excessively separates 

material classes. So it seems that some material mixtures are still remaining in the 

unknown pure material classes. Hence, a further improvement of the mask of potentially 

unknown pure pixels would cope with this issue. 

 

5. Conclusion and Outlook 

Spectral libraries for identifying surface materials in a certain area are easy to use and 

do not require expert knowledge about spectral characteristics. Pixels can be automatically 

identified as a component of a given material class by means of similarity measures. These 

include also the extraction and automatic labeling of pure material spectra (bundles of 

endmembers) for further analysis such as usual classifications of surface materials or 

spectral unmixing for assessing the abundances of material classes. Previous approaches 

using spectral libraries to derive pure material spectra necessitate complete spectral 

libraries containing reference spectra acquired from the certain study area. However, urban 

areas are very complex in their spatial and spectral characteristic. Continuously changes in 

material composition and appearance are common and differ in geographic regions, 

cultures and traditions. An extraction of pure material spectra by a similarity analysis 
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between image spectra and reference spectra required therefore a complete spectral library 

covering the spectral complexity of the study area. Universally applicable spectral libraries 

covering all spectral variations of occurring surface materials in urban areas do not exist 

and will never be feasible. The concept of LUISA provides a framework for a universally 

applicable spectral archive to extract pure material spectra in spite of incomplete reference 

spectra for high resolution hyperspectral remote sensing data of urban areas. A similarity 

analysis provides the basis of extracting initially known pure pixels for which reference 

spectra exist in the spectral archive (LUISA-A) by an automated thresholding technique. 

Remaining unknown pure pixels are extracted and categorized by spatial and spectral 

metrics. Good classification accuracies with a kappa of 0.76 verifies the usability of 

LUISA for urban areas without integrated site-specific reference spectra in LUISA-A. 

We are currently working on a framework to automatically integrate extracted pure 

material spectra as new reference spectra in LUISA-A to enhance the incompleteness for 

further urban studies. An improvement of the classification accuracy by a better 

consideration of albedo variations (e.g. [42]) especially for spectrally similar shaped 

material classes (such as asphalt and concrete) is intended. Additionally, derived unknown 

pure material classes have to be investigated for remaining mixed pixels by for instance 

analyzing the miscibility to further improve the classification accuracy and therefore the 

usability of extracted pure pixels for further analysis. 
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Abstract 

High resolution imaging spectroscopy data have been recognised as a valuable data 

resource for augmenting detailed material inventories that serve as input for various urban 

applications. Image-specific urban spectral libraries are successfully used in urban imaging 

spectroscopy studies. However, the regional- and sensor-specific transferability of such 

libraries is limited due to the wide range of different surface materials. With the developed 

methodology, incomplete urban spectral libraries can be utilised by assuming that 

unknown surface material spectra are dissimilar to the known spectra in a basic spectral 

library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-

Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces 

while avoiding spectral mixtures. These detected unknown materials are categorised into 

distinct and identifiable material classes based on their spectral and spatial metrics. 

Experimental results demonstrate a successful redetection of material classes that had been 

previously erased in order to simulate an incomplete BSL. Additionally, completely new 

materials e.g., solar panels were identified in the data. It is further shown that the level of 

incompleteness of the BSL and the defined dissimilarity threshold are decisive for the 

detection of unknown material classes and the degree of spectral intra-class variability. A 

detailed accuracy assessment of the pre-classification results, aiming to separate natural 

and artificial materials, demonstrates spectral confusions between spectrally similar 

materials utilizing SID-SCA. However, most spectral confusions occur between natural or 

artificial materials which are not affecting the overall aim. The dissimilarity analysis 

overcomes the limitations of working with incomplete urban spectral libraries and enables 

the generation of image-specific training databases. 

 

 

Keywords: imaging spectroscopy; urban areas; spectral library; dissimilarity; unknown 

surface materials 
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1. Introduction 

Accurate differentiation and identification of urban surface materials is an important 

requirement for area-wide land cover mapping, and thus for subsequent derivation of 

further urban data products. Due to their high spectral and spatial information content [1], 

very-high resolution airborne imaging spectroscopy data have been recognised as a 

valuable data resource for augmenting surface material inventories [2,3]. Surface material 

inventories serve as input for various applications, such as urban planning, imperviousness 

mapping [4–6], hydrological modelling [7,8], urban green structure analysis [9,10], and 

urban climate modelling [11–16]. 

For successful and reliable surface material mapping using very-high resolution airborne 

imaging spectroscopy data, spectral mixture analysis has been frequently used. Such 

analysis requires the detection of endmembers that represent the spectrally diverse surface 

materials and their intra-class variabilities [17–19] in a given scene. The correct 

endmember detection is essential for the subsequent spectral unmixing analysis [20,21]. 

However, endmember can also be used for classification [22–24], or any other data mining 

methodology [25]. To date, most success has been achieved with image-specific 

endmembers since they comprise all scene-based structural and compositional information, 

sensor artefacts, and acquisition-based data characteristics [26]. 

Manual development of a suitable endmember set is challenging, since urban areas are 

spectrally very diverse [27–29]. Therefore, emphasis has been put on semi-automated 

empirical approaches, such as the well-known Pixel-Purity-Index method [30]. Fully 

automated endmember detection algorithms fit a simplex to the point cloud of the data set 

in the feature space. Examples of these model-based approaches are Minimum Volume 

Transforms [31] and the N-FINDR. Optimization techniques have been integrated in 

methods such as Iterative Error Analysis (IEA) or Automated Morphological Endmember 

Extraction (AMEE) (see [18]). Rogge et al. [32] made use of spatial sub-sampling via local 

endmember extraction to reduce the size of the original data set. However, the resulting 

endmembers of these automated algorithms still have to be labelled. 

Urban spectral libraries are expert knowledge databases containing the spectral reflectance 

characteristics of selected artificial surfaces. They have been developed and used across all 

scales—laboratory [33,34], field [35], and image spectral libraries [36–38]. Image spectral 

libraries used for urban surface material mapping have been demonstrated for Santa 

Barbara, USA [39], Brussels, Belgium [40], and German cities such as Munich [41] and 
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Dresden [42]. In all cases, more than 20 spectrally different surfaces were detected, 

comprising biotic and artificial materials. Different colours, coatings, and degradation 

processes [43] of the materials result in various degrees of spectral intra-class variability. 

Further variability is introduced by the varying illumination effects [44] resulting from 

different inclinations of the sensor and the sunlight, and the urban object itself (roof pitch). 

Intra-class variabilities increase the number of spectrally distinct urban surfaces in very-

high resolution airborne imaging spectroscopic data. 

The need for image-specific urban spectral libraries is still very high and requires expert 

knowledge of the characteristics of spectral urban surfaces. In recent years, more attention 

has been paid to the development and utilization of universal image spectral libraries 

where a wide range of known urban surface material spectra are generated and stored 

[25,39]. This progress has evolved owing to the need for area-wide material mappings in 

diverse geographic regions. That means the inclusion of urban surface materials that 

characterise regional and cultural trends. Additionally, new urban materials continuously 

enter the market and their new spectral variations have to be taken into account. The spatial 

and temporal applicability of existing image spectral libraries is therefore limited. 

Based on these observations, it is concluded that it will be impossible to create and 

maintain a complete and globally applicable spectral library. Imaging spectroscopy 

techniques are needed that are able to handle the incompleteness of spectral libraries when 

applied to unknown scenes, and that are also designed to cope with regional-, sensor-, or 

acquisition-specific characteristics. In this study, a spectral dissimilarity analysis has been 

developed to aim for a fully automated detection of unknown urban surface materials in 

high-resolution airborne imaging spectroscopy data using an extensive image library of 

urban materials. The specific objectives are to: 

 Determine unknown scene-based surface material spectra using an incomplete 

spectral library  

 Focus on the detection of pure spectra and avoid detection of spectral mixtures 

 Categorise detected unknown surface materials based on spatial and spectral 

characteristics to support future material-specific identification 

Basically, unknown surface materials are identified based on their spectral dissimilarity 

compared to known library spectra by means of an iterative similarity analysis (Sections 

2.3.1 and 2.3.2). For the spectral dissimilarity analysis, a basic spectral library (BSL) is 
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used that comprises an extensive collection of urban surface materials occurring in 

Germany. The proposed methodology is suitable for detecting urban surface materials in 

imaging spectroscopy data that are not yet included in the BSL. 

 

2. Methods 

Initially, three data sets are needed for the dissimilarity analysis, (I) a very-high 

resolution image (Section 2.1); (II) a basic spectral library (Section 2.2); and (III) a class 

hierarchy that groups the surface materials in the BSL. The detection of unknown surface 

materials is based on (1) measuring the similarity between image spectra and library 

spectra by using a spectral similarity measure (Section 2.3.1); (2) masking pixels with the 

lowest similarities (high dissimilarities) as potentially unknown surface materials (Section 

2.3.2); and (3) categorising the unknown surface materials by a spatial-spectral clustering 

approach (Section 2.3.3). The procedure also includes two steps to remove mixed pixels 

from the masks of unknown surface materials. The final result is a scene-specific spectral 

library with categorised spectrally homogeneous unknown material classes that can serve 

as a basis for precise labelling of the materials, e.g., by field surveys (Figure 1). The future 

material-specific identification of detected unknown surface materials is not in the scope of 

this paper. However, the resulting unknown material classes are spectrally homogeneous 

and represent predominantly pure image spectra. This means that only one surface material 

has contributed to the spectral signal of the respective pixel. Thus, the classes can serve as 

input for further unmixing or data mining techniques, and the detected material classes can 

be integrated as newly flagged reference spectra into the universal spectral library. Except 

for the final labelling step, this process is fully automated. 
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Fig. 1. Basic concept of a spectral dissimilarity analysis to detect unknown urban surface 

materials in high-resolution airborne imaging spectroscopy data. 

2.1. Study Area and Imaging Spectroscopy Data 

The city of Munich, Germany, was chosen as the study area to demonstrate the 

functionality of the developed approach. Four municipal areas characterised by diverse 

urban structures were selected as test sites (Figure 2). The test sites range in function from 

residential to commercial to industrial to leisure exploitation, and thus include a large 

variety of surface material classes accompanied by high inter-class variability. 
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Fig. 2. Study area and imaging spectroscopy (HyMap) data for the four test sites A, B, C, and D in 

Munich, Germany (R = 1652 nm, G = 719 nm, B = 543 nm). 

The study area was recorded during the HyEurope2007 campaign on 17 and 25 July 

using the airborne imaging spectrometer HyMap operated by the German Aerospace 

Center (DLR) in Oberpfaffenhofen. This sensor records data in 128 contiguous spectral 

bands between 450 nm and 2500 nm. The flight altitude of about 2000 m resulted in a 

ground sampling distance (GSD) of 4 m and a swath width ranging from 2 to 2.5 km. A 

detailed description of the sensor characteristics can be found in [45]. 

Pre-processing of the data [41] includes correction for radiometric effects according to 

[45] and the removal of three noisy bands (bands number 1, 33, and 34). The remaining 

125 spectral bands were subject to conversion from radiance to surface reflectance values 

and nadir-normalization by the ATCOR-4 software [46] due to recognition of a brightness 

gradient. Geometric correction and referencing to the UTM WGS-84 coordinate system 

was carried out with ORTHO software [47]. Orthorectification was based on the digital 

terrain model derived from SRTM (Shuttle Radar Topography Mission) data [48]. Mean 

geometric accuracy was calculated and resulted in 0.8 pixels for the entire data set. For a 

precise similarity analysis (Section 2.3.1), 12 more spectral bands (from the wavelength 

ranges 1788 to 2067 nm and 2465 to 2496 nm) were removed due to remaining noise and 

the presence of atmospheric effects. The final imaging spectroscopic data set contained 

113 spectral bands.   
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2.2. Spectral Library Development 

For the spectral dissimilarity analysis, an initial spectral library is needed. For setting 

up the BSL, image spectra were extracted from high resolution imaging spectroscopy data 

(HyMap) acquired over the German cities of Dresden, Potsdam [37], and Munich (Table 

1). 

Table 1: Airborne imaging spectroscopy data used for the extraction of reference spectra for the 

BSL. 

Acquisition Date (DD-MM-YYYY) Test Site Pixel Size No. of Bands 

18-05-1999 Dresden 7.7 m 128 

18-05-1999 Potsdam 4.0 m 128 

01-08-2000 Dresden 3.3 m 126 

20-07-2003 Dresden 3.5 m 126 

17-06-2007 Munich 4.0 m 125 

25-06-2007 Munich 4.0 m 125 

Based on these diverse data sets, spectral variations resulting from different illumination 

and observation conditions [44], regional characteristics, and data processing are 

considered. Accordingly, the BSL contains all the surface materials occurring in the test 

sites to the best of the authors’ knowledge, with special emphasis on artificial materials. 

However, due to phenological variations, different vegetation types and soils are 

underrepresented in the BSL. 

Image spectra per material class were selected based on the hierarchical categorisation 

scheme introduced in [37]. Therefore, spectra for each surface material class were 

determined by defining regions of interest in the images (Table 1) based on field 

investigations, spectral expert knowledge, infrared aerial imagery, and Google image 

products. In order to use image spectra as reference spectra, spectral purity was ensured by 

selecting homogeneous areas while excluding boundaries and small urban objects. Finally, 

the library was manually inspected and reduced by eliminating any potentially remaining 

mixed material spectra, resulting in almost 5200 BSL spectra organised in 23 surface 

material classes that are further divided in 8 natural, 14 artificial, and one class of shadow. 

The shadow class is determined by image pixels collected over shaded natural and artificial 

surfaces. This class is used for excluding shaded regions in the dissimilarity analysis. An 

overview of included reference spectra per surface material class is given in Table 2.   
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Table 2: Class hierarchy to separate BSL spectra of material classes (their occurrence is in 

brackets) into artificial and natural surface material groups. 

Artificial 
Natural 

Paving and Open Space Materials Roofing Materials 

asphalt (339) 

synthetic turf (264) 

tartan (75) 

paving concrete (167) 

red loose chippings (161) 

roofing aluminium (181) sand (31) 

roofing bitumen (400) soil (96) 

roofing concrete (352) coniferous tree (248) 

roofing copper (164) deciduous tree (277) 

roofing polyethylene (358) lawn (434) 

roofing polyvinyl chloride (PVC) (231) pond (183) 

roofing tar (15) pool (34) 

roofing tiles (589) 
river (354) 

roofing zinc (143) 

Additional 97 reference spectra of shadow have been integrated in order to avoid shaded areas in 

the artificial and natural pixel mask (Sections 2.3.1 and 2.3.2). 

 

2.3. Dissimilarity Analysis 

The dissimilarity analysis comprises three main processing steps that are outlined in 

Section 2. Further, as illustrated in the concept (Figure 1), two pre-processing steps, IAS 

smoothing and spectral resampling, are included. The first pre-processing step is optional 

and accounts for the high spectral intra-class variability of urban surfaces that can be 

referred to spectral variations, as described in Section 1, and image noise. The iterative 

adaptive smoothing (IAS) filter [49] reduces the image noise while retaining the object 

edges. The second pre-processing step incorporates a spectral resampling of the BSL to the 

spectral resolution of the imaging spectroscopy data used, in order to make processing 

independent of the relevant characteristic in the image data. The spectral resampling of the 

BSL is based on interpolating the spectra to the wavelength information of the input 

imaging spectroscopy data. 

