3,566 research outputs found

    The Arizona Kith and Kin Project Evaluation, Brief #3

    Get PDF
    Professional Development with Family, Friend, and Neighbor Providers: Implications for Dual Language Learners. Indigo Cultural Center, for the Association for Supportive Child Care, with support from First Things First and Valley of the Sun United Way

    A Literature Review on Intelligent Services Applied to Distance Learning

    Get PDF
    Distance learning has assumed a relevant role in the educational scenario. The use of Virtual Learning Environments contributes to obtaining a substantial amount of educational data. In this sense, the analyzed data generate knowledge used by institutions to assist managers and professors in strategic planning and teaching. The discovery of students’ behaviors enables a wide variety of intelligent services for assisting in the learning process. This article presents a literature review in order to identify the intelligent services applied in distance learning. The research covers the period from January 2010 to May 2021. The initial search found 1316 articles, among which 51 were selected for further studies. Considering the selected articles, 33% (17/51) focus on learning systems, 35% (18/51) propose recommendation systems, 26% (13/51) approach predictive systems or models, and 6% (3/51) use assessment tools. This review allowed for the observation that the principal services offered are recommendation systems and learning systems. In these services, the analysis of student profiles stands out to identify patterns of behavior, detect low performance, and identify probabilities of dropouts from courses.info:eu-repo/semantics/publishedVersio

    IDENTIFICATION OF STUDENTS AT RISK OF LOW PERFORMANCE BY COMBINING RULE-BASED MODELS, ENHANCED MACHINE LEARNING, AND KNOWLEDGE GRAPH TECHNIQUES

    Get PDF
    Technologies and online learning platforms have changed the contemporary educational paradigm, giving institutions more alternatives in a complex and competitive environment. Online learning platforms, learning-based analytics, and data mining tools are increasingly complementing and replacing traditional education techniques. However, academic underachievement, graduation delays, and student dropouts remain common problems in educational institutions. One potential method of preventing these issues is by predicting student performance through the use of institution data and advanced technologies. However, to date, scholars have yet to develop a module that can accurately predict students’ academic achievement and commitment. This dissertation attempts to bridge that gap by presenting a framework that allows instructors to achieve four goals: (1) track and monitor the performance of each student on their course, (2) identify at-risk students during the earliest stages of the course progression (3), enhance the accuracy with which at-risk student performance is predicted, and (4) improve the accuracy of student ranking and development of personalized learning interventions. These goals are achieved via four objectives. Objective One proposes a rule-based strategy and risk factor flag to warn instructors about at-risk students. Objective Two classifies at-risk students using an explainable ML-based model and rule-based approach. It also offers remedial strategies for at-risk students at each checkpoint to address their weaknesses. Objective Three uses ML-based models, GCNs, and knowledge graphs to enhance the prediction results. Objective Four predicts students’ ranking using ML-based models and clustering-based KGEs with the aim of developing personalized learning interventions. It is anticipated that the solution presented in this dissertation will help educational institutions identify and analyze at-risk students on a course-by-course basis and, thereby, minimize course failure rates

    Machine Learning applications to e-learning courses

    Get PDF
    The Ph.D. thesis project is aimed at improving the quality and the effectiveness of on-line teaching in scientific degree courses at the University Level that required the use of E-learning platform, based on the Moodle Content Management System. The aim of this research project is to assist the teacher, through the development of new tools based on Artificial Intelligence, to design innovative successful e-learning courses to give to the students the opportunity to improve their learning outcomes. These originals tools overcome the limitations of the standard Moodle activities applying machine learning techniques by analysing large amount of students’ data extracted by Moodle log data. Recently many e-learning resources have been developed for university students, are available on the Web. The increase of LMS (Learning Management System) as Moodle and their ease of use led many teachers to realize e-learning paths for their students, often supporting them with some frontal activities, giving to them the advantages of on-line learning. The aim was to deepen the topics discussed in class through the consultation of additional materials, video recordings of lessons, and other activities to exploiting the potentials of on-line courses

