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Abstract—Super-resolution mapping (SRM) aims to determine 

the spatial distribution of the land cover classes contained in the 

area represented by mixed pixels to obtain a more appropriate 

and accurate map at a finer spatial resolution than the input 

remotely sensed image. The image based SRM models directly 

use the observed images as input, and can mitigate the 

uncertainty caused by class fraction errors. However, existing 

image based SRM models always adopt a fixed set of 

endmembers used in the entire image, ignoring the spatial 

variability and spectral uncertainty of endmembers. To address 

this problem, this letter proposed an optimal endmember based 

SRM (OESRM) model, which considers the spatial variations in 

endmembers, and determines the best-fit one for each coarse 

resolution pixel using the spectral angle and the spectral distance 

as the spectral similarity indexes. A Sentinel-2A and a Landsat-8 

multispectral images were used to analyze the performance of 

OESRM, by comparing with three other SRM methods which 

adopt a fixed endmember set or multiple endmember sets. The 

results showed that OESRM generated resultant land cover 

maps with more spatial detail, and reduced the confusion 

between land cover classes with similar spectral features. The 

proposed OESRM model produced the results with the highest 

overall accuracy in both experiments, showing its effectiveness in 

reducing the effect of endmember uncertainty on SRM.  

Index Terms—Optimal endmember, super-resolution mapping 

(SRM), endmember uncertainty  

I. INTRODUCTION 

UPER-RESOLUTION mapping (SRM) is a process 

aiming to determine the spatial distribution of different 

land cover classes within mixed pixels. SRM can be regarded 

as a way to enhance the spatial resolution of remotely sensed 

images, as it can obtain the land cover map with a higher 

spatial resolution than the input remotely sensed data [1, 2]. 

Therefore, SRM is a promising approach to reduce the 

negative effects of mixed pixels on the extraction of land 

cover information with remotely sensed images. In the past 

two decades, various SRM algorithms have been proposed, 
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such as Hopfield neural network [3], pixel swapping [4], 

spatial interpolation [5], and SRM with a directly mapping 

model [6]. SRM has also been successful used in many fields, 

including urban tree mapping [7] and waterline mapping [8].  

According to the input data, there are two types of SRM 

model: fraction based SRM and image based SRM. Fraction 

based SRM is a method in which land cover fraction images 

are produced from the remotely sensed imagery by spectral 

unmixing and used as the input to the SRM analysis to 

estimate the fine spatial resolution land cover map. Fraction 

based SRM is widely used, but it is limited because the 

fraction images produced by spectral unmixing often include 

errors, which may degrade the accuracy of the resultant land 

cover map [9]. In contrast, image based SRM directly uses the 

remotely sensed imagery as its input. Consequently, image 

based SRM avoids errors associated with the production of 

fraction images. The fuzzy c-means based SRM model [10], 

the spectral and spatial integration SRM model [11], and the 

Markov random field based SRM model [9, 12] are 

representative image based SRM models.  

The aim of image based SRM models is the direct 

generation of a fine spatial resolution land cover map from 

coarse resolution remotely sensed imagery. During the 

process, endmembers, each of which represents the spectral 

information of a land cover class, are necessary to transform 

observed spectral information into resultant land cover 

category information. It is critical to select suitable 

endmembers to make the conversion between the spectrum 

and category accurate, however, existing image based SRM 

methods typically use a fixed set of endmembers over the 

entire image. The effect of spatial variability in the spectral 

properties of the classes and spectral uncertainty of the 

endmembers have not been fully considered in SRM.  

In contrast to the very few studies of endmember 

uncertainty in SRM, an extensity researches have been 

focused on the effect of endmember uncertainty of 

endmembers in spectral unmixing [13, 14]. Typically, an 

endmember library is first constructed, and then the optimal 

endmember combination for each land cover class is selected 

for each coarse resolution pixel with a certain criterion, such 

as root-mean-squared error (RMSE) [15], the spectral angle 

mapper (SAM) criterion [16], and spectral angle and spectral 

distance parameter [17]. This kind of method can, to a large 

extent, reduce the errors in spectral unmixing related to 

endmember variability. 

In this letter, an optimal-endmember based SRM model 

(OESRM) is proposed. Unlike traditional SRM models using 

a fixed endmember set in the entire image, the proposed 

OESRM model uses the optimal endmember combination for 

each coarse resolution pixel to reduce the effect of 

Xinyan Li, Xiaodong Li, Giles Foody, Xiaohong Yang, Yihang Zhang, Yun Du, Feng Ling 

 Optimal Endmember Based Super-resolution 

Land Cover Mapping 

S 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/188617945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

endmember uncertainty on the SRM output. In Section II, the 

methodology of the proposed model is introduced. Section III 

outlines the data and methods used. The results obtained from 

analyses of a Sentinel-2A image and a Landsat 8 image are 

presented in Section IV. The conclusion is drawn in Section 

V. 