 

2.3.1. Spectral Similarity Analysis (1) 

The spectral dissimilarity analysis starts with a quantitative analysis of spectral 

similarities among all image spectra (Section 2.1) and all available BSL spectra. Over the 

past decades a wide range of similarity measures have been developed to numerically 

evaluate the match between two spectra. These include, for instance, the well-known 

Spectral Angle Measure (SAM) [50], Spectral Information Divergence (SID) [51], Spectral 

Correlation Angle (SCA) [52], and Spectral Correlation Measure (SCM) [53]. Most of 
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these measures evaluate the match based on the spectral shape while ignoring the 

amplitude of the spectra. Additionally, hybrid similarity measures have been developed to 

exploit the advantages or minimise the weaknesses, of two similarity measures. The 

Jeffries–Matusita-Spectral Angle (JM-SAM) is one such hybrid approach that was 

developed for mangrove applications [54]. Naresh Kumar et al. [55] developed and 

compared SID-SCA with SID-SAM [56] and found higher performance of the SID-SCA in 

the visible wavelength range targeted to a discrimination of vigna species using laboratory 

measurements. The efficiency of specific similarity measures was analysed in [55,57,58], 

with SID-SCA being considered the best performing. Accordingly, SID-SCA was selected 

as the most appropriate technique for the spectral similarity analysis in this study. 

However, to the authors’ knowledge, none of the similarity measures are specifically 

adapted to urban surface discrimination. 

For the quantitative analysis of spectral similarities using SID-SCA, each pixel spectrum is 

compared with each BSL spectrum, resulting in n similarity values, where n is the total 

number of BSL spectra. Similarity values are normalised and inverted to enable a logical 

interpretation, meaning that similar spectra have similarity values close to 1 and dissimilar 

spectra have similarity values close to 0. 

In the next step, the n similarity values per pixel are ranked in descending order (similar to 

dissimilar). The best match is represented by the highest obtainable similarity value. 

However, in this study the ten highest ranked similarity values are used to define the 

statistically dominant class according to [59]. In this case, the material classes occurring in 

the ranking of the first ten similarity values are linearly weighted on the basis of the total 

number of representatives per material class (Table 2), in order to equally consider over- 

and under-representation of single material classes. Weights of material classes are 

multiplied by the number of materials classes represented in the ranking and summed up to 

determine the overall weight of an observed pixel. Finally, the statistically dominant class 

is represented by the highest percentage obtained for the material weight divided by the 

summed overall weights. 

In summary, for each pixel a single similarity value was defined that enables its 

assignment to one respective surface material class (Table 2). That allows for a simple 

separation of the pixels into the coarse material groups artificial and natural surfaces 

(artificial and natural masks) and shadow. This ranking and pre-classification is crucial for 

the subsequent extraction and later categorisation of unknown, predominantly pure pixels 

(Sections 2.3.2 and 2.3.3).   



 

60 

2.3.2. Extraction of Unknown Pixels (2) 

Extraction of unknown pixels is based on the idea that pixels with very low similarity 

values are not represented in the BSL. Such pixels commonly comprise spectral mixtures 

as well as predominantly pure unknown materials. A dissimilarity threshold was 

introduced to distinguish known from unknown pixels and expressed as a percentage of the 

total number of image pixels. The threshold is applied separately to the artificial and to the 

natural materials mask, while pixels pre-classified as shadow are neglected. The resulting 

potentially unknown pixels are stored in two masks, one for pixels with unknown artificial 

materials and one for those with unknown natural materials. The separation of artificial and 

natural pixels is important owing to the underrepresentation of natural material classes in 

the BSL, as described in Section 2.2. Without the separation, natural surfaces are more 

commonly detected as potentially unknown pixels. This study solely focused on the pixel 

mask for potentially unknown artificial materials. 

In the first instance, a fixed dissimilarity threshold is used to separate unknown from 

known pixels. However, when using a fixed dissimilarity threshold, a hard boundary for 

separating similar from dissimilar pixel spectra is set. This results in ignoring dissimilar 

pixel spectra with low similarity values, but not low enough to be considered as potentially 

unknown. These outliers are considered in a second similarity analysis, where all image 

spectra are compared to each of the potentially unknown pixel spectra extracted with the 

dissimilarity threshold. This comparison follows the same procedure as described in 

Section 2.3.1. Pixels that are more similar to the potentially unknown pixel spectra than 

determined by the first similarity analysis are subsequently added to the mask of 

potentially unknown pixels. The influence of the dissimilarity threshold and the subsequent 

second similarity analysis are analysed in Sections 3.3 and 3.4. 

Potentially unknown pixels may also comprise spectral mixtures that need to be removed. 

Single pixels and the border pixels of pixel clusters commonly consist of spectral mixtures. 

To remove them a 3 × 3 pixel moving window is applied following von-Neumann criteria 

[60] for analysing neighbourhood relationships. Pixels are considered to be a mixture if an 

observed mask pixel is not surrounded by at least four direct mask pixels. The remaining 

pixels represent the mask of unknown and predominantly pure artificial pixels.   
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2.3.3. Categorisation of Unknown Pixels (3) 

In the third step of the dissimilarity analysis, the mask of unknown and predominantly 

pure artificial pixels is used to build spectrally homogeneous clusters to facilitate a future 

material based labelling of the unknown pixel spectra. Initially, spatial clusters are built 

using the von-Neumann criteria. Clusters are then spectrally re-organised based on their 

internal and external spectral homogeneity. For spectral homogeneity assessment, SAM 

[50] was used due to the easy interpretation of the results and the high level of experience 

with this approach in the scientific community. For analysing the internal spectral 

homogeneity of a spatial cluster, all pixels within this cluster are compared to each other. If 

inverted similarity values (see Section 2.3.1) exceed an internal homogeneity threshold of 

0.9 (radian measure), which is specified according to an inverted threshold of 0.1 [59], a 

new subcluster is built. An external spectral homogeneity analysis between the newly 

generated spatial clusters first determines the mean reflectance spectra of each cluster and 

second, makes a spectral comparison between clusters. Accordingly, clusters are 

aggregated if the determined similarity values do not exceed a radian measure of 0.9 [59] 

analogous to the internal homogeneity threshold. Resulting spatially and spectrally 

homogeneous clusters are subsequently assumed to represent individual unknown surface 

material classes. However, empirical tests reveal that an additional step (post-processing) 

is required to ensure the spectral purity of the derived unknown surface material classes. 

For this purpose, spatially isolated pixels of a single unknown material class are removed 

according to the single pixel removal method described in Section 2.3.2. Additionally, 

clusters with fewer than four pixels are deleted, since it is very likely that they still contain 

spectral mixtures or do not sufficiently represent a new material class. 

The remaining pixels represent the final unknown surface material classes detected in the 

image. The categorisation step results in a scene-specific spectral library of unknown 

material classes, tagged with respective geographic coordinates, and an image mask of 

unknown material classes (Figure 1). Extracted unknown material spectra can be labelled 

and subsequently included in the BSL.   
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2.4. Experimental Setup 

The functionality and effectiveness of the described dissimilarity analysis (Section 

2.3) were tested using HyMap data for Munich, Germany (Section 2.1). Basically, two 

setups were designed, a library setup and a dissimilarity threshold setup. For the library 

setup, specific surface material classes and their respective instances are removed from the 

universal spectral library to simulate its incompleteness. Subsequently, whether the 

removed material classes could be detected as unknown surface material classes is tested 

using the dissimilarity analysis described in Section 2.3. For this purpose, four different 

BSL cases have been defined: 

(1) the BSL is fully applied and assumed to be complete for the respective test sites (full) 

(2) all instances of the material class roofing tiles are removed (without tiles) 

(3) all instances of the material class roofing zinc are removed (without zinc) 

(4) all instances of the material classes roofing tiles and zinc are removed (without zinc 

and tiles) 

In library setup (2) roofing tiles are removed since they are a frequently occurring roofing 

material in German cities and are also observable in other countries. The roofing tile class 

has numerous spectral signatures because of the huge variety of material characteristics 

(colour, coating, etc.). In setup (3) zinc is removed, which is relatively unique due to its 

characteristically wide and deep absorption feature at 1020 nm, which makes it easily 

distinguishable. Additionally, setup (4) tested how the methodology handles the removal of 

more than one material class by removing both roofing tiles and zinc. 

For the dissimilarity threshold setup, different percentage values, 1%, 2%, 3%, and 5%, are 

used to determine the mask of potentially unknown surface materials (Section 2.3.2). The 

impact of the dissimilarity threshold should be analysed regarding (1) the number of 

detectable unknown surface material classes; (2) the amount of spectral mixtures handled 

in the analysis, and 3) the influence on the final unknown surface material classes. The 

different library and dissimilarity threshold setups are individually applied to the four test 

sites (Section 2.1), producing a variety of outcomes.   
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2.5. Validation 

Validation was carried out of the pre-classification of artificial and natural masks and 

of the detected unknown surface materials. For validating the pre-classified images, the 

determined statistically dominant material classes and the validation data were pooled into 

two groups, natural surfaces and artificial surfaces, on the basis of the utilised class 

hierarchy (Section 2.2). Validation comprises kappa statistics [61], overall accuracies, and 

producer- and user-accuracies for summarised natural and artificial material classes 

resulting from test site specific confusion matrices. 

The validation data is also used for evaluating detected unknown surface material classes 

(Section 2.3.3). The spatially and spectrally aggregated unknown material clusters are 

compared for their spatial agreement with the validation data. For this purpose, unknown 

surface material classes are labelled manually based on expert knowledge and previous 

studies [41]. Accuracy is determined by calculating the percentage share of detected 

clusters and validation clusters. 

Validation data rest upon digitised building blocks that have been used and described in 

[41]. The building blocks were manually digitised by means of orthophotos. Surface 

material classes (Section 2.2) were identified and manually assigned with spectral expert 

knowledge and field surveys. The underlying orthophotos were simultaneously acquired 

with a 3K-camera during the hyperspectral flight campaign and had a spatial resolution of 

50 cm [62]. At least one digitised building block is present in each of the four test sites. 

Validation data for the purpose of this study are enhanced by manual selection of single 

object pixels on the basis of spectral expert knowledge. When selecting pixels as validation 

data, the spectral intra-class variability of the material classes occurring in the test sites 

was taken into account as accurately as possible. Regarding the experimental results (see 

Sections 3 and 4), validation data for roofing tiles are divided into two colour categories 

(dark roofing tiles and red roofing tiles). Figure 3 shows the validation data for each of the 

four test sites. 
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Fig. 3: Validation data for test sites (A–D) in Munich, Germany. 

3. Results and Preliminary Assessment 

The methodological steps described in Section 2.3 are individually applied to the four 

test sites (Section 2.1) according to the experimental setup (Section 2.4). The results of the 

three main steps, comprising pre-classification, masking of unknown predominantly pure 

pixels, categorising unknown material classes, and evaluating unknown material classes, is 

shown separately in Sections 3.1-3.4. 

 

3.1. Pre-Classification (Step 1) 

Pre-classification categorises image pixels into natural and artificial surfaces based on 

the statistically dominant surface material class (Section 2.3.1). The accuracy assessment 

was primarily done per surface material class (Table 2) to investigate potential confusion 

between single classes. Further, it has to be mentioned that validation of pre-classification 

results focusses on assessing the accuracies of predominantly pure surface materials, 

because the area-wide interpretation of spectral mixtures is not within the scope of this 

paper. The results of the accuracy assessment are listed in Table 3.   
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Table 3: Pre-classification accuracies for the test sites (column 1) using the full BSL setting 

comprise grouped producer and user accuracies within natural (columns 2–3) and within artificial 

material classes (columns 4–5) demonstrating the general separation of the broad classes natural 

and artificial. Overall accuracies (column 6) and kappa statistics (column 7) reveal the general 

pre-classification accuracies of single material classes. 

Test Site 
Producer 

Acc.-Natural 

User  

Acc.-Natural 

Producer  

Acc.-Artificial 

User  

Acc.-Artificial 

Overall 

Accuracy 

Kappa 

Statistic 

A 89.89% 83.98% 91.60% 90.92% 92.32% 0.91 

B 93.15% 93.30% 86.95% 89.25% 83.14% 0.80 

C 95.81% 90.63% 92.91% 93.13% 94.24% 0.93 

D 93.07% 94.54% 78.83% 74.17% 86.22% 0.81 

In general, kappa statistics show values between 0.80 and 0.93, with the best result for test 

site C. Overall accuracies range from 83.14 to 94.24%. The lowest user and producer 

accuracies were assessed for the artificial pixel mask of test site D. Accuracies are 

extensively analysed by inspecting confusion at the material level based on the respective 

confusion matrices. It reveals that confusion mainly occurs between materials within one 

of the two broad classes—natural and artificial surfaces. Confusion of spectrally similar 

material classes, such as asphalt and concrete (test site C), or between roofing tiles and red 

loose chippings, is well-known and documented by other studies [37]. Confusion among 

artificial and natural material classes is rare. An exception is bright sand that has been also 

identified as concrete. This is because sand (quartz) is one of the main components of 

concrete [37].  

Results of the accuracy assessment demonstrate the suitability of the presented approach 

for distinguishing between the two broad classes (a) natural and (b) artificial surfaces. The 

following analysis focusses on artificial surfaces. 

 

3.2. Mask of Unknown Artificial Pixels (Step 2) 

In Figure 4 each single masking step to extract unknown predominantly pure artificial 

pixels, described in Sections 2.3.1 and 2.3.2, is graphically illustrated for a subset of test 

site D. 
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Fig. 4: Masking steps to determine unknown artificial pixels for (a) a subset of test site D using 

the BSL without tiles by (b) separating artificial pixels from pre-classification results; (c) 

extracting dissimilar artificial pixels based on a 1% dissimilarity threshold; (d) enhancing the 

mask by a second similarity analysis to include outliers; (e) removing single pixels and (f) 

removing border pixels based on the von-Neumann criteria for eliminating mixed pixels. 

The results for all test sites are described in terms of the varying library setups and 

increased dissimilarity thresholds. First, the number of pre-classified artificial pixels is 

influenced by the library setup applied that imitates the level of incompleteness of the 

BSL. Artificial masks (Figure 4b) determined from libraries without tiles are generally 

smaller than masks resulting from libraries without zinc. This is reasonable, since the 

roofing tile class contains many more instances (589) than the zinc class (143) (see Table 

2). Which library setup is used also influences the number and representation of the 

detected unknown surface material classes. The higher the incompleteness of the library 

with respect to a given test site, the more pixels are classified as unknown there (Figure 

4f). This finding is demonstrated in Figure 4, which illustrates the application of the 

algorithm on the test site D subset. This test site is characterised by a large number of 

buildings covered with roofing tiles and shows a high number of detected unknown pixels 

for the library set “without tiles”. However, it also shows that some roofing tile pixels 

expected to be unknown are missing by comparing the artificial mask (Figure 4b) and 

validation data (Figure 3) with the resulting unknown pixel mask (Figure 4f). 
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Second, an increasing dissimilarity threshold causes an increase in detected potentially 

unknown pixels after the second similarity analysis. In general, the mask of potentially 

unknown pixels contains new unknown classes, more variability (instances) of these 

classes, and spectral mixtures. Especially the number of spectral mixtures needs to be 

monitored in more detail (Section 3.3). In all test sites and experimental settings mixed 

pixel removal (Section 2.3.2) results in a rather massive decrease of potentially unknown 

pixels and manifests the impact and importance of this step. It can be assumed that most of 

the spectral mixtures are excluded from the mask of unknown pixels except from those 

spectral mixtures that are unique (see Section 3.3). Further, a general slight increase of 

pixels detected as unknown can be observed with a rising dissimilarity threshold (Figure 

5). Given a successful mixed pixel removal, it can be assumed that increasing dissimilarity 

thresholds integrate more spectral variability or instances of unknown materials. 