    The Arizona Kith and Kin Project Evaluation, Brief #1

    Get PDF
    Improving quality in family, friend and neighbor (FFN) child care settings. Indigo Cultural Center, for the Association for Supportive Child Care, with support from First Things First

    Semantically-enhanced recommendations in cultural heritage

    Get PDF
    In the Web 2.0 environment, institutes and organizations are starting to open up their previously isolated and heterogeneous collections in order to provide visitors with maximal access. Semantic Web technologies act as instrumental in integrating these rich collections of metadata by defining ontologies which accommodate different representation schemata and inconsistent naming conventions over the various vocabularies. Facing the large amount of metadata with complex semantic structures, it is becoming more and more important to support visitors with a proper selection and presentation of information. In this context, the Dutch Science Foundation (NWO) funded the Cultural Heritage Information Personalization (CHIP) project in early 2005, as part of the Continuous Access to Cultural Heritage (CATCH) program in the Netherlands. It is a collaborative project between the Rijksmuseum Amsterdam, the Eindhoven University of Technology and the Telematica Instituut. The problem statement that guides the research of this thesis is as follows: Can we support visitors with personalized access to semantically-enriched collections? To study this question, we chose cultural heritage (museums) as an application domain, and the semantically rich background knowledge about the museum collection provides a basis to our research. On top of it, we deployed user modeling and recommendation technologies in order to provide personalized services for museum visitors. Our main contributions are: (i) we developed an interactive rating dialog of artworks and art concepts for a quick instantiation of the CHIP user model, which is built as a specialization of FOAF and mapped to an existing event model ontology SEM; (ii) we proposed a hybrid recommendation algorithm, combining both explicit and implicit relations from the semantic structure of the collection. On the presentation level, we developed three tools for end-users: Art Recommender, Tour Wizard and Mobile Tour Guide. Following a user-centered design cycle, we performed a series of evaluations with museum visitors to test the effectiveness of recommendations using the rating dialog, different ways to build an optimal user model and the prediction accuracy of the hybrid algorithm. Chapter 1 introduces the research questions, our approaches and the outline of this thesis. Chapter 2 gives an overview of our work at the first stage. It includes (i) the semantic enrichment of the Rijksmuseum collection, which is mapped to three Getty vocabularies (ULAN, AAT, TGN) and the Iconclass thesaurus; (ii) the minimal user model ontology defined as a specialization of FOAF, which only stores user ratings at that time, (iii) the first implementation of the content-based recommendation algorithm in our first tool, the CHIP Art Recommender. Chapter 3 presents two other tools: Tour Wizard and Mobile Tour Guide. Based on the user's ratings, the Web-based Tour Wizard recommends museum tours consisting of recommended artworks that are currently available for museum exhibitions. The Mobile Tour Guide converts recommended tours to mobile devices (e.g. PDA) that can be used in the physical museum space. To connect users' various interactions with these tools, we made a conversion of the online user model stored in RDF into XML format which the mobile guide can parse, and in this way we keep the online and on-site user models dynamically synchronized. Chapter 4 presents the second generation of the Mobile Tour Guide with a real time routing system on different mobile devices (e.g. iPod). Compared with the first generation, it can adapt museum tours based on the user's ratings artworks and concepts, her/his current location in the physical museum and the coordinates of the artworks and rooms in the museum. In addition, we mapped the CHIP user model to an existing event model ontology SEM. Besides ratings, it can store additional user activities, such as following a tour and viewing artworks. Chapter 5 identifies a number of semantic relations within one vocabulary (e.g. a concept has a broader/narrower concept) and across multiple vocabularies (e.g. an artist is associated to an art style). We applied all these relations as well as the basic artwork features in content-based recommendations and compared all of them in terms of usefulness. This investigation also enables us to look at the combined use of artwork features and semantic relations in sequence and derive user navigation patterns. Chapter 6 defines the task of personalized recommendations and decomposes the task into a number of inference steps for ontology-based recommender systems, from a perspective of knowledge engineering. We proposed a hybrid approach combining both explicit and implicit recommendations. The explicit relations include artworks features and semantic relations with preliminary weights which are derived from the evaluation in Chapter 5. The implicit relations are built between art concepts based on instance-based ontology matching. Chapter 7 gives an example of reusing user interaction data generated by one application into another one for providing cross-application recommendations. In this example, user tagging about cultural events, gathered by iCITY, is used to enrich the user model for generating content-based recommendations in the CHIP Art Recommender. To realize full tagging interoperability, we investigated the problems that arise in mapping user tags to domain ontologies, and proposed additional mechanisms, such as the use of SKOS matching operators to deal with the possible mis-alignment of tags and domain-specific ontologies. We summarized to what extent the problem statement and each of the research questions are answered in Chapter 8. We also discussed a number of limitations in our research and looked ahead at what may follow as future work