II. METHODOLOGY 

A. Image Based SRM Model 

Let 1 2[ , , , ]BY y y y  be the B -band multispectral 

remotely sensed imagery with the spatial resolution of R . 

Let N I J   be the total number of coarse pixels in Y . By 

setting z  as the scale factor, SRM aims to generate a labeled 

land cover map X  containing ( ) ( )z I z J    finer 

resolution pixels. The fine resolution pixel label in X  is 

defined as c ( 1, 2, ,c C ， where C  is the number of 

land cover classes in X ). 

In general, the image based SRM model is established by 

minimizing an objective function of E , which is made up of 

two parts [11]: 

spectral spatialE E E   .             (1) 

The first part, 
spectralE , is the spectral term providing 

spectral information from the remotely sensed image Y .  

The second part, 
spatialE , is the spatial term, which gives 

spatial information of the fine resolution land cover map X . 

These two terms in the goal function are balanced by the 

parameter  .  

B． Spectral Term  

The object of the spectral term is to minimize the difference 

of spectral signatures between the spectrum observations in 

coarse resolution pixels and the simulated spectrum values 

based on the land cover labels in the fine resolution pixels. 

The spectral constraints is formulated to minimize the energy 

function 
spectralE  [18] as:  

2

1 1

I J

spectral ij ij ij

i j

E y e f
 

  ,           (2) 

where 
ijy  is the observed spectrum of the coarse resolution 

pixel ( , )i j , 
ijf  is the class fraction vector which is 

calculated by dividing the number of fine resolution pixels of 

different land cover classes in the coarse resolution pixel 

( , )i j  by z z . 
ije  is a B C  matrix that represents the 

endmembers of all land cover classes in the coarse resolution 

pixel ( , )i j . Therefore 
ij ije f  represents the synthetic 

spectrum for the coarse resolution pixel ( , )i j  on the basis of 

the linear mixture model. 

The endmember combination of the coarse resolution 

pixel ( , )i j , 
ije , has a great influence on the spectral term. 

Rather than use a single or fixed endmember set, an optimal 

endmember combination is estimated for each coarse pixel in 

order to account for the spatial variability and spectral 

uncertainty of endmembers. 

Here, the spectral similarity index (SSI) is used as the 

criterion for selecting the optimal combination of endmembers 

for each coarse resolution pixel. First, for each land cover 

class, a set of representative endmembers are extracted from 

the original image, which will then be constructed as the 

candidate endmembers library. Then, for each coarse 

resolution pixel ( , )i j  and cme  (the thm  candidate 

endmember of the land cover class c ), the value of SSI, 

which measures the similarity between their spectra, is 

calculated as:  

( )ijcm ijcm ijcmSSI SA SD               (3) 

where 
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and 

1

B

ijcm ijb cmb

b

SD y e


                 (5) 

in which 
ijcmSSI  is the SSI value between the coarse 

resolution pixel ( , )i j  and the candidate endmember cme , 

determined by calculating the sum of the spectral angle (
ijcmSA ) 

and the spectral distance (
ijcmSD ) between them. ijcmSA  is 

the normalization of 
ijcmSA , ijcmSD  is the normalization of 

ijcmSD , and   is the balancing parameter. 
ijcmSA  measures 

the angle between the spectral vectors of the candidate 

endmember cme  and the coarse resolution pixel ( , )i j ; the 

smaller the angle the greater the similarity of the endmember 

spectrum to the coarse resolution pixel spectrum. 
ijby  is the 

observed value of the thb  band in the coarse resolution pixel 

( , )i j ， cmbe  is the spectral value in the thb  band of cme  

( 1,2, ,b B ). 
ijcmSD  measures the difference of the 

reflectance values in all bands between the spectral vectors of 

the candidate endmember cme  and the coarse resolution pixel 

( , )i j , and a smaller 
ijcmSD  indicates a higher similarity 

between the two spectra.  

In OESRM, for each land cover class in the coarse 

resolution pixel ( , )i j , the endmember with the maximum 

ijcmSSI  is regarded as the most probable endmember in this 

specific coarse resolution pixel [16]. The most probable 

endmembers of all land cover class form the optimal 

endmember combination for the coarse resolution pixel 

( , )i j . 