 

Fig. 5: Remaining unknown artificial pixels after single and border pixel removal. 

3.3. Categorisation (Step 3) 

Detected unknown pixels (Sections 2.3.3 and 3.2) are finally categorised based on 

spatial and spectral metrics to support subsequent labelling and integration into the BSL. 

This step also includes further revision regarding potentially remaining mixed pixels. In 

Figure 6 the functioning principle is shown in test site D for a spectral library setting 

without tiles and an applied dissimilarity threshold of 1%. 

The mask of unknown artificial pixels (Figure 6a) shows homogeneous spatial clusters that 

correspond well with urban objects in the image data (Figure 6b). According to Section 

2.3.3 clusters are re-organised in terms of spatial and spectral homogeneity (Figure 6c). 

Categorised clusters (unknown material classes) show a detailed separation and 

aggregation of distinct homogeneous urban objects (Figure 6c). The respective mean 
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reflectance spectra for each unknown material class are given in Figure 6d. Visual 

comparison of the mean reflectance spectra shows high similarity with mean spectra of 

roofing tiles in the validation data (Figure 3). However, visual comparisons of Figure 6a,c 

with the roofing tile classes of the validation data (Figure 3d) point out absent unknown 

mask pixels in the region of objects covered by red roofing tiles (Section 3.2). This accords 

with the known issue of spectral similarities between red roofing tiles and red loose 

chippings [37]. Accordingly, pixels representing red roofing tiles were not considered in 

the mask of potentially unknown pixels. In addition, five more unknown mean reflectance 

spectra (Figure 6d) do not correspond with the validation spectra. Visual inspection in 

combination with spectral expert knowledge revealed that amongst the identified roofing 

tile class spectral mixtures also remain (light green, dark green, yellow in Figure 6d). Their 

spatial appearance (Figure 6c) demonstrates that most of these spectra occur as single 

pixels without being attached to homogeneous clusters. Consequently, to ensure that only 

predominantly spectrally pure pixels are in the unknown material class, post-processing to 

remove the remaining mixed pixels from the mask of categorised pixels clusters was 

carried out. This results in three unknown material classes: the already identified unknown 

material class (roofing tiles), and two further unknown material classes (light and dark 

blue) that are displayed in Figure 6e. Corresponding mean reflectance spectra are given in 

Figure 6f. Despite the fact that the two remaining unknown material classes are 

characterised by a similar spectral shape, the main variations dominate the NIR and SWIR 

region in terms of amplitude differences, which is the decisive factor for separating the two 

classes. A visual inspection of the two unknown material classes with a very high-

resolution image, e.g., image products from Google Earth, reveals that both classes feature 

solar panels. Although the BSL is an extensive collection of reference spectra, it so far 

lacks solar panels. First angular-dependent spectroscopic measurements (goniometer) have 

already shown that the spectral signature of solar panels is highly influenced by the 

observed azimuth. Consequently, a separation into two material classes is reasonable due 

either to a different construction type or to a varying inclination angle while acquiring 

spectral information. In addition to the detection of previously removed material classes 

(Section 2.4), two new unknown material classes identified as solar panels were found and 

confirm the efficiency of the method.   
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Fig. 6: Extraction of unknown artificial material classes from the (a) mask of unknown artificial 

pixels determined from the (b) image data of test site D with a BSL setting without roofing tiles 

and a dissimilarity threshold of 1%. Unknown artificial pixels are subject to (c) spatial and 

spectral clustering to identify spectral mixtures from (d) mean unknown class reflectance, 

accompanied by (e) post-processing to delete unknown material classes of remaining mixed pixels 

to result in an (f) scene-specific spectral library of unknown artificial material classes. 

The sensitivity of the dissimilarity threshold regarding the number of detected and 

categorised unknown material classes is shown in Figure 7 for test site C. As described in 

Section 3.2, the increase in the dissimilarity threshold results in an increase in the mask of 

unknown pixels. Moreover, the number of spectrally homogeneous material classes and the 

number of pixels representing the classes both increase.   
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Fig. 7: Impact of an increasing dissimilarity threshold on the number of detected unknown 

artificial material classes elucidated for test site C with a BSL without tiles. 

Visual inspection of the mean reflectance spectra and Google Earth images reveals that an 

unknown material class 1 (brown) could be identified as dark roofing tiles. Unknown 

material classes 2 (blue) and 3 (green) could be assigned as a greened roof (green) and 

parts of a partially greened tramline (blue). Both unknown material classes (green and 

blue) are not pure from a spectral point of view. The spectral signature of the greened roof 

is composed of photosynthetically active vegetation and the underlying substrate, whereas 

the tramline spectra results from a mixture of gravel, steel rails, and some vegetation 

fractions. Although the methods introduced in Sections 2.3.2 and 2.3.3 focus on removing 

mixed pixels, unknown mask pixels composed of spectral mixtures remain as long as they 

are spectrally unique and appear as large homogenous objects, such as large roofs or the 

track of a tramline. Also noticeable is the consistency of the spectral representation of the 

detected unknown material classes, which seems to be independent of the number of 

unknown material class pixels involved in the mean reflectance calculation. 

 

3.4. Validation of Detected Roofing Tiles and Zinc Material Classes 

The spectral and spatial representation of detected unknown materials that have been 

removed from the BSL (dark roofing tiles, zinc) are validated based on visual inspections 

and using reference data described in Section 2.5. Results of the quantitative accuracy 

assessment are summarised in Figure 8. The validation (Figure 8) is mainly based on a 

simple spatial match of pixels belonging to an unknown material class with validation 
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pixels of previously erased material classes. The mean spectra of the remaining unknown 

material class pixels were individually validated by visual comparisons (visual inspections) 

with the mean spectra of the respective validation class and by spectral expert knowledge. 

Accuracies determined by the two validation methods (match and visual inspection) are 

equally assessed. Consequently, the overall accuracy of detected unknown material class 

pixels is indicated by a combination of accuracies obtained from spatial match and visual 

inspection (Figure 8). 

 

Fig. 8: Percentage of spatial agreement by validating all pixels of an unknown material class 

(columns) detected for different library setups in the four test sites (A-D). Validation results are 

composed of a spatial match (black) of unknown pixels with validation pixels of material classes 

zinc or dark roofing tiles, visual inspections (hatched) by visual comparisons of mean spectra due 

to missing validation data, and (grey) misclassifications or missing data for an unknown material 

class. 

Generally, unknown material classes that were removed from the BSL could be re-detected 

as spatially and spectrally homogeneous pixel clusters. The agreement mainly varies with 

the test site and library setting. The number of misclassified unknown material classes is 

small except for test site C. Usually the match (black column) of the results with validation 

data slightly decreases with an increasing dissimilarity threshold. Hence, for determining 

the overall accuracy, the percentages of match and visual inspection need to be considered. 

A more precise inspection of Figure 8 demonstrates good (test site A) to very good 

matches (test sites B and D) for different library setups. However, in test site C zinc could 

not be detected by applying a dissimilarity threshold of 1% or 2%. Inspection of the results 
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reveals that zinc image spectra were spectrally not dissimilar enough to be added to the 

mask of potentially unknown pixels. In the pre-classification, urban objects covered by 

zinc are assigned to the material class aluminium. However, by increasing the dissimilarity 

threshold (3%, 5%) zinc was correctly detected. 

Further, the results indicate that the more material classes missing in the spectral library, 

the more challenging their detection. Despite an increased level of library incompleteness, 

in general, the missing surface materials could be detected with the exception of test site C. 

Simultaneously, an increased level of library incompleteness results in less spectral 

variation per unknown material class because of the fixed percentage of image pixels that 

are flagged as unknown (dissimilarity threshold). Additionally, the detection of unknown 

material classes is also influenced by the number of pixels per material class in the test site 

image and the level of dissimilarity among distinct unknown classes. Underrepresented 

unknown material classes are not considered as potentially unknown if spectra of another 

unknown class are more dissimilar and the percentage amount (dissimilarity threshold) of 

dissimilar spectra is reached. 

 

4. Discussion 

Functioning, benefits, and drawbacks of spectral dissimilarity analysis (Section 2.3) 

are discussed in the following. The above results have confirmed the functioning of re-

detection of previously removed material classes (Sections 3.3 and 3.4). Completely new 

surface materials (solar panels and tram rail tracks) could be detected and identified as 

discrete classes (Section 3.3). The developed methodology was extensively tested on four 

test sites with different settings for the BSL and varying dissimilarity thresholds (Section 

2.4). 

The findings reported in Sections 3.1 and 3.2 demonstrate the importance of the applied 

similarity measure SID-SCA. This measure is essential for the steps of pre-classifying the 

image, determining dissimilar pixel spectra for building a mask of potentially unknown 

pixels, and enhancing the potentially unknown pixel mask by means of a second similarity 

analysis. Pre-classification results are very promising as to the separation of natural and 

artificial pixels (Table 3). However, a detailed material-based accuracy assessment 

(Section 3.1) reveals the limits of the SID-SCA approach. Spectral confusion of different 

materials was observed, such as between zinc and aluminium. Both materials are 
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characterised by distinct broad absorption features, but their absorption maxima differ only 

slightly, by about 140 nm (Section 3.4). Based on SID-SCA, zinc pixels (test site C) are 

too similar to the aluminium class and thus are not added to the mask of potentially 

unknown pixels. Another example reveals the importance of considering amplitude as a 

spectral feature. Besides spectral absorption features, amplitude is the dominant spectral 

feature for differentiating asphalt and concrete. Previous studies [37,63] have already 

reported the importance of spectral features, the shape of a spectrum, and the amplitude for 

identifying urban surfaces. In [58] a hybrid similarity measure that fuses shape and 

amplitude features (Fusing SAF) was developed. The application of this measure (Fusing 

SAF) could provide enhanced results for material mapping of spectrally similar shaped 

material classes in urban areas. However, both cases of spectral confusion do not affect the 

aim of the important pre-classification step itself, since the confusion appears within the 

same material group (artificial or natural). 

The pre-classification results are the basis for the subsequent extraction of potentially 

unknown predominantly pure pixels. The number of extracted potentially unknown pixels 

using a fixed dissimilarity threshold is increased by converting the dissimilarity threshold 

to a scene-based threshold and applying a second similarity analysis (Sections 2.3.2 and 

3.3, Figure 4). This way, the fixed dissimilarity threshold is adapted to the characteristics 

of the image data used. In general, it was found that the number of potentially unknown 

pixels increases with an increasing dissimilarity threshold (Section 2.4). Findings from 

Section 3.2 indicate that unknown material spectra are already detectable with a 

dissimilarity threshold of 1%. A further increase in the dissimilarity threshold is typically 

associated with the formation of larger spatial clusters and usually results in more spectral 

variations of unknown material classes. Consequently, a larger dissimilarity threshold can 

be useful for a more incomplete spectral library. However, an increasing dissimilarity 

threshold is frequently associated with an increase in the number of finally remaining 

spectral mixtures (Section 3.2), which needs to be considered. On the other hand, spectral 

mixtures that build large spatial clusters such as vegetated roofs or tram rail tracks remain, 

despite the mixed pixel removal steps which are generally based on spatial constrains 

(single pixels, object border pixel). 

The number of mixed pixels also correlates with the size of the urban objects and the 

associated GSD of the image. In this study, airborne imaging spectroscopy data with a 

GSD of about 4 m were used. By analysing different test sites characterised by different 

object sizes, we could observe how the performance of the approach declines for test site 
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C, which contains the smallest urban objects and thus fewer pure, surface material spectra. 

However, except for test site C, mixed pixel removal was successful. An additional test 

concerning the spectral purity of detected unknown surfaces, e.g., using iterative 

endmember selection [64] would be an important task for future studies. With the 

presented methodology, it will be up to the user to decide whether a predominantly pure 

material has been identified, or not. 

 

5. Conclusions and Outlook 

Image-specific urban spectral libraries are widely and successfully used in urban 

imaging spectroscopy studies. In this paper, a methodology is presented that can handle the 

incompleteness of spectral libraries. The proposed spectral dissimilarity analysis was 

developed to (1) detect image-specific unknown urban surface materials while (2) avoiding 

spectral mixtures, and to (3) categorise detected unknown surface materials, e.g., to 

support a material specific identification. The fundamental approach is based on the 

assumption that unknown surface materials are dissimilar to known spectra provided in the 

BSL. Dissimilar image spectra are extracted by means of a scene-based threshold applied 

on previously determined spectral similarity values resulting from SID-SCA analysis. 

Potentially unknown image spectra are separated from mixed pixels by spatial and spectral 

metrics. In a final step, the remaining dissimilar image spectra are categorised to build 

spectrally homogeneous material clusters. 

The efficiency of the approach is demonstrated by applying it to different test sites, distinct 

dissimilarity thresholds, and to different cases of an incomplete spectral library. The 

incompleteness is simulated by removing material classes from an initial spectral library 

(BSL) with the aim to detect these classes again as unknown scene-based surface materials. 

In nearly all cases, the results indicate the successful re-detection of unknown surface 

materials using spectral dissimilarity analysis. Limitations are associated with the degree of 

incompleteness. It is shown that with a higher incompleteness of the BSL, unknown 

material classes are more reliably detected with a higher dissimilarity threshold. Beside the 

increase of spectral variabilities of detected unknown material classes, an increasing 

dissimilarity threshold is also associated with a gain in the number of remaining mixed 

pixels. It can be concluded that the dissimilarity threshold needs to be precisely adjusted 

based on the level of incompleteness of the BSL in order to detect unknown materials or 
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material instances, and to keep the number of remaining spectral mixtures down. Finally, it 

will be up to the user to find a trade-off between high spectral variability and a low number 

of remaining mixed pixels. However, even a small set of representative unknown 

predominantly pure pixels can be useful for applying any subsequent image analysis 

techniques. As an example, in [42] rare spectral representatives, seedlings, are used to 

further enhance the endmember set for area wide surface material identification in urban 

areas. 

The suitability of the presented methodology is further underlined by the detection and 

identification of unique material classes such as solar panels, which were identified as a 

completely new surface material with respect to the BSL. Comparing the material classes 

represented in the initial BSL with other urban spectral libraries [34,35], it can be assumed 

that the application of this BSL to cities in the USA and Great Britain could be promising. 

However, it needs to be tested for other geographical regions, where more unknown 

surface materials can be expected. Another important aspect that should be addressed in 

future research on the applicability of the method is the GSD of the imaging spectroscopy 

data needed to obtain pure representatives of all surface materials of interest. 

The high number of different surface materials and respective variations in urban areas 

hampers the use of spectral libraries and the transferability of library-based technologies 

for untested geographic regions. The developed methodology is a first step toward 

overcoming this limitation. It can be used to create image-specific training databases and it 

can also serve as a technology for enlarging urban spectral libraries to make possible their 

widespread utilisation. In the future, the technique will be enhanced in order to test the 

spectral purity of the unknown material classes and also to identify all spectrally pure 

surface materials in a high resolution imaging spectroscopy data set of an urban area. 
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Abstract 

To understand processes in urban environments, such as urban energy fluxes or 

surface temperature patterns, it is important to map urban surface materials. Airborne 

imaging spectroscopy data have been successfully used to identify urban surface materials 

mainly based on unmixing algorithms. Upcoming spaceborne Imaging Spectrometers (IS), 

such as the Environmental Mapping and Analysis Program (EnMAP), will reduce the time 

and cost-critical limitations of airborne systems for Earth Observation (EO). However, the 

spatial resolution of all operated and planned IS in space will not be higher than 20 to 30 m 

and, thus, the detection of pure Endmember (EM) candidates in urban areas, a requirement 

for spectral unmixing, is very limited. Gradient analysis could be an alternative method for 

retrieving urban surface material compositions in pixels from spaceborne IS. The gradient 

concept is well known in ecology to identify plant species assemblages formed by similar 

environmental conditions but has never been tested for urban materials. However, urban 

areas also contain neighbourhoods with similar physical, compositional and structural 

characteristics. Based on this assumption, this study investigated (1) whether cover 

fractions of surface materials change gradually in urban areas and (2) whether these 

gradients can be adequately mapped and interpreted using imaging spectroscopy data (e.g. 