    Psychometrics in Practice at RCEC

    Get PDF
    A broad range of topics is dealt with in this volume: from combining the psychometric generalizability and item response theories to the ideas for an integrated formative use of data-driven decision making, assessment for learning and diagnostic testing. A number of chapters pay attention to computerized (adaptive) and classification testing. Other chapters treat the quality of testing in a general sense, but for topics like maintaining standards or the testing of writing ability, the quality of testing is dealt with more specifically.\ud All authors are connected to RCEC as researchers. They present one of their current research topics and provide some insight into the focus of RCEC. The selection of the topics and the editing intends that the book should be of special interest to educational researchers, psychometricians and practitioners in educational assessment

    Improving M-Learners\u27 Performance through Deep Learning Techniques by Leveraging Features Weights

    Get PDF
    © 2013 IEEE. Mobile learning (M-learning) has gained tremendous attention in the educational environment in the past decade. For effective M-learning, it is important to create an efficient M-learning model that can identify the exact requirements of mobile learners (M-learners). M-learning model is composed of features that are generated during M-learners\u27 interaction with mobile devices. For an adaptive M-learning model, not only learning features are required, but it is also important to determine how they differ for various M-learners, their weights, and interrelationship. This study proposes a robust and adaptive M-learning model that is based on machine learning and deep learning (ML/DL) techniques. The proposed M-learning model dynamically explores learning features, their corresponding weights, and association for M-learners. Based on learning features, the M-learning model categorizes M-learners into different performance groups. The M-learning model then provides adaptive content, suggestions, and recommendations to M-learners in order to make learning adaptive and stimulating. For comparative analysis, the prediction accuracy of five baseline ML models was compared with the deep Artificial Neural Network (deep ANN). The results demonstrated that deep ANN and Random Forest (RF) models exhibited better prediction accuracy. Subsequently, both models were selected for developing the M-learning model which included the performance categorization of M-learners under a five-level classification scheme and assigning weights to various features for providing adaptive help and support to M-learners. Our explanatory analysis has shown that behavioral features besides contextual features also influence the learning performance of M-learners. As a direct outcome of this research, more efficient, interactive, and useful mobile learning applications can be developed that accurately predict learning objectives and requirements of diverse M-learners thus helping M-learners in enhancing their study behavior

    An Implementation of K-NN Classification Algorithm for Detecting Impersonators in Online Examination Environment

    Get PDF
    The online examination platforms also known as computer-based testing (CBT) platforms for conducting mass-driven examinations over computer networks to eliminate certain issues such as delay in marking, misplacement of scripts, monitoring, etc., associated with the conventional Pen and Paper Type (PPT) of examination have also been bedeviled with the issue of impersonation commonly associated with the PPT system. The existing online examination platforms rely on passive mechanisms such as the CCTV system and the human invigilators for monitoring the examination halls against cheating and impersonation. The proposed model integrates some level of intelligence into existing online examination prototype by designing and developing an intelligent agent service that could assess students against impersonation threat in an online examination environment using the K-Nearest Neighbor (K-NN) machine learning classification technique considering the level of accuracy and response time in answering the questions. A total of 3,083 dataset was downloaded from an online repository; 80% (2,466) of the dataset was used for training the model, while 20% (617) dataset was used in testing the model to enable the model detect unseen data correctly. Results showed that the developed model has a 99.99% accuracy rate, precision, recall and f-score
    corecore