C． Spatial Term 

The aim of the spatial term is to model the spatial land 

distribution of land cover for fine spatial resolution pixels. 

Here, the maximal spatial dependence model, which is used to 

make the fine spatial resolution land cover map spatially 

smooth [12], was adopted as the spatial term 
spatialE : 
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         (6) 

where ( )ijkN a  is the square spatial neighborhood composed 

of all fine spatial resolution pixels inside a square window, of 

which center is 
ijka  (

ijka  itself is not included), and la  is a 

fine spatial resolution pixel adjacent to 
ijka  in ( )ijkN a . 

( , )ijk ld a a  is the Euclidean distance between 
ijka  and la . 

( ( ), ( ))ijk lc a c a  is equal to 1 if ( )ijkc a  and ( )lc a  are the 

same, otherwise, ( ( ), ( ))ijk lc a c a  is equal to 0 [18]. 

D． OESRM Initialization and Optimization 

The Iterated Conditional Modes (ICM) algorithm was 

adopted to minimize the OESRM global energy for the entire 

remotely sensed imagery. The implementation steps of 

OESRM are: 

1) Setting parameters including the scale factor z , the 

number of class C , the balancing parameter of spatial 

function  , the neighborhood window size W , and the 

number of iterations T . 

2) Constructing the candidate endmembers library from the 

input multi-spectral image Y . 

3) Selecting optimal endmember combination for each 

coarse resolution pixel according to the SSI principle.  

4) Random initialization. All of the fine-resolution pixels 

are randomly labeled to generate an initialized fine resolution 

land cover map. 

5) The class labels are iterative updated in terms of Eq.(1) 

of the entire image. The class label that contributes to the 

minimum of the objective function is taken as the candidate 

label of this fine resolution pixel. 

6) When there is no change in pixel class labels in two 

consecutive iterations, or when the predefined iterations have 

been completed, ICM converges. 

III. DATA AND METHODS 

The potential of the OESRM approach was evaluated in 

experiments based upon two remotely sensed data sets. 

1) Sentinel-2A image: A Sentinel-2A multispectral image 

taken over at Jiangxia District, Wuhan, Hubei Province, China, 

was used to analyze the performance of OESRM. Four 10-m 

bands (Band-2, 3, 4, 8) and six 20-m bands (Band-5, 6, 7, 8A, 

11, 12) were used in this experiment (Fig.1(a)). The study area 

is 2.25 km2, including 75×75 pixels of 20-m bands and 

150×150 pixels of 10-m bands. Four classes including water, 

vegetation, bare land, and urban were considered. A Google 

Earth image was manually digitized as the reference map with 

2m spatial resolution, as shown in Fig.1(b).  

 For purposes of comparison, another image based SRM 

and two fraction based SRMs were also applied to the same 

image, including SRM_LM, an image based SRM using a 

fixed endmember [11], MESMA_PS, the pixel-swapping 

algorithm [4] that uses the fraction images estimated by the 

multi-endmember spectral mixture analysis as the input, and 

SMA_PS, the pixel-swapping algorithm that uses the fraction 

images estimated by the spectral mixture analysis using a 

fixed endmember set as the input. For all four SRM methods, 

SMA_PS, MESMA_PS, SRM_LM and OESRM, the scale 

factor was set to be 5z  , the neighborhood window size  

was set to be 5W  , and the balancing parameter of spatial 

function   was estimated by trial and error. Then, the 

resultant fine resolution land cover maps have the spatial 

resolution of 2 m, which is as same as the reference land cover 

map produced with the Google Earth image.  

 For all four methods, the endmember selection is vital and 

an endmember spectral library must be constructed. There are 

various proposed methods to select the candidate endmembers, 

such as manual selection [19], selection using spectral 

libraries [15, 20], automatic extraction like Pixel Purity Index 

(c) (d)

(a) (b)

 
Fig. 2. Spectrum of all candidate multiple endmembers (green lines) used 

for OESRM and MESMA_PS and the average endmember spectrum (red 
lines) used for SRM_LM and SMA_PS. (a) Water; (b) Vegetation; (c) Bare 

land; (d) Urban. 