EnMAP) with 30 m spatial resolution.  

Similarities of material compositions were analysed on the basis of 153 systematically 

distributed samples on a detailed surface material map using Detrended Correspondence 

Analysis (DCA). Determined gradient scores for the first two gradients were regressed 

against the corresponding mean reflectance of simulated EnMAP spectra using Partial 

Least Square regression models. Results show strong correlations with R²=0.85 and 

R²=0.71 and an RMSE of 0.24 and 0.21 for the first and second axis, respectively. The 

subsequent mapping of the first gradient reveals patterns that correspond to the transition 

from predominantly vegetation classes to the dominance of artificial materials. Patterns 

resulting from the second gradient are associated with surface material compositions that 

are related to finer structural differences in urban structures. The composite gradient map 

shows patterns of common surface material compositions that can be related to urban land 

use classes such as Urban Structure Types (UST). By linking the knowledge of typical 

material compositions with urban structures, gradient analysis seems to be a powerful tool 

to map characteristic material compositions in 30 m imaging spectroscopy data of urban 

areas.   
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1. Introduction 

More than 54% of the world’s population is currently residing in cities. This 

percentage will continue to increase in the future (UN, 2014), leading to an urgent and 

growing demand for detailed and spatially explicit information about urban areas. Chen et 

al. (2012) discuss the detailed information of surface materials needed for urban weather 

and climate modelling and specify the requirements to better describe urban canopy 

models. These models are based on information about the spatial configuration of urban 

areas and about the surface materials of urban objects that drive surface-atmosphere 

exchange processes (e.g. Shashua-Bar et al., 2004; Taleghani et al., 2015; Bruse and Fleer, 

1998). Knowledge gained from such model simulations can be used to measure and 

understand the impacts of climate change on urban areas. Since these impacts affect the 

urban population locally (Grimm et al., 2008), urban planning focuses on the 

transformation of cities in response to the changing climate and to develop adaptation 

responses in advance (Carter et al., 2015).  

A wide range of airborne and spaceborne Earth Observation missions have previously been 

used to study details of urban structures (Voltersen et al., 2014; Cai et al., 2017), urban 

growth (Esch et al., 2017; Pesaresi et al., 2016; Bagan and Yamagata, 2012; Herold et al., 

2003) and ecological functions of urban areas (Lakes and Kim, 2012; Alberti, 2005; 

Alonzo et al., 2016). With the wider availability of airborne imaging spectrometers, studies 

have been expanded to map and quantify surface material composition in urban areas 

(Roessner et al., 2001; Heiden et al., 2007; Heiden et al., 2012; Okujeni et al., 2013; Priem 

and Canters, 2016; Segl et al., 2003; Franke et al., 2009; Demarchi et al., 2014). The main 

advantage of using imaging spectroscopy data is the rich spectral information content that 

enables a detailed surface material inventory.  

However, airborne imaging spectroscopy data have limited availability and are cost-

intensive and, thus, not applicable for frequent monitoring of cities. These limitations can 

be overcome with spaceborne imaging spectrometers, although studies are still rare due to 

the limited availability of sensor data. There are a few urban studies using spaceborne 

imaging spectroscopy data from former and operating sensors, such as Hyperion on EO-1 

(Cavalli et al., 2008; Fan and Deng, 2014; Weng and Lu, 2008; Weng et al., 2008; Xu and 

Gong, 2007; Zhang, 2016) and CHRIS on the PROBA platform (Demarchi et al., 2012a; 

Demarchi et al., 2012b; Duca and Del Frate, 2008; Licciardi and Del Frate, 2011). Data 

from Chinese platforms such as the HJ-1A and TG-1 (Tong et al., 2014; Guo et al., 2016) 
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and the Russian Resurs-P fleet (Zaichko 2014) are also promising but currently not 

available to the public. There are several spaceborne imaging spectrometer missions 

planned for the near future such as PRISMA (Guarini et al., 2017), DESIS (Mueller et al., 

2017), EnMAP (Guanter et al., 2015), HyspIRI (Abrams and Hook, 2013) and HISUI 

(Matsunaga et al., 2014). These upcoming missions could provide data on a regular and 

operational basis suitable for monitoring urban functionalities. 

To explore the full potential of spaceborne imaging spectrometer data in urban 

environments, simulated imagery has been used (e.g. Roberts et al., 2012; Okujeni et al., 

2015; Rosentreter et al., 2017). These studies focus on adapting and improving mapping 

methods, where the majority of mapping concepts and techniques has to cope with the high 

spectral information content and the complex spectral mixtures (Small, 2003) that occur in 

the image data due to diverse material compositions and structures in the urban 

environment. A variety of linear and non-linear Spectral Mixture Analyses (SMA) have 

been developed (Shimabukuro and Smith, 1991; Keshava, 2003; Adams and Gillespie, 

2006), all of which estimate abundances of surface materials within a pixel, provided that 

all occurring surface materials, so-called Endmembers (EM) are known (Adams et al., 

1986). This concept was successfully applied to airborne imaging spectroscopy data for 

various environments (Adams and Smith, 1986; Asner and Lobell, 2000; Okin et al., 2001; 

Asner and Heidebrecht, 2002; Neville et al., 2003; Roth et al., 2012; Roberts et al., 2017). 

However, uncertainty in abundance estimation increases with the number of EMs in a 

mixing model (Winter et al., 2003). Therefore, concepts such as Multiple Endmember 

Spectral Mixture Analysis (MESMA) (Roberts et al., 1998) have been developed, which 

allows the number of EMs per pixel to be varied and optimized (e.g. Dennison and 

Roberts, 2003). Further, mathematical and spatial constraints have been introduced (e.g. 

Dennison and Roberts, 2003; Roessner et al., 2001; Rogge et al., 2006; Franke et al., 2009) 

to reduce the number of EMs per pixel (Zare and Ho, 2013), rather than considering all 

EMs occurring in a scene for generating the per-pixel mixture model. The EM variability 

and its influence on spectral mixture analysis have been discussed in Somers et al. (2011).  

The applicability of spectral unmixing approaches for identifying surface materials using 

present and upcoming spaceborne imaging spectrometer systems is limited. The spatial 

resolution of most of these systems ranges between 20 m and 30 m. Consequently, the 

number of EMs per pixel usually increases and the complexity of spectral mixtures in 

urban areas can hardly be explained by models containing just a few EMs. Further, it is 

challenging to find spectrally pure EMs, which is a requirement for SMA. The latter 
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problem was tackled by a concept developed by Okujeni et al. (2013) that uses 

synthetically mixed urban spectra applied to simulated EnMAP data of Berlin (Okujeni et 

al., 2015) using support vector regression. Sub-pixel abundances of surface categories such 

as roofs, pavement, low vegetation and trees could be estimated with higher accuracies in 

comparison to spaceborne multispectral data (Okujeni et al., 2015). However, the majority 

of detailed surface material related information is lost in this generalization because the 

mixed spectra cannot be deconvolved at this high thematic level. Improvements in 

mapping the broad vegetation, imperviousness and soil classes (Ridd, 1995) or extended 

VIS (vegetation-impervious-soil) classes (e.g. Weng, 2008; Okujeni et al., 2015) could be 

achieved by using spaceborne imaging spectroscopy data instead of multispectral imagery 

with the same spatial resolution. 

By changing the perspective from Earth Observation (EO) images to the ground, it 

becomes obvious that even highly heterogeneous landscapes such as urban environments 

contain urban neighbourhoods with similar structural and compositional characteristics 

(Tobler, 1970). Often, these physical characteristics are a result of the specific land use. 

Industrial areas serve as an extreme example. They are often composed of large low-rise to 

mid-rise buildings and mainly impervious open surfaces. In contrast to industrial sites, 

residential areas such as detached housing developments are composed of small low-rise 

buildings, pervious surfaces such as gardens and exposed soils. This obvious link between 

land cover and land use is reflected in various urban classification systems such as the 

German Urban Structure Type (UST) classification (Wittig et al., 1998, Gilbert, 1994; 

Maier et al., 1996) that was established by urban ecologists to study urban biota. It 

describes urban areas as an ecosystem with biotic and abiotic components, whereby the 

ecosystem is formed by its history, structure and function (Sukopp and Weiler, 1988; 

Wittig et al., 1998; Niemela, 1999). The well-known Urban Atlas (UA) nomenclature 

(EEA, 2017) is built by merging CORINE and the GMES Urban Services to compare the 

development and structure of European cities. The UA classes mainly describe land use, 

which cannot easily be related to physical parameters such as those required by urban 

climatologists (Lefebvre, 2015). Therefore, Stewart and Oke (2012) developed the Local 

Climate Zone (LCZ) framework. This framework explicitly considers the physical 

characteristics of urban areas, such as building height and compactness, vegetation 

abundance, and surface material characteristics, to serve as input for urban climate models. 

However, this framework is also subject to land use terms, as the class LCZ 10 “Heavy 
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industry” shows, but it reveals the link between an area’s land use and its resulting land 

cover parameters.  

In summary, all of these classification frameworks have in common that they postulate the 

existence of urban neighbourhoods with similar physical, compositional, structural or land 

use characteristics or a mixture of it. Urban neighbourhoods are hence also composed of 

specific surface material compositions and these compositions are represented by typical 

spectral mixtures in spaceborne imaging spectroscopy data. The existence of such 

neighbourhood-specific mixtures of surface materials have been investigated by statistical 

analyses of roofing materials and their occurrence in UST classes in Munich, Germany 

(Heiden et al., 2003; 2012; Heldens 2010). Bochow et al. (2007) successfully used the 

composition of surface materials, in addition to structural and form parameters, as a proxy 

for updating urban biotope maps in Dresden, Germany. Finally, Earth Observation based 

concepts of Vegetation-Imperviousness-Soil (VIS; Ridd, 1995) and extended VIS studies 

could show even at a very coarse spatial scale that there are areas dominated by high 

albedo surfaces such as metals and concrete instead of areas that are more mixed with 

vegetation. The above described logic and previous work support the assumption that 

neighbourhood-specific surface material compositions and, thus, typical spectral mixtures 

are very likely to exist. Bearing in mind the drawbacks of spectral unmixing approaches, a 

new methodology is required to interpret the complex spectral mixtures in spaceborne 

imaging spectroscopy data.   
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Fig. 1: a) Plant species show a maximum occurrence probability on environmental gradients 

(such as temperature, water, light, and nutrient availability) where the environmental conditions 

meet their ecological demand. However, they are able to subsist outside this optimum setting, 

resulting in a unimodal occurrence probability on the environmental gradient. b) Similarly, urban 

materials (here M1 – M7) are assumed to show a unimodal trend in their cover fractions along a 

non-spatial gradient in the material feature space. Co-occurrences in these distributions result in 

characteristic material mixtures that form gradual transitions and may be mapped with spectral 

data.  

A possible way to interpret complex spectral mixtures is to use gradient analysis, which so 

far has been used to map species compositions in natural ecosystems. We can consider the 

mixture of urban surface materials in analogy to the species mixture in a natural vegetation 

stand. Species mixtures are not arbitrary but result from the ecological demands of the 

individual species and gradients in the prevailing environmental conditions. Each species 

has an optimal, multivariate set of environmental conditions that fully meets its demands. 

In consequence, the highest occurrence probability of the species is given for these optimal 

conditions (Fig. 1a). The species is also able to subsist slightly outside its environmental 

optimum, but with a lower occurrence probability. In unsuitable conditions, the species 

will not occur. As different species have different demands, the optima of their occurrence 

probability curves on the environmental gradients differ, while the curves of species with 

similar ecological demands show some overlap. This induces a gradually changing species 

composition along environmental gradients in mixed vegetation stands. The concept of 

gradual changes in species composition in the vegetation continuum, the so-called floristic 

gradients, was first introduced by Gleason (1926) as an alternative to classificatory 



 

90 

approaches. It has been successfully used in several studies for mapping vegetation as 

continuous fields based on remote sensing (Schmidtlein and Sassin 2004; Schmidtlein et 

al., 2007; Feilhauer et al., 2011; 2014; Harris et al., 2015; Neumann et al., 2015, 2016). In 

the city, gradient analysis was first used by Gu et al. (2015) to quantify the composition of 

tree species using multisensor remote sensing data. Besides the fact that the resulting 

gradient maps preserve the fuzziness of natural vegetation patterns and, thus, provide a 

more accurate generalization rather than discrete classes, the approach has a fundamental 

advantage: The gradient concept is based on the assumption that all pixels are mixed and 

no “pure” pixel exists. It is, thus, not necessary to identify EMs to apply the concept. 

Instead, the gradients are extracted from a representative sample of mixed species 

compositions (Schmidtlein and Sassin, 2004). For this purpose, a gradient analysis is 

performed to analyse inter-correlations in the distributions of co-occurring species. The 

gradient analysis is basically a dimensionality reduction of the species occurrence data, 

where the original n dimensions of a data set with n species is reduced to a few, 

independent floristic gradients. It is important to note that the extracted gradients are non-

spatial and only describe gradual transitions of species occurrences in the species feature 

space. No information on the geographical position of the samples is considered in their 

extraction. 

In transferring this concept to mixtures of urban surface materials, we follow the 

hypothesis of the existence of typical surface material compositions in urban 

neighbourhoods, assuming that urban surface materials form patterns of co-occurring cover 

fractions along a non-spatial gradient in the material feature space (Fig. 1b). Here, we can 

assume that each surface material has a maximum in its distribution along one or multiple, 

non-spatial gradients and that these gradients can be extracted in a data-driven way using 

the gradient analysis techniques adopted from ecology. Since the approach treats all urban 

areas as mixtures, it may be applicable to spaceborne imaging spectroscopy data despite 

their rather coarse spatial resolution with complex mixed pixels. In the present proof-of-

concept-study, we test whether the gradient concept offers a feasible solution for the 

analysis of urban data sets with a high amount of spectral mixtures. In particular, we aim to 

answer three questions:   
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 Are there gradual transitions in the occurrence of urban surface materials so that the 

gradient concept can be applied?  

 Can these material gradients be related to spectral mixtures and can their spatial 

distribution be mapped with imaging spectroscopy data with 30 m spatial 

resolution?  

 How can these spectral patterns be used to retrieve urban material compositions? 

 

2. Study area 

An area of 4.12 km², east of the city centre of Munich, Germany, was selected as the 

study site (48.133045°N, 11.565026°E and 48.106969°N, 11.631842°E). The Isar River 

with a broad vegetated river side, mainly east of the river, crosses through the study site 

from the southwest to the northeast. Further north, the large and conspicuous complex of 

the German Museum is located on an island. West of the Isar River, the study site is 

dominated by buildings originating in the Wilhelminian time, mainly built in the 19th to 

early 20th centuries. This part of the old town is characterized by a dense perimeter block 

development with a large variety of different roofing materials and marginal proportions of 

open space (see Fig. 2). On the eastern side of the Isar River, different USTs are alternated. 

The residential areas can be generally divided into perimeter and regular block 

development, high-rise buildings, row house development and detached and semi-detached 

houses, according to the definition of UST classification in Heldens (2010). Additionally, 

the study site is shaped by several industrial areas with an agglomeration of differently 

sized halls and warehouses. The largest industrial area in the study site is located east of 

the railway station Ostbahnhof in the northern part. In the centre, a larger green space 

indicates the dimension of the eastern cemetery with a systematic combination of woody 

and non-woody vegetation traversed by small paths. In the southeastern part, the study site 

mostly consists of residential areas with detached and semi-detached houses with typically 

higher proportions of vegetation. For sporting and leisure purposes, several sporting fields 

and public parks are spread over the entire study site. In summary, USTs characterizing the 

study site range from residential and commercial dwellings to industrial areas, road and rail 

network, recreation areas such as sports fields, cemeteries, open green spaces including 

forested areas, and a section of the Isar River. The variety of different USTs accompanied 

by a wide range of predominate surface materials embedded in a relatively small-scaled 
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area provide almost ideal preconditions for investigating urban surface material 

compositions and the analysis for urban gradients. For a visual representation of USTs, 

refer to Heldens (2010) and Heiden et al. (2012), who illustrate the differences between the 

individual USTs using selected examples of high-resolution orthophotos of the city of 

Munich. 

 

3. Data 

3.1 Airborne imaging spectroscopy data - HyMap 

Imaging spectroscopy data were used for two purposes; first, as a basis for detailed 

surface material mapping (Heiden et al., 2012) as a surrogate for ground truth data 

regarding the actual material composition, and second, for simulating EnMAP reflectance 

of the study site. These image data were acquired with the HyMap hyperspectral sensor 

(Cocks et al., 1998) during the HyEurope 2007 flight campaign on June 17th and June 25th 

2007 by the German Aerospace Center (DLR) Oberpfaffenhofen, Germany. Spectroscopic 

measurements of the study site were recorded from a flight height of 2000 m for 128 

spectral bands ranging from 450 to 2500 nm, resulting in a pixel size of 4 m × 4 m. The 

pre-processing of the image data was carried out as described in Heldens (2010) and 

Heiden et al. (2012) and includes radiometric correction (Cocks et al., 1998), removal of 

three noisy bands, atmospheric correction, transformation into reflectance values, a nadir-

normalization to correct the brightness gradient with ATCOR (Richter, 2009), geometric 

correction into WGS-84, UTM zone 32 N using the software ORTHO (Mueller et al., 

2005), and orthorectification based on a digital terrain model produced from SRTM 

(Shuttle Radar Topography Mission) data (Habermeyer et al., 2008). Heldens (2010) report 

an average Root Mean Squared Error (RMSE) of 0.8 pixels after geometric pre-processing.  

 

3.2 Surface material map 

A detailed surface material map derived from HyMap data, with 42 initial surface 

material classes, served as the basis for the sampling and ordination procedure. Surface 

materials were identified with an automated multi-stage processing system (Heiden et al., 

2012) based on the following steps: a) spectral feature-based extraction of EMs (Segl et al., 

2006) using a spectral library of image spectra (Roessner et al. 2011), b) maximum 
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likelihood classification using the previously determined EMs to increase the number of 

spectrally pure pixels in the image (Roessner et al., 2000; Roessner et al., 2001), c) 

improvement of surface material classification based on a digital surface model (DSM) 

obtained from a High Resolution Stereo Camera (HRSC) (Heldens, 2010) and d) iterative 

linear spectral unmixing to model remaining mixed pixels while considering two EMs per 

pixel. At 4 m HyMap resolution, almost half of the pixels correspond to pure material 

spectra, while the other half is composed of dominant surface material abundances. In 

Heldens (2010) and Heiden et al. (2012), accuracies for the surface material map were 

determined with an area-based approach to identify differences between the surface 

material map and the validation data originating from digitized building blocks using 3K 

aerial orthophotos. The accuracies of surface material classes were indicated by a mean 

absolute error (Willmott and Matsuura, 2005) of up to 14%, with the highest 

underestimation of 10% occurring for the artificial material classes ‘asphalt’ and ‘concrete’ 

and almost 20% for the natural surface material class ‘deciduous trees’. For individual 

accuracies of single surface material classes please refer to Heiden et al. (2012).  

 

Fig. 2: Detailed urban surface material map determined from HyMap data with a systematic 

sampling scheme (section 5.1) in which circles represent the sample size and position in the 

Munich study site.  
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For simplicity and consistency reasons, several material classes were aggregated, after they 

were initially differentiated according to spectral intra-class variabilities, such as different 

coatings or according to aging effects. These material instances (e.g. old and new roofing 

tiles), were therefore aggregated to surface materials (e.g. roofing tiles). In addition, 

classes labelled as unknown, shadow or facades were removed from the surface material 

map, since only real surface materials that can be identified by remote sensing should be 

analysed with gradient analysis. The process of aggregation and removal of single material 

classes leads to a material map consisting of 27 surface material classes. This modified 

surface material map (Fig. 2) was used for the sampling (section 4.1 and 5.1) to analyse 

material compositions with gradient analysis (section 4.2). Table 1 lists the number of 

pixels in the surface material map (Fig. 2) for the 27 surface material classes and the 

fractional abundances within the samples.  

Table 1: Categorisation of urban surface materials (with material abbreviations) into material 

groups, including total and sampled cover fractions per surface material in the Munich study site. 
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3.3 EnMAP data 

The HyMap data were also used as input to simulate EnMAP reflectance values of the 

study site (Fig. 3) using the end-to-end simulator (Segl et al., 2012). The simulated 

EnMAP data are characterized by a ground sampling distance of 30 m and 242 spectral 

bands ranging from 423 nm to 2439 nm. Sensor specific characteristics for the prospective 

EnMAP mission are given in Guanter et al. (2015). In the range of the overlapping spectral 

bands (904 nm to 985 nm) of the two sensors (VNIR and SWIR), only the spectral bands 

of the SWIR sensor were used. Additional spectral bands ranging from 1358 nm to 1429 

nm and 1318 nm to 1960 nm were eliminated due to atmospheric water absorption. 

The samples shown in Fig. 2 (see section 4.1), are also used for the extraction of spectral 

signatures and their subsequent linkage to the gradients obtained from the surface material 

compositions. For this purpose, the mean simulated EnMAP reflectance values of all pixels 

whose centre coordinates lie within a sampling polygon were calculated and used for the 

further analysis.  

 

Fig. 3: Simulated EnMAP data for the Munich study site based on HyMap data. 

  



 

96 

4. Methods 

The complex material compositions in the urban environment are subjected to gradient 

analysis in order to analyse patterns of co-occurring cover fractions. Fig. 4 provides an 

overview of the required input data, the main processing steps (sampling, ordination, 

regression and prediction) and the resulting outputs from gradient analysis.  

 

Fig.4: Flowchart of gradient analysis for analysing material compositions in urban environments. 

4.1 Sampling 

The intention to analyse urban material compositions in simulated EnMAP pixels with 

gradient analysis requires a fundamental understanding of the occurrence of surface 

materials with regard to material-specific gradual transitions. This information can be 

obtained by defining samples from the surface material map (Fig. 2) with the aim to 

describe all occurring surface material classes and their compositions. Material 

compositions in the study site were analysed by means of a systematic sampling grid 

consisting of 153 circular polygons, each with a diameter of 100 m, evenly distributed over 

the study site (Fig. 2). The polygon diameter of 100 m was chosen to ensure that mixtures 

of materials are present in each sample and that each polygon is covered by multiple 

simulated EnMAP pixels. Polygons were arranged with inter-distances of 300 m between 

the centre points of each polygon. A systematic sampling scheme has the advantage that 
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the urban space is sampled with a homogeneous spatial density; the inter-distances were 

used to mitigate effects of spatial autocorrelation in the data. Consequently, the sampling 

fully covers the diverse urban structures dominating the study site. Cover fractions of 

single surface material classes per sample were stored in a database (material table) that 

was finally used as input for the analysis of surface material compositions using the 

ordination method.  

 

4.2 Ordination 

The matrix of surface material cover fractions per polygon was passed on to a gradient 

analysis to extract the main gradients in surface material composition from the data. The 

gradient analysis arranges the sampling polygons according to their material composition 

in a multidimensional gradient space. No information on the geographic position of the 

sampling polygons is considered; hence, the resulting gradients are feature space gradients 

and not spatial gradients. Samples with similar material compositions are located nearby in 

the gradient space, whereas samples with very dissimilar material compositions are located 

on the opposing end of a gradient axis. The gradients are numbered in hierarchically 

decreasing order, i.e. the first gradient is the longest and most pronounced one, higher 

order gradients are less prominent. The position of each sample in the gradient space is 

indicated by a numerical score – the so-called gradient score – which is determined by the 

ordination in order to evaluate its similarities with respect to the composition of the 

material classes and their cover fractions. These gradient scores are an indicator of the 

surface material composition in the sample and were, therefore, used as response variables 

in spatial extrapolation models.  

Several techniques can be used to perform a gradient analysis; here, we used detrended 

correspondence analysis (DCA; Hill and Gauch, 1980), since DCA is an established 

technique in vegetation science and has been successfully used for gradient mapping 

before (e.g. Schmidtlein and Sassin, 2004; Feilhauer and Schmidtlein, 2009; Feilhauer et 

al., 2011). In the present study, the selection of DCA was simply based on the authors’ 

good experience with this technique in ecological analyses. No systematic analysis of the 

performance of DCA for urban gradient analysis in comparison to other techniques were 

conducted. In consequence, other methods for gradient analysis could have likewise been 

used for this pilot study. In ecology, DCA is used to model a sample distribution of varying 
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plant species assemblages on the basis of unimodal occurrence probabilities along 

environmental gradients. The underlying assumption here is that species’ occurrence is 

maximized in optimal environmental conditions. This behaviour can be determined in 

species samples of cover abundances that are collected over wide ranges of external 

gradients. For every species, a Weighted Average (WA) over all samples of cover 

abundances can be calculated using Gradient Values (GV) as weights. Subsequently, the 

samples and species are projected into a rank-ordered WA × GV matrix. The resulting 

matrix represents species abundances in a diagonal structure, where dissimilarities between 

species and gradient responses are maximized at the endpoints of the diagonal. In DCA, 

the gradients are not measured a priori. They start with random values and will be 

iteratively re-calculated until an optimal diagonal matrix is generated. Hence, the resulting 

GV represents a factor variable that allows for an optimal delineation of species variance 

within the samples. Since one gradient often does not account for the total variance in 

species composition (samples with different species assemblages can be close together in a 

one-dimensional projection), additional axes are generated using decorrelated GVs for the 

iteration. The overall procedure was introduced as reciprocal averaging (Hill, 1973). In 

analogy to species abundances, the urban material cover can be used for the averaging 

cascade in order to calculate the diagonal representations of material samples within an 

urban gradient space. Because the gradients result from correspondence analysis, they are 

both unscaled and sometimes affected by artefacts. For this reason, a rescaling and 

detrending process was introduced in DCA. Although this correction is subject to criticism 

due to its mathematical inelegance (McCune et al., 2002), it is a well-performing and 

pragmatic technique that is frequently used in ecology. A major advantage of DCA over 

other algorithms for gradient analysis is the scaling of the axes in Standard Deviation (SD) 

units, which allows a detailed analysis of the compositional turnover in the gradient space: 

a distance of four SDs on a gradient indicates a full turnover, e.g. two samples with an 

inter-distance of four SDs have no surface materials in common (Hill and Gauch, 1980). 

Samples with a shorter inter-distance share at least occurrences of some materials. To 

mitigate an overly prominent influence of rare materials on the ordination result, we used 

the built-in downweighting option in our set up. 

The number of gradients to be considered in the analysis is determined from the respective 

gradient lengths, and the percentage of total variance in the data set explained by the 

gradients. Short gradients that explain only a small percentage of the total variance are 

often very difficult to interpret, and hence, dismissed from the analysis.   



 

99 

4.3 Regression modelling and prediction 

The gradient scores of the polygons were subsequently regressed against the averaged 

simulated EnMAP reflectance spectra (section 3.3) of the corresponding pixels using 

Partial Least Square Regression (PLSR; Wold et al., 2001). PLSR establishes a linear 

relationship between the reflectance values in the spectral EnMAP bands as predictor 

variables and the corresponding DCA scores as response variables. A separate model is 

built for each DCA axis. PLSR builds the regression using latent vectors in order to handle 

the high degree of inter-correlation of the spectral bands, to cope with the small number of 

samples compared to the large number of spectral bands, and to maximize the performance 

of the models. These latent vectors are linear combinations of the original spectral bands 

that contain, on the one hand, maximum spectral information and, on the other hand, are 

optimized towards a good representation of the response variable. The spectral information 

content is hierarchically decreasing from the first to the higher order latent vectors. The 

number of latent vectors resulting in the smallest validation error was identified and used 

for the final model to minimize the risk of over-fitting. This number is determined in an 

elaborate procedure by analysing trends in the cross-validation RMSE. Here, we used a 10-

fold cross-validation for this purpose. The importance of the individual spectral bands in 

the model is determined by considering the variability of the regression coefficients across 

the cross-validation steps (Martens and Martens, 2000). A stable and high absolute value 

of the coefficient in all steps of the cross-validation indicates a high importance of the 

spectral band for the regression. This approach allows for an efficient backward selection 

of spectral bands and an iterative refinement of the model towards an optimized set of 

spectral bands that is both parsimonious and has a strong and reliable predictive power 

(Schmidtlein et al., 2012). The models are finally applied to the image data for a spatial 

prediction of the DCA scores across the study area.   
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5. Results 

5.1 Sampling 

The sampled cover fractions of the study site are relatively similar (6%-11.1%), 

independent of the total coverage of the respective material classes (Table 1). The similar 

cover fractions of individual materials in the samples show that the sampling schema 

considers all materials equally, independent of their actual occurrence in the study site. 

Cover fractions for each surface material class per sample demonstrate the heterogeneity of 

material compositions in urban areas, even in these small observation units of the samples. 

Material compositions in the samples (Fig. 2) are formed by 4-26 different surface 

materials. The complexity of material compositions varies depending on the size of the 

urban objects and the position of the samples in the study site. Therefore, highly diverse 

material compositions occur more frequently in densely built-up areas of smaller objects 

(e.g. Wilhelminian styled urban neighbourhoods) and in industrial shaped neighbourhoods, 

than in relatively homogeneous areas such as open green spaces. Samples with the highest 

number of different surface materials are represented by block developments located in the 

north and in the transitional area of industrial and residential neighbourhoods in the south 

of the test site.  

 

5.2 Ordination 

The two main gradients determined with the DCA have an axis length of 3.1 SDs for the 

first gradient and 2.1 SDs for the second gradient. Samples are distributed in the material-

specific DCA-space according to the determined gradient scores of the samples for both 

gradients (Fig. 5). The material-specific DCA-spaces visualize the differences in the 

occurrence of individual material classes in the sampled study site (see Table 1).   
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Fig. 5: Material-specific DCA-spaces facilitate the visualization of varying cover fractions in the 

samples to determine maximum occurrences of individual material classes. The position of a circle 

centre defines the position of a sample and its material composition in the DCA-space, while the 

circle diameter visualizes the material-specific cover fractions in each sample. The samples are 

coloured as a result of the transformation of the DCA-space into a colour space (see Fig. 9b). 

Accumulated samples indicate the maximum occurrence of this material in the gradient space. 