(a) (b) (c)

(d)
Water Vegetation Bare Land Urban

(e) (f)

 
Fig. 1. Input images and resultant land cover maps in the Sentinel-2A 

experiment. (a) The Sentinel-2A image (bands 4-3-2,10 m); (b) The reference 
land cover map produced from Google Earth imagery (2 m); (c) The land 

cover map obtained from SMA_PS (2 m); (d) The land cover map obtained 

from MESMA_PS (2 m); (e) The land cover map obtained from SRM_LM (2 

m); (f) The land cover map obtained from OESRM (2 m). 
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(PPI) and N-FINDR [21]. Here, for simplicity, candidate 

endmembers were directly selected from the image manually. 

The selected candidate endmembers for four different land 

cover classes are shown as green lines in Fig.2. By directly 

selecting the endmembers from the image, we can ensure that 

the different endmembers are evenly distributed in different 

locations of the image and therefore reduce the effect of 

spatial heterogeneity of the spectrum. Meanwhile, for land 

cover classes with strong spectral variability, more candidate 

endmembers need to be selected. It is evident that there is a 

considerable difference in spectrum between candidate 

endmembers for some land cover classes, especially for bare 

land and urban, as shown in Fig.2(c)-(d). 

For SMA_PS and SRM_LM, a fixed endmember set was 

adopted in the entire image. In this letter, the average of all 

candidate endmembers was considered as the fixed 

endmember for each land cover class, shown as the red lines 

in Fig.2. For MESMA_PS and OESRM, the optimal 

endmember combination was selected for each coarse spatial 

resolution pixel according to the SSI principle.  

2) Landsat-8 image: A Landsat-8 multispectral image taken 

over at Caidian District, Wuhan, Hubei Province, China, was 

used to further evaluate the performance of OESRM. The size 

of the input image is 80×80 pixels of 30-m spatial resolution 

bands, including bands 1 to 7. Similar with the Sentinel-2A 

experiment, the scale factor was set to 5, and the land cover in 

the map is divided into four classes: water, vegetation, bare 

land, and urban. A Google earth image was digitized as a 

reference image with a spatial resolution of 6 m, as shown in 

Fig.3(b). In this experiment, the same methods of contrast 

experiment were adopted to evaluate the model. 

IV. RESULTS AND DISCUSSION 

The land cover maps generated by the four different 

methods are displayed in Fig.1(c)-(f). Comparing these maps 

with the reference map, it was evident that the map produced 

by the OESRM method included more spatial detail and was 

visually closer to the reference map than the maps from the 

SMA_PS, MESMA_PS and SRM_LM. 

The land cover maps produced from the SMA_PS and 

MESMA_PS (Fig.1(c)-(d)) were fuzzy with a lot of noise. 

While the map from the SRM_LM was smoother than that 

from the SMA_PS and MESMA_PS, spatial details are not 

well represented in a few regions. For example, in the area 

indicated by the black ellipse in Fig.1(b), the linear objects of 

the urban class were mapped but were fuzzy in the results of 

the SMA_PS and MESMA_PS, meanwhile, these linear 

objects were not mapped in the result of SRM_LM. In 

contrast, the land cover map from the OESRM had smoother 

boundaries with less noise than those of the other three 

methods. In the area indicated by the black ellipse, linear 

objects were mapped more accurately than that in the maps 

from the SMA_PS, MESMA_PS and SRM_LM. 

The confusion matrices in Table I show that in the maps 

obtained from the SRM_LM and SMA_PS, the bare land and 

urban classes were extensively confused. While in the map 

from the OESRM and MESMA_PS, there was a higher degree 

of separation between the two classes. The reason for this 

situation is that the spectral characteristics of urban areas are 

complex, and its endmember variability is higher than the 

other classes (Fig.2). Simply averaging the candidate 

TABLE I 

CONFUSION MATRICES AND ACCURACY STATISTICS FOR THE 

LAND COVER MAPS GENERATED BY DIFFERENT METHODS 

APPLIED TO THE SENTINEL-2A DATA 

Method  Reference Data (Pixels) 