For easier interpretation of the gradients, the samples were projected onto the 

corresponding axis. Most material classes show a maximum occurrence along the 

gradients, as indicated by the position and size of the circles (Fig. 5). The left part of 

gradient 1 (negative DCA scores) is covered by dominant vegetation classes such as trees 

and meadows. The right part of gradient 1 (positive DCA scores) is mainly dominated by 

roofing minerals and hydrocarbons, but also by materials typically used for roads such as 

concrete (fcon) and asphalt (fasp). Generally, all material classes show dominant 

occurrence patterns along the first gradient.  

Maximum occurrences for the material classes rtil, rtar, fasp, and rcop are shown along the 

lower (negative) part of gradient 2, while rcon, rgra, fcon, and rpol mainly occur on the 

upper (positive) area. Some material classes (e.g. vdec) do not have a maximum 

occurrence along the second gradient but occur across the entire axis with almost even 

cover fractions. This is also shown by the different colour hues of the samples along the 

second gradient. The maximum occurrences of materials can be visualized by a biplot 

scaling of the samples. For this purpose, material vectors were defined on the basis of the 
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DCA scores, which determine an orientation of the occurrence of materials in the DCA-

space (Fig. 6). These vectors, together with the material-specific DCA-spaces (Fig. 5), 

serve as a tool for interpreting the gradients.  

 

Fig. 6: Biplot scaling of the main material groups a) minerals, b) hydrocarbons, c) metals, d) 

vegetation, and e) the remaining material classes, composed of soil, water, and railway tracks (see 

Table 1), to visualize the maximum occurrences of individual material classes in the DCA-space 

(represented by the position of material names in the DCA-space).  

5.3 Regression modelling 

The best PLSR model for gradient 1 (Fig. 7a) resulted in R² = 0.85 for calibration and R² = 

0.84 in 10-fold cross-validation. The final model was based on 35 spectral bands 

(distributed over the entire spectral range). These bands were selected because they 

survived the backward selection process and were then summarized to two latent vectors. 

The respective model error is indicated with an RMSE of 0.23 SDs for calibration and 0.24 

SDs for validation. The model for the second gradient included five latent vectors based on 

13 spectral bands (mainly distributed in the SWIR region) with a fit of R² = 0.71 for 

calibration and R² = 0.67 for validation (Fig. 7b). The respective RMSE for the calibration 

of gradient 2 was 0.21 SDs and 0.22 SDs for validation.   
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Fig. 7: Model fits of the PLS regression analysis for a) the first and b) the second gradient. 

5.4 Mapping of DCA scores 

The regression models for the first and second gradient have been applied to the 

simulated EnMAP data. Pixels with predicted DCA scores exceeding +/- 0.5 compared to 

the minimum or maximum DCA scores determined for the samples are not taken into 

account (white pixels), as these ranges were not covered by the sampling. A colour bar 

corresponding to the gradient axis is used to visualize the predicted DCA scores for 

gradient 1 (Fig. 8a) and gradient 2 (Fig. 8b). Fig. 8a and b show the formation of different 

spatial patterns based on the specific material compositions of the respective gradient, 

which do not coincide and, thus, give an indication of different information represented by 

each gradient.  

 

Fig. 8: Mapping of predicted DCA scores for simulated EnMAP pixels in the study site in Munich 

for a) the first and b) the second gradient. 
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The composite map in Fig. 9a combines predicted DCA scores for gradients 1 and 2, 

resulting in Cartesian coordinates for each pixel. The colour values of the pixels are taken 

from the position of the coordinates in a two-dimensional colour space (shown in Fig. 9b) 

that is related to the DCA-space. Accordingly, different material compositions are marked 

by different colour shades of the pixels in the prediction map (Fig. 9a). Similarly, coloured 

patterns indicate similar material compositions. Fig. 9b shows the colour scheme that is 

assigned to the DCA-space of both gradients with selective surface materials (written in 

white). The position of the surface materials in the coloured DCA-space highlights their 

maximum occurrence according to Fig. 6. However, similar to Fig. 9a, the colour hues 

need to be interpreted as surface material compositions.  
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Fig. 9: a) Prediction map of DCA scores for composed gradient models for the study site in 

Munich, with a selection of samples from the sampling scheme (Fig. 2) that represent distinct 

USTs (I-VIII) - for historical high-resolution GoogleEarth® orthophotos - to support the 

identification of b) the colour scheme (legend) with regard to the delimitation of USTs (solid and 

dashed lines) based on characteristic material compositions. 

The black solid and dashed boundaries in Fig. 9b results from the visual analysis and 

interpretation of the prediction map (Fig. 9a) that is described in detail in section 6.2. First 
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visual inspections indicate that the UST classification of Munich (see section 1) widely 

corresponds to the patterns in the prediction map (Fig. 9a). We used this correlation to 

interpret the colour hues with respect to a characteristic material composition. For this 

purpose, we (1) selected samples from Fig. 2 that are unambiguously assigned to a specific 

UST using corresponding historical GoogleEarth orthophotos (Fig. 9a.I-VIII). The 

positions of the samples are marked by Roman numerals plotted into the prediction map. 

Subsequently, these samples were (2) highlighted in the colour-coded DCA-space, which 

leads to the formation of clusters of samples with similar material compositions. (3) 

Further samples are integrated into these clusters, which are adjacent to the representative 

samples (Fig. 9a.I-VIII) in the DCA-space, until a new assignment of samples no longer 

alters the UST clusters. Finally, (4) the resulting clusters were used to delineate USTs in 

the colour-coded DCA-space (solid and dashed lines in Fig. 9b). These cluster boundaries 

of USTs should not be viewed as discrete class boundaries but should characterize a 

probability of the occurrence of material composition that is characteristic for a certain 

UST. The delineated boundaries support the analysis of characteristic material 

compositions of USTs. 

 

5.5 Analysing characteristic material compositions 

Characteristic material compositions of USTs were analysed in order to gain an 

advanced understanding of typical spectral mixtures of simulated EnMAP pixels in the 

urban scene. For this purpose, the selected samples extracted from the sampling scheme 

(Fig. 2), as shown in Fig. 9a.I-VIII, were analysed for the co-occurrence of individual 

material classes and their cover fractions. Therefore, the material classes were aggregated 

to the four main material groups – minerals, metals, hydrocarbons and vegetation, 

according to Table 1. The material classes of soil and water were not considered, as these 

classes do not frequently occur in the study site, nor the urban structure railway tracks, as 

these are not among the observed USTs (Fig. 9a.I-VIII). Abundances of individual material 

classes were averaged for all samples per USTs. On the basis of these observations, the 

USTs are described by the most co-occurring cover fractions of dominating material 

classes; thus, material classes with frequencies below 5% were neglected in further 

analysis. Based on these statistics of averaged material cover fractions, the two most 
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prominent material classes of each material group are displayed in Fig. 10, representing the 

most common surface materials for a particular UST of the study site.  

 

Fig. 10: Proportions (in %) of the two most commonly co-occurring material cover fractions 

(minimum material fraction has to be at least 5%) in the four main material groups for a selection 

of averaged samples per UST (Fig. 9a.I-VIII). The class ‘others’ comprises the remaining 

materials of the four main material groups as well as soil, water, and railway tracks. 

6. Discussion 

6.1 Do gradients exist in urban material composition? 

The results in Figs. 5 and 6 demonstrate the maximum occurrence of material classes, 

which correspond to the theory of the probability distribution along the respective gradient 

axis introduced in Fig. 1. This indicates the applicability of the gradient concept for the 

analysis of complex material compositions in cities. The gradient interpretation is based on 

the analysis of dominant material distributions (determined from material-specific DCA-

spaces, Fig. 5) along a corresponding gradient. On gradient 1, vegetation types mainly 

dominate the negative range of the DCA-space, while their cover fractions decrease 

towards the positive end of the axis. In contrast, artificial materials such as fasp, fcon, and 

rbit, which are often used for rooftops and streets of larger manmade urban objects, 

dominate the positive end of the gradient 1 and, thus, can be interpreted as a gradient of 

imperviousness. The interpretation of the second gradient, with a shorter axis length, is 

more difficult. Artificial material groups such as minerals and hydrocarbons dominate both 
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the negative and positive range of gradient 2. From the dominant occurrence of individual 

material classes along the gradient axis, possible conclusions can be drawn about land use 

and the functions of the built-up areas. For instance, materials that mainly occur in 

industrial areas have positive DCA scores on the second gradient (e.g. rcon, fcon, and 

rpol), while the negative DCA scores are dominated by roofing materials such as rtil, rtar 

and rcop, which are typically found in residential areas of European cities (Wittig et al., 

1998). The maximum occurrences of individual surface materials in the samples are 

highlighted in the biplot scaling (Fig. 6).  

The position of the materials in the biplot scaling is also important for the interpretation of 

the gradients. The further away the maximum occurrences of the material classes from the 

origin of the DCA-space (the longer the material vectors), the more reliable the prediction 

of the occurrence of materials. The vector length is also influenced by the frequency of 

material occurrences in the study site. For example, vdec is represented by 172784 pixels 

(Table 1) in the study site, showing a long material vector. In contrast, bsoi, wpon and wriv 

have the lowest number of pixels in the study site (2978, 4691 and 4518 pixels) expressed 

in short material vectors. It shows that the sampling scheme is important because it 

represents the material abundances in the study site. Nevertheless, the dominant material 

occurrences and their gradual transitions show the formation of two interpretable urban 

gradients analogous to the formation of floristic gradients on the basis of maximum 

occurrences of plant species. 

The visualization of the maximum occurrences of material classes along the gradient axes 

(Fig. 6) also indicate co-occurrences of materials. This means, for example, that in our 

study site, buildings covered with roofing tar (rtar) are often located in the neighbourhood 

of buildings with tiled roofs (rtil) and the streets are mostly asphalted (fasp), whereas, in 

areas with a higher occurrence of polyethylene on roofs (rpol), roofing tiles (rtil) are rarely 

found. These observations also confirm the neighbouring occurrence of similarly 

composed samples in the DCA-space. The probability of co-occurring material classes 

supports the assumption of the existence of typical spectral mixtures in 30 m simulated 

EnMAP pixels. A drawback of the wider applicability of this method could be the 

necessity of immense ground truth data. Since generating ground truth information can be 

very time- and cost-intense, if the samples are derived from field surveys or other non-

automated approaches, a detailed surface material map derived from airborne imaging 

spectroscopy and height data is used in this study. This solid data base was necessary to 

prove the existence of material gradients in this study site, which is one of the major 
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requirements to proceed with investigations about the transferability of this concept. Since 

transferability analysis goes far beyond the scope of this paper, it should be analysed in 

future studies focusing on the robustness of the gradients and the regression models.  

 

6.2 Are urban material gradients linked to complex spectral mixtures? 

Results of the PLS regression analysis (Fig. 7) show strong correlations between 

visually recognizable patterns of the simulated EnMAP reflectance and gradual transitions 

of materials, especially in the first gradient. The shorter length of gradient 2 led to a 

slightly weaker validation fit of the model compared to gradient 1. This also explains the 

difficulties in interpreting the second gradient (section 6.1).  

The subsequent mapping of gradient 1 on the entire simulated EnMAP image (Fig. 8a) 

allows the prediction of co-occurring cover fractions and their pattern formation. Fig. 8a 

clearly shows spatial patterns that are associated with green spaces on the one hand and 

built-up areas on the other hand. Based on the patterns in Fig. 8a, we observe a decrease in 

the proportion of vegetation coverage and, at the same time, an increase in imperviousness 

with increasing DCA scores. These findings are in line with the observation regarding the 

dominance of vegetation classes in samples with negative DCA scores on axis 1 to high 

cover fractions of roofing and paving materials on the opposing end of the gradient (Fig. 

5). Thus, gradient 1 expresses a rural-to-urban transect (increasing urbanity from blue to 

red).  

The prediction of gradient 2 shows new patterns (Fig. 8b) that indicate additional gradual 

information originating from material occurrences. It is observed that pixels with predicted 

very high positive DCA scores (red) for the second gradient are dominated by a 

composition of material classes with typically high albedos in the VNIR range (bright 

material classes such as rpol), while very low predicted negative DCA scores (dark blue) 

correspond to material compositions of rather darker artificial materials, such as rtil. 

However, these findings can only be observed for the very high and very low DCA scores, 

while material compositions of pixels that are in the middle of the gradient space do not 

fully correspond to this behaviour. Thus, a dominant occurrence of materials along a 

brightness gradient (Small and Lu, 2006) for the second gradient axis cannot be observed. 

Compared to the lower DCA scores (blue), the very high DCA scores displayed in reddish 

shades indicate a material composition that is rather unique. These pixels were mainly 
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composed of similar materials and characterize areas whose material composition is rarely 

found in the study site, such as larger sand areas or homogeneous roofs of larger storage 

halls. Variations in blue patterns (DCA scores ranging from ˗1.5 to 0) represent urban 

neighbourhoods with different building sizes and building orientations. Light-blue to green 

patterns are associated with (semi-) detached houses, while row house constructions appear 

in dark blue (an adjacent pattern can be observed, for example in the northeast of the study 

site). Mid-blue patterns are associated with perimeter block development and high-density 

block development (Wilhelminian time) in the southwest and northwest of the study site. 

Thus, the second gradient can be interpreted as a structural gradient, although no structural 

information was used in this study. Since the colour differences in Fig. 8 indicate different 

material compositions, structural differences are most probably related to a certain material 

composition in the simulated EnMAP pixels. 

By combining the two gradients, new patterns that are associated with spectral mixtures in 

the simulated EnMAP data can be found. The patterns in Fig. 9a generally correspond to 

patterns from the surface material maps. Interpretation of the coloured patterns in terms of 

material compositions was carried out by visual inspections of the surface material map. 

As a result, patterns with a greenish shade are characterized by exceptionally high 

proportions of vegetation classes such as vdec and vmea. Predominantly industrially 

shaped regions with a significantly increased proportion of artificial materials, such as 

hydrocarbons, are characterized by yellowish pixels. The patterns in different shades of red 

characterize the various residential neighbourhoods, such as (semi-)detached houses, row 

houses, and block developments. Each of these is composed of a characteristic material 

mixture. The structural differences between the neighbourhoods described for gradient 2 

(Fig. 8b) are still present in the combined prediction map. These findings are also 

supported by the orthophotos of different types of buildings shown in Fig. 9a.I-VIII. 

Therefore, we conclude that the differentiation of the structural information must indirectly 

result from the material compositions that determine the spectral mixtures of simulated 

EnMAP pixels. These findings are supported by a study of Roberts et al. (2017) that 

already showed the correlation between material fractions, determined with MESMA, with 

structural information regarding height differences in urban environments. In forests, 

relationships between canopy structure and leaf biochemistry were found in imaging 

spectroscopy data (Wang et al., 2017; Knyazikhin et al., 2013). In summary, the patterns in 

the combined prediction map enable a finer differentiation of the rural-to-urban transition 
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formed by gradient 1 (Fig. 8a) and confirm the existence of co-occurring cover fractions of 

individual material classes in the simulated EnMAP pixels.  

One might argue that a simple Tasseled Cap transformation (Crist and Kauth, 1986) of 

multispectral data results in a similar spatial pattern as displayed in the gradient maps. In 

particular, the first DCA axis with a gradual change in vegetation cover resembles the 

greenness component, while only the extremes of the second DCA axis corresponds to the 

brightness component; however, the interpretability of a Tasseled Cap transformed image 

is largely limited to increases in brightness and greenness, whereas the DCA-space enables 

more detailed conclusions. This includes the opportunity to draw pixelwise conclusions on 

the occurrence probability of specific materials based on their distributions in the DCA 

space (Fig. 5) and the ability to quantify the spatial turnover and functional diversity of 

materials along the gradients (see, e.g., Feilhauer & Schmidtlein, 2009 and Rocchini et al., 

2018 for similar analyses targeting vegetation patterns). Neither of this is possible with a 

Tasseled Cap transformed multispectral image. We thus consider the additional effort 

required by the application of the gradient concept as justified by the additional 

information provided. 

 

6.3 Do spectral patterns correspond to characteristic material compositions? 

The interpretation of gradients discussed above and the patterns in the prediction map of 

DCA scores (Fig. 9a) for the composed gradient models (section 6.2) can be related to the 

patterns of the main USTs classification of the study site based on their material 

compositions. The selected samples of USTs (Fig. 9a.I-VIII) were analysed in regard to 

their dominating material cover fractions in order to specify their characteristic material 

compositions. Fig. 10 shows that material compositions are distinctive for all of the 

selected samples. 

Even in visually similar USTs such as row houses and (semi-) detached houses, the 

characteristic material compositions vary, especially in the occurrence of different types of 

hydrocarbons. The findings are in line with the formation of patterns in the mapping of the 

second gradient (Fig. 8b). The patterns visualize the structural differences of the USTs 

resulting from the different material compositions (Roberts et al., 2017) and, thus, enable 

their differentiation. In contrast, the USTs high-rise buildings and industry manifest the 

composition of the same co-occurring materials, but with varying cover fractions of 

material classes and also different proportions of remaining material classes. The similar 
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material composition of the most commonly co-occurring material classes is also 

observable by the narrow positions of the two USTs in the legend (Fig. 9b) and verifies the 

difficulties in the discrimination of these two types in the prediction map. This may also be 

due to the fact that high-rise buildings are rather underrepresented in the study site (only 

three samples were available). The discrimination of the two USTs could be tackled by 

using additional information on the building heights, which can be derived from a digital 

surface model. In addition, it was observed that the samples of unambiguously assignable 

USTs consist of at least 2/3 co-occurring cover fractions of characteristic material classes. 

Through its capability of linking the knowledge of typical material compositions with 

urban structures, gradient analyses is a powerful tool to map characteristic material 

compositions in 30 m imaging spectroscopy data of urban areas.  

Further testing is required to answer the question whether the urban gradient space can 

similarly be mapped with multispectral data or whether such detailed information can only 

be retrieved from IS data. A first hint is given by the regression coefficients of the PLSR 

model for the second gradient. These coefficients (not shown here) indicate the high 

explanatory power of narrow wavelength regions in the SWIR for this gradient. In 

particular man-made materials such as metals and hydrocarbons as well as minerals show 

specific absorption features in these wavelength regions. Since the second gradient largely 

describes variation in these materials, the regression coefficients are in line with the pattern 

to be expected. Multispectral sensors provide only a few broad bands in the SWIR region; 

we thus expect that multispectral data are less suitable for modelling the second gradient. 

 

7. Conclusion and outlook 

According to our best knowledge, this is the first study that retrieves surface material 

compositions from simulated spaceborne imaging spectroscopy data with a spatial 

resolution of 30 m. A concept developed for mapping floristic gradients in natural 

environments was applied to an urban test site in Munich, Germany, to explore the 

capability of this method to retrieve surface material compositions from 30 m simulated 

EnMAP data. It has been demonstrated that there are gradual changes in material 

compositions in urban areas and that these gradients can be related to patterns of surface 

reflectance of simulated EnMAP data. The predicted gradient scores for the simulated 

EnMAP data results in patterns of material compositions that are related to a rural-to-urban 
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transect (gradient 1) and allow the differentiation of structural subtleties associated with 

urban structures (gradient 2). The first gradient ranges from fully pervious materials, such 

as different vegetated surfaces, water bodies and open soils, to fully impervious materials 

such as roofing materials, concrete and asphalt pavements and metals. Although the second 

gradient is not as pronounced as the first gradient, it contains information about material 

related structural subtleties that can be linked to the use and function of built-up areas. A 

brightness gradient as, for example, described in Small and Lu (2006) could not be clearly 

observed in both gradients.  

It is, however, important to note that DCA and, thus, also the gradient approach used in 

this study are data-driven and the extracted gradients are not simply transferable to other 

urban environments. The gradient analysis only considers materials that are included in the 

training dataset. Due to this fundamental constraint, the DCA-space only describes gradual 

transitions in the material composition of Munich. Any other urban environment may 

comprise new materials that are not represented by the Munich dataset. The Munich 

gradients are most likely not fully suitable to describe these environments, and customized 

gradients have to be determined from a local training dataset. However, this opens up the 

potential for further investigations. Since the underlying approach is data-driven, the 

robustness of the identified gradients needs to be tested. The consideration of a larger area 

of Munich, including more and possibly different urban materials, would be the first step to 

analyse the robustness of the gradient interpretation. Special emphasis should be placed on 

previously underrepresented material compositions of common urban structures (e.g. high-

rise buildings) and neighbourhoods with similar material compositions such as “industry” 

and “high-rise buildings”. 

In addition, the influence of sample size and sample distribution should be further 

analysed. If the polygon area is large enough to contain a mixture of different materials, 

the gradient analysis will always come to a result, even if the material composition does 

not change gradually. However, in this case, the dimensionality reduction will be rather 

weak and result in many short gradients that are hardly interpretable. On the other hand, if 

the polygon area is too small, the gradient analysis will fail to extract the gradients since 

the co-occurrences of materials are not adequately represented in the sampled data. In our 

study, the gradient analysis resulted in two long gradients that could easily be interpreted. 

This indicates that the polygon diameter of 100 m was sufficient for the purpose of this 

study. The quantity and size of the samples (Fig. 2) result in a sampling coverage of 8.6% 

of the total area, with the proportion of 6-11% (Table 1) for each material class regardless 
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of its occurrence in the study area. Accordingly, natural over- or under-representations of 

material classes are taken into account and also confirm the suitability of the selected 

sampling scheme for Munich. Further research is needed to investigate the effects of the 

sampling scale and design on the ordination outcome. This is an important aspect to 

investigate the transferability of the approach to other cities. 

The study presented in this paper reveals the potential for determining urban surface 

material compositions from data of upcoming spaceborne imaging spectroscopy missions 

such as EnMAP, PRISMA or HISUI. Although the pixel size of this data (30 m × 30 m) is 

too coarse to resolve most of the urban objects, the gradient analysis seems to be a suitable 

method to investigate the resulting complex spectral mixtures. The advantage of using the 

gradient analysis is that 1) no pure EMs are required and 2) material compositions and 

material co-occurrences can be retrieved that go beyond VIS or extended VIS categories. 

Thus, spaceborne imaging spectroscopy data could be a valuable and complementary data 

source for urban studies where surface material information are essential such as for urban 

climate modelling, urban physical modelling and for sustainable urban planning. The 

design of the presented study and the achieved insights build an important fundament for 

future analyses that will explore the extent and conditions to which the gradient concept 

can be transferred to unknown urban areas. 
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This thesis focuses on mapping of urban surface materials with imaging spectroscopy data 

on different spatial scales. In particular, it deals with the automated extraction and 

identification of spectrally pure pixels from airborne imaging spectroscopy data, taking 

into account the limitations of using an urban image spectral library in terms of 

transferability. In addition, it deals with the analysis of complex urban spectral mixtures 

that result from simulated spaceborne imaging spectroscopy data based on a spatial 

resolution of 30 m. In the following sections, the results that have been achieved are 

discussed (section 5.1) with regard to the research objectives and in the broader context of 

this thesis and finally a main conclusion and an outlook (section 5.2) on further research 

directions is given.  

 

5.1 Overall discussion  

 

This section aims to, summarize the most general discussion aspects, which are mainly 

addressed in detail in each of the stand-alone manuscripts presented in chapter II, III and 

IV, to answer the three main research questions outlined in section 1.4.  

 

a) Can an initial urban spectral library be used to automatically extract and identify 

sensor- and site-independent, scene-based endmembers from high spatial resolution 

imaging spectroscopy data that are required for further mapping techniques? 

In chapter II a framework of a learning urban image spectral archive – called LUISA, was 

developed. LUISA is a two modular concept for the automatically determination and 

identification of spectrally pure pixels using high spatial resolution airborne imaging 

spectroscopy data from urban environments. The modules comprise an initial spectral 

archive (LUISA-A) for data storage and organization, and a toolbox (LUISA-T) consisting 

of methods for the determination and identification of scene-based spectrally pure pixels. 

Spectral resampling and adaptation of reference spectra in the initial spectral library onto 

the spectral characteristics of the used image data facilitates a sensor independent 

application. Spectrally pure pixels are determined by an iterative pixel-by-pixel 

thresholding approach of spectral similarities based on the user-defined choice of an 

implemented spectral similarity measure. A hierarchically organized structure of reference 

spectra in the initial spectral library allows a posterior implementation of new scene-based 
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pure material spectra. Thus, the initial spectral library can be expanded to overcome the 

lack of potentially missing spectral inter- and intra-class variabilities for the application of 

the LUISA framework in a new study area. Based on a dissimilarity analysis - presented 

and verified in detail in chapter III – unknown spectrally pure pixels can be detected as 

well to improve the subsequent mapping of urban surface materials. This development 

demonstrate the potentials of using an incomplete urban spectral library (i.e. missing 

reference spectra of certain material classes and incomplete representation of spectral 

variability of urban surface materials)  

The LUISA framework was applied on a new study site for which no pure material spectra 

were available in the initial spectral library. For this study site spectrally pure pixels were 

determined by the LUISA framework and used as training data for a supervised 

classification to map urban surface materials in detail. Results of the classification showed 

a promising overall accuracy of 79.8% and a kappa of 0.76 for the known material classes. 

Errors result from confusions of material classes due to spectral similarities such as 

asphalt, dark bitumen and concrete as well as between red loose chippings and red roofing 

tiles. Asphalt and concrete spectra are known for spectral confusions (Heiden et al., 2007) 

due to a similar spectral shape and the almost missing spectral features in their spectral 

signature. These materials are known to be discriminable by their albedo differences 

(Heiden et al., 2007). Consequently, the used similarity measure SID-SCA (hybrid 

measure of Spectral Information Divergence and Spectral Correlation Angle; Naresh 

Kumar et al., 2011) does not seem to sufficiently consider the albedo differences of the 

spectra in order to assign determined spectrally pure pixels to the responsible surface 

material class. Thus, further research is needed to analyse differences in the classification 

accuracies while using different similarity measures for urban areas. Confusion of red 

loose chippings and red roofing tiles also results from rather minor spectral differences 

which are caused by the variations of texture of these surface materials. Their 

differentiation only by spectral characteristics is therefore very difficult. Knowledge about 

the general occurrence of specific surface materials to be used on certain types of urban 

objects (e.g. roofing or paving) could be used to improve the identification by means of 

auxiliary information such as a building mask, the consideration of rule-based 

identification or height information.  

However, the quality of the subsequent mapping results proved the usability of a spectral 

library on a new test site to determine a sufficient number of spectrally pure pixels for 

mapping urban surface materials. Due to the similarity conditions, the presented approach 
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only allows the extraction of spectrally similar pixels, which take to a certain degree the 

spectral variability of surface materials into account. This means, that the spectral library 

can be transferred to new study areas and does not lead to an incorrect extraction of mixed 

pixels. The application of this method only has to take into account the difficulties in the 

automated identification of the previously determined spectrally pure pixels. 

The possibility to implement new reference spectra in LUISA-A might also enhance the 

applicability for a new area by improving the spectral diversity of urban surface materials 

of the reference spectra. However, it is essential to ensure that spectra are carefully 

analysed in order to verify that these spectra are really new pure reference spectra, which 

would strongly affect the result in further studies. In addition, it has to be defined which of 

the scene-based known pure pixels are to be integrated, as they would extensively increase 

the intra-class variability and simultaneously the computation time for the pixel-by-pixel 

comparison of reference spetra with the pixels. It is therefore necessary to find a balance 

between the required intra-class variability and the number of reference spectra. Spectral 

library pruning techniques (e.g. Degerickx et al., 2016) could be helpful to avoid a user-

dependent decision for or against the integration of new spectra in LUISA-A and 

simultaneously avoid redundant reference spectra. Spectral library pruning would also 

control the essential inter- and intra-class variability of the reference spectra.  

The developed LUISA-framework was just tested in one unknown study area, which is 

assumed to be spectrally similar to the available reference spectra in the initial spectral 

library. An application of LUISA to a completely different geographical region (e.g. US 

American cities) acquired by a sensor other than HyMap is required in order to extensively 

analyse possible common problems in the entire determination of scene-based, sensor- and 

site-independent spectrally pure pixels. However, the very promising results from the 

presented study reveal the great potentials for the sensor- and site-independent use of a 

spectral library to determine spectrally pure pixels in urban areas. This opens up new 

possibilities for the development of generic urban spectral library.  

The most important research developments for the use of LUISA can be summarised as 

follows:  

 Automated determination of scene-based spectrally pure pixels using spectral 

similarity analysis 

 Automated identification of spectrally pure pixels 

 Applicability of an initial spectral library to a new study area without prior 

implementation of scene-, site-, and sensor-based reference spectra.  
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 High accuracies were obtained for a subsequent mapping of urban surface materials 

 Framework does not require spectral expert knowledge 

 Possibility for implementation of new reference spectra to enhance spectral 

variabilities of surface materials and for missing material classes 

The limitations require further research and are related to:  

 Confusions in the automated identification of spectrally similar surface materials 

 Quality checks are not yet available for optional implementation of new reference 

spectra concerning redundancies 

 Albedo differences of spectrally similar material classes are not (fully) considered 

by common similarity measures 

 

b) Can an image-based spectral library be used to determine spectrally pure pixels in 

urban areas despite a potential incompleteness of the spectral library, so that it can be 

transferred to an unknown urban area? 

Chapter III focuses on analysing the determination of unknown pure urban surface material 

spectra using a basic spectral library. This research is based on the development of the 

LUISA framework for airborne imaging spectroscopy data (chapter II) to overcome the 

limitations of an incomplete spectral library when applied to a new test site. Unknown 

spectrally pure urban pixels are determined based on a dissimilarity analysis using a basic 

spectral library. Spectral similarities of pixels to reference spectra from the basic spectral 

library are determined on a user-defined similarity measure (see above). A defined 

percentage of pixels (dissimilarity threshold) with a low similarity to the reference spectra 

are extracted for further analysis to determine unknown pure pixels. It is assumed that 

these pixels are not only represent spectral mixtures, but also the spectral signatures of 

pure unknown urban surface materials, which are missing in the basic spectral library due 

to their application to a new study site. However, to avoid a fixed threshold for the 

extraction of these potentially unknown pure pixels, the number of dissimilar pixels is 

automatically extended. For this purpose, a second similarity analysis is performed using 

the extracted dissimilar pixels as reference spectra. Pixels that are more similar to the 

extracted dissimilar pixels are integrated to the analysis to distinguish mixed pixels from 

unknown pure pixels. For this analysis, neighbourhood relations are considered, since it is 

assumed that pure materials exist mainly on larger objects consisting of an agglomeration 

of pixels with similar spectra. Potentially pure unknown pixels are categorised into 
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unknown material classes based on spectral inter- and intra-class-variabilities of spatial 

clusters (objects). This step allows spectral variabilities per unknown material class based 

on a spectral homogeneity criterion. The homogeneity criterion is based on a user-defined 

threshold using SAM (Spectral Angle Mapper; Kruse et al., 1993) as a well-known, 

commonly used, and easy to interpret similarity measure. A subsequent post-processing 

step removes the remaining mixed pixels based on neighbourhood relations and the 

number of pixels per unknown material class. 