SMA_PS 

Class Water Vegetation 
Bare 

Land 
Urban 

Commission 

Error 

Water 56076 31413 11731 25186 54.93% 

Vegetation 1644 176570 13603 14941 14.60% 

Bare Land 1847 21688 49370 61543 63.28% 

Urban 727 17226 14052 64883 33.03% 

Omission Error 7.00% 28.48% 44.38% 61.04%  

Overall Accuracy: 61.67% 

MESMA_PS 

Class Water Vegetation 
Bare 

Land 
Urban 

Commission 

Error 

Water 53608 16995 3705 9135 35.75% 

Vegetation 1908 190759 12741 15659 13.71% 

Bare Land 1066 17549 50369 24503 46.12% 

Urban 3712 21594 21941 117256 28.72% 

Omission Error 11.09% 22.74% 43.25% 29.60%  

Overall Accuracy: 73.24% 

SRM_LM 

Class Water Vegetation 
Bare 

Land 
Urban 

Commission 

Error 

Water 59592 10259 3530 14150 31.92% 

Vegetation 589 201366 17499 14489 13.93% 

Bare Land 23 9390 47551 61013 59.69% 

Urban 90 25882 20176 76901 37.50% 

Omission Error 1.16% 18.44% 46.43% 53.83%  

Overall Accuracy: 68.52% 

OESRM 

Class Water Vegetation 
Bare 

Land 
Urban 

Commission 

Error 

Water 52957 2927 474 198 6.36% 

Vegetation 2649 217925 12280 13096 11.39% 

Bare Land 749 11680 63772 11023 26.89% 

Urban 3939 14365 12230 142236 17.67% 

Omission Error 12.17% 11.73% 28.15% 14.60%  

Overall Accuracy: 84.78% 

 

(a) (b) (c)

(d) (e) (f)

(e)

Water Vegetation Bare Land Urban  
Fig. 3. Input images and resultant land cover maps in the Landsat-8 

experiment. (a) The Landsat-8 images (bands 3-2-1,30 m); (b) The reference 

land cover map produced with Google Earth image (6 m); (c) The land cover 

map obtained from SMA_PS (6 m); (d) The land cover map obtained from 
MESMA_PS (6 m); (e) The land cover map obtained from SRM_LM (6 m); 

(f) The land cover map obtained from OESRM (6 m). 
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endmembers in SRM_LM and SMA_PS would discard useful 

endmember information used to map the land cover classes, 

especially for those with high spectral variability in 

endmembers. Moreover, some endmember spectral curves for 

the urban class are similar to those of bare land, and the 

average endmember spectral curve of urban is similar to that 

of bare land. As a result, both SRM_LM and SMA_PS have 

large commission and omission errors for bare land and urban 

classes. By contrast, MESMA_PS and OESRM can find the 

optimal endmembers for each coarse resolution pixel, by 

taking account of the variability of endmembers. Therefore, 

the land cover maps produced by OESRM and MESMA_PS 

have much lower misclassification error for these two classes. 

However, although the optimal endmembers are adopted in 

both MESMA_PS and OESRM, the result of OESRM is much 

more accurate than that of MESMA_PS. Similarly, despite of 

using the same fixed set of endmembers, the overall accuracy 

of the result of SRM_LM is higher than that of SMA_PS. This 

shows that, when using the same set of endmembers, image 

based SRM can avoid the effect of the potential errors of 

fraction images produced by spectral unmixing and therefore 

can produce a more accurate result than fraction based SRM. 

In general, OESRM increased the overall accuracy compared 

to the SMA_PS, MESMA_PS and SRM_LM, showing the 

advantage of the proposed method. 

The maps generated by the four different methods applied 

to the Landsat-8 imagery are shown in Fig.3(c)-(f). Visual 

comparison of the results shows that the proposed OESRM 

model is superior to the other three methods. The SMA_PS 

and MESMA_PS contain many unsmoothed boundaries with 

a lot of noise. The SRM_LM have less noise than SMA_PS 

and MESMA_PS, but many spatial details were lost, and 

many narrow linear objects were not distinguished, as shown 

in the area indicated by the black circle in Fig.3(d). In contrast, 

there was more spatial detail in the map obtained from 

OESRM, and boundaries of linear objects are more 

continuous in OESRM. The map from the proposed OESRM 

method had the highest overall accuracy of 82.24%, higher 

than the 78.46% with the SRM_LM, 70.64% with the 

MESMA_PS and 69.74% with the SMA_PS. 

V. CONCLUSIONS 

In this letter, an optimal endmember based SRM model was 

proposed, in order to reduce the impact of endmember 

uncertainty on the accuracy of SRM. The proposed OESRM 

model takes the spectral similarity index as the criterion to 

select the optimal endmember combination for each coarse 

pixel. Therefore, OESRM can use the spectral information 

more effectively, and generate the fine resolution land cover 

map with a higher accuracy. Experiments on both the 

Sentinel-2A and Landsat-8 images showed that the proposed 

OESRM model generated fine resolution land cover maps that 

were closer to the reference, compared with SRM_LM, 

MESMA_PS and SMA_PS, showing that the proposed 

OESRM model can effectively reduce the effect of 

endmember variability and the errors of fraction images 

produced by spectral unmixing on SRM. 
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