The dissimilarity analysis was applied to four test sites using different incomplete spectral 

libraries. In addition, the dissimilarity threshold was extensively analysed concerning its 

influence on the number and quality of the determined potentially unknown pure pixels. In 

general, the study presents that previously removed material classes for the simulation of 

incomplete spectral libraries could be recognized again in almost all experimental settings 

with dissimilarity analysis. For the simulation of incompleteness, reference spectra of 

roofing tiles were eliminated from the basic spectral library. The findings, in all test sites 

and all variations of the dissimilarity threshold, showed that only pixels of dark roof tiles 

could be recognized as unknown pure surface materials. This results from the spectral 

similarity of red roof tiles and red loose chippings, so that pixels from red roofing tiles 

were not extracted as potentially unknown pure pixels. Even an adjusted dissimilarity 

threshold does not lead to a consideration of these pixels as potentially unknown surface 

materials. An increasing dissimilarity threshold was found to mainly increase the number 

of spectral mixtures which are commonly aggregated into spatial clusters and thus failed in 

the steps to eliminate mixed pixels. At the same time, the number of pixels per unknown 

material class and thus the spectral intra-class variability was reduced.  

Findings demonstrate only some misclassifications, e.g. due to the known issue of 

confusion with spectrally similar material classes when using an established spectral 

similarity measures (same issue as described above). Therefore, it can be assumed that the 

results could be improved by using an advanced similarity measure which also takes 

albedo differences into account (e.g. FusingSAF; Ding et al., 2015). It further shows that 

the more incomplete a spectral library is, the lower the number of re-detected pure pixels 

per material class and the higher the probability that they will not be re-detected.  

A higher dissimilarity threshold was found to be more appropriate for this case. However, 

this observation relies on the investigation of only two missing material classes in the 

spectral library. It leads to the assumption that some prior knowledge about the 

completeness of the spectral library is preferable to specify the dissimilarity threshold. 
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Principally it can be stated that the more complete the basic spectral library, the more 

accurate the determination of unknown pure pixels using the dissimilarity analysis. 

However, even with a more incomplete spectral library, the dissimilarity analysis allows 

the transferability and use of an incomplete urban spectral library to extract unknown 

spectrally pure pixels from urban airborne imaging spectroscopy data.  

The most important research developments can be summarised as follows:  

 Applicability of an incomplete urban spectral library  

 Determination of unknown spectrally pure pixels (due to incompleteness) 

 Pre-categorization of determined unknown pure pixels to support identification 

 Enhance library completeness by implementation of new reference spectra 

 Spectral variability is considered in determined unknown material classes 

The limitations of dissimilarity analysis require further research and are related to:  

 Only spectrally dissimilar pure pixels can be determined as unknown material 

classes 

 Requires manual labelling of determined and pre-categorized unknown material 

classes 

 

c) Do complex urban spectral mixtures of spaceborne imaging spectroscopy data with a 

spatial resolution of 30 m form gradual material transitions and can they be mapped 

and analysed? 

In chapter IV compositions of urban surface materials in spaceborne imaging spectroscopy 

data were analysed. This analysis is based on the adaptation of gradient analysis originally 

developed to map floristic gradients in natural environments. Results show that the 

occurrence of urban surface materials behaves similarly to vegetation species and forms 

interpretable urban material gradients. It turned out that the occurrence probability of urban 

surface materials is directly related to structural, historical and functional characteristics of 

the city and result in typical material compositions.  

The adapted gradient analysis involves the investigation of transitions from urban surface 

materials, relation of urban material gradients with spectral mixtures of simulated 

spaceborne imaging spectroscopy data, and the analysis of typical compositions of urban 

surface materials for a test site in Munich. Therefore, regularly distributed samples 

(covering almost similar material proportions of 6% - 11% per material class) from a 
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detailed urban surface material map (determined from airborne imaging spectroscopy data) 

were used to analyse material compositions and occurrences in the test site, using the 

ordination method DCA (Detrended Correspondence Analysis; Hill and Gauch, 1980). 

Gradual material transitions in the gradient space resulting from the material occurrences 

obviously represent a gradient of imperviousness. The interpretation of a second gradient 

was found to be associated to structural differences in land use and function. The relation 

of gradients with the respective surface reflectance from simulated EnMAP data shows the 

formation of spectral patterns indicating similar material compositions.  

Respective partial least square regression (PLSR; Wold et al., 2001) modelling, using 10-

fold cross-validation, results for the first gradient model in R² = 0.85 and RMSE of 0.23 

SD for calibration and R² = 0.84 with RMSE of 0.24 SD for validation, and for the second 

gradient model in R² = 0.71 with RMSE of 0.21 SD for calibration and R² = 0.67 with 

RMSE of 0.22 SD for validation. Spectral patterns resulting from similar material 

compositions interestingly correspond to the urban structure type (UST; Wittig et al., 1998; 

Gilbert, 1994; Maier et al., 1996) classification. A detailed analysis of the material 

compositions per UST shows typical compositions of consistent surface materials for at 

least 2/3 of the cover fractions. Surprisingly, these 2/3 cover fractions per sample are 

formed from a maximum of six different surface materials, although samples in built-up 

areas were found to consist of up to 24 different surface materials. However, the analysis 

of typical material compositions also shows that in structurally very different UST, such as 

high-rise buildings and industry, the typical material composition for this test site is 

identical and differs only in the cover fractions per material.  

Material compositions in the second gradient are dependent on structural differences 

although detailed information such as height information are specifically not taken into 

account. In the mapping of gradient models, the spectral patterns of these areas are 

therefore difficult to distinguish. This may be due to the fact that the gradient analysis is a 

data-driven approach and only considers the composition of the materials in the respective 

samples. In addition, the number of samples that are used to analyse the characteristic 

material composition of an UST is also decisive, especially if only a small area of the study 

site with a very specific material composition belongs to an UST. A consideration of 

further samples which represent these initially similarly composed UST would prove or 

disprove their typical material compositions. Also the additional use of height information 

would support the differentiation. Presented as a proof-of-concept study and as a data-

driven approach, further analyses regarding the effects of the implemented ordination and 
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regression methods are required. Also the impact of the determined samples (sampling 

scheme, size, number of samples) needs to be further analysed to give an impression of the 

transferability and stability of the methods in different urban areas. 

However, the study has already shown the applicability of gradient analysis for the 

investigation of urban material compositions in spaceborne imaging spectroscopy data. 

The analysis go far beyond the categorisation of broader groups of materials and 

demonstrate the great potential to map urban surface materials with spaceborne imaging 

spectroscopy data. It is also an advantage that no prior knowledge of EMs or spectrally 

pure pixels from the study area is required. 

The most important findings can be summarised as follows:  

 More detailed analysis of material compositions that goes beyond the mapping of 

broader categories of aggregated materials groups 

 Existence of typical material compositions dependent on structural, functional, and 

historical patterns in the city 

 Formation and interpretation of urban material gradients 

 Potentials towards an area-wide mapping of urban surface materials 

The method ist limited due to:  

 Data-driven approach 

 Requires detailed information about surface material occurrences (e.g. detailed 

surface material map) 
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5.2 Main conclusion and prospects for urban surface 

material mapping with imaging spectroscopy 

 

Effects caused by the occurrence of urban surface materials (section 1.3.1) have led to the 

need for detailed mapping of urban surface materials. The use of narrow band imaging 

spectrometers mounted on airborne or spaceborne platforms allows for a very fine 

differentiation of urban surface materials for larger areas (section 1.3.2). In addition to the 

spectral resolution, the spatial resolution is of fundamental importance (sections 1.2 and 

1.3.2) for the methodology development of mapping urban surface materials.  

Thus, this thesis focused on the development, application, and evaluation of methods for 

retrieving information on urban surface materials using imaging spectroscopy data with 

different spatial resolutions. The general requirements for the method’s applicability were 

taken into account when analysing the characteristically high spatial and spectral 

conditions of the city, which are also subject to the fast processes of urbanisation (section 

1.1). This includes, on the one hand, the reduction of limitations in the use of urban image 

spectral libraries with high spatial resolution data and on the other hand a more detailed 

analysis of material compositions from mixed pixels resulting from coarser spatial 

resolution. 

Specifically a concept for overcoming the limitations while transfering urban spectral 

libraries using high spatial resolution airborne imaging spectroscopy data is introduced to 

derive scene-based spectrally pure pixels. Spectral libraries are still a major component in 

imaging spectroscopy and serve as data container to store and organize EMs or spectrally 

pure pixels for further image analysis. The developed LUISA concept is based on a 

spectral library consisting of spectrally pure pixels determined from a couple of urban 

training test sites. This includes the complete representation of the spectral intra- and inter-

class variability of urban surface materials for the used training test sites that is required 

for a detailed mapping of urban surface materials. However, the applicability of a spectral 

library to a new urban area is associated with a lack of reference spectra of new materials 

as well as a lack of inter- and intra-class variabilities due to variations in illumination, 

degradation, sensor properties, and chemical and physical compositions (section 1.3.1). 

Missing spectral references of a new test site result in ignoring these newly occurring 

urban surface materials or spectral variabilities when using this spectral library to map 
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urban surface materials. These limitations in the transferability of a spectral library have 

been addressed by the methods based on spectral similarity and dissimilarity analysis to 

determine scene-based spectrally pure pixels for the subsequent mapping of urban surface 

materials. In general, this means that known and unknown spectrally pure pixels including 

the scene-based spectral variability of urban surface materials can be determined with the 

LUISA framework.  

The development of LUISA represents a major progress in the determination of spectrally 

pure pixels from spatially and spectrally highly complex urban landscapes. This includes 

the automated determination and identification of scene-based spectrally pure pixels from 

an urban spectral library, which does not have to be complete and does not require any 

prior knowledge on the investigation site or spectral expertise. Thus, it overcomes the 

limitations of the transferability of an urban spectral library and shows new possibilities 

regarding the development of a generic urban spectral library. The results of the 

subsequent mapping of urban surface materials show the functionality of LUISA for a 

unknown test site.  

However, it also reveals the limitations of the automated identification of certain urban 

surface materials by means of common similarity measures and confirms the importance of 

considering albedo (amplitude) differences in the determination of urban surface materials 

(Heiden et al., 2007). The similarity measures implemented in LUISA are those that are 

commonly used in the community, but all of them have been found not to take sufficient 

account of the amplitude to distinguish between spectrally similar urban surface materials. 

An adaption of a more sophisticated similarity measure (e.g. FusingSAF; Ding et al., 2015) 

would potentially further improve the results. Although confusion occurs in the 

identification of urban surface materials, the determined pixels are so far scene-based 

spectrally pure. A further critical point is the determination of unknown spectrally pure 

pixels which is limited to those that are to a certain degree dissimilar to existing reference 

spectra from the used spectral library. The responsible dissimilarity threshold is adjustable, 

but is also related to the incorrect implementation of mixed pixels the more similarity is 

tolerated in the analysis. A fine adjustment is therefore proposed. 

Future research work for the development of a generic urban spectral library needs to 

comprehensively analyse the advantages and limitations of the developed LUISA 

framework. It has to be focus on quality assessments of newly implemented reference 

spectra to increase the completeness of the used spectral library. A constantly growing 

spectral library is also critical with regard to computation time, redundant spectra, 
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exaggerated inter- and intra-class variability and would be someday no longer be usable. 

Library pruning techniques (e.g. Degerickx et al., 2016) should control the quality and 

usability of such large spectral libraries. Prospective research recommendations for the 

development of a generic urban spectral library would improve the mapping of urban 

surface materials without the need for spectral expert knowledge.  

The demand for regular area-wide monitoring of urban environment due to dynamic 

changes in land cover and land use (sections 1.1 and 1.3) entailed the use of imaging 

spectrometers from space. Current restrictions due to data availability (section 1.2) and the 

general applicability issues of former state of the art methods for mapping urban surface 

materials using a medium spatial resolution lead to a marginal number of research studies 

in this domain. The monitoring of urban areas with spaceborne imaging spectrometers 

result in almost only very complex spectral mixtures at this spatial scale.  

With gradient analysis (chapter IV), information on the occurrence of urban surface 

materials in these complex spectral mixtures were determined for the first time. The 

adaptation of the method derived from vegetation ecology is based on the theory of 

structural devisions of cities, which forms the context for this research. Used as proof of 

concept for an urban test area, site-specific typical material compositions of spectral 

mixtures could be determined and analysed in a continuous field.  

In particular, the ordination results from a sampled surface material map (simlar as the one 

introduced in chapter I) showed a similar and explainable behaviour of typical 

compositions of urban surface materials versus the jointly occurrence of vegetation species 

in ecological habitats. Resulting formations of urban surface material gradients lead to 

logically interpretable transitions of urban surface materials with respect to imperviousness 

and structural compositions. The mapping of surface material compositions due to the 

relation of material gradients with spectral reflectance from simulated spaceborne imaging 

spectroscopy data demonstrate a typical composition of urban surface materials per 

administration unit.  

The results show great potentials for mapping urban surface materials from spaceborne 

imaging spectroscopy data and open up a new field of research. First results of material 

gradients and characteristic material compositions needs to be analysed for stability and 

transferability of the method as it is a data driven approach. In addition to the analysis and 

selection of the most suitable gradient analysis methods (i.e. ordination, regression), this 

also includes the analysis of the selected sampling with regard to its impacts on the final 
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result, as well as the influence of the test site concerning a general statement on urban 

material gradients and the formation of typical material compositions. The great advantage 

for using gradient analysis is that no prior determination of EMs or spectrally pure pixels is 

needed, the spectral mixtures themselves remain as source of information. Detailed surface 

material maps required e.g. for an entire city, could be supported by the automated 

determination of spectrally pure pixels with LUISA to generate detailed surface material 

information. 

Imaging spectroscopy data from airborne or spaceborne platforms are associated with 

different spatial resolutions, which still pose a challenge for mapping urban surface 

materials. The spatial resolution of imaging sensor systems is certainly decisive for the 

level of detail in mapping urban surfaces. However, also the temporal resolution and the 

possibility for an area wide mapping is still important when analysing urban areas. The 

ideal sensor system, which combines high spatial, spectral, and temporal resolution as well 

as the possibility of larger data coverage to enable a regular area-wide mapping of urban 

surface materials at subpixel level, will not be available in the near future.  

In general, the importance of using hyperspectral data of different spatial scales for the 

mapping of surface materials has been confirmed. The information content of the spectral 

domain is superior to that of the spatial domain and also urban surface materials can even 

be acquired and analysed in 30 m imaging spectroscopy data. The obtained results show 

the enormous potential especially for analysing urban surface material occurrences on a 

larger scale, such as for an entire city, which is of great importance for studying the 

numerous urban processes e.g. urban climate modelling. 

With the launch of the new spaceborne sensor systems, temporal high-resolution data will 

be available very soon and will allow an area wide spectral mapping of our highly dynamic 

cities. Due to the coarser spatial resolution of these sensors, compared to airborne systems, 

the use of airborne sensors will still remain of great importance for spatially very detailed 

analyses. Recent developments in the fusion of spatial imaging spectroscopy data with 

multispectral data (e.g. Yokoya et al., 2012; Selva et al., 2015; Yokoya et al., 2017) to 

combine high spectral resolution with high spatial resolution appear to be very promising 

and may overcome the limitations of sensor properties when using data from a single 

sensor system. Such fused data sets could meet the requirements of remote sensing for the 

very detailed analysis of the occurrence of urban surface materials to provide this basic 

source of information for the investigation of urban processes and impacts.  
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