5 research outputs found

    Estudo da dinâmica da paisagem na bacia hidrográfica do Arroio Bocarra, Bagé, RS

    Get PDF
    The Pampa biome is experiencing an accelerated Land Use and Land Cover Change process in the last decades that influence both the landscape patterns and water resources. The aim of this study was to map the land use and land cover changes in the Bocarra River watershed and to evaluate their influence on landscape patterns from 1985 to 2017. Therefore, satellite images series (1985, 1996, 2003 and 2017), mathematical models and landscape metrics were used. The results indicate that there have been considerable changes in land use and land cover in the watershed over the past thirty-two years, which impacted landscape-related indices. The global rate of change obtained from the status and trend in land change index (Pt) was 0.74, indicating a one-way transition dominated by the conversion of grasslands to croplands over time, which was caused by the expansion of soy cultivation in the region. Landscape diversity increased from 0.86 in 1985 to 1.07 in 2017, while dominance decreased from 0.93 to 0.72, indicating that there was a reduction in differences between landscape patterns. Landscape fragmentation decreased from 1985 to 2017, while the average area of fragments increased.O bioma Pampa vem experimentando um acelerado processo de alteração no uso e cobertura da terra nas últimas décadas que exerce influência tanto nos padrões de paisagem quanto nos recursos hídricos. O objetivo deste estudo foi mapear as mudanças que ocorreram no uso e cobertura da terra na bacia hidrográfica do Arroio Bocarra (RS) e avaliar a sua influência nos padrões de paisagem entre os anos de 1985 a 2017. Para tanto, utilizou-se uma série temporal de imagens de satélite (1985, 1996, 2003 e 2017), modelos matemáticos e métricas de paisagem. Os resultados indicam que houve consideráveis mudanças no uso e cobertura da terra na bacia hidrográfica nos últimos trinta e dois anos, que impactaram os índices relacionados à paisagem. A taxa de mudança global obtida a partir do índice de estado e tendência das mudanças (Pt) foi de 0,74, indicando transição em uma via, dominada pela conversão de áreas campestres por áreas destinadas a agricultura, ocasionada pela expansão do cultivo de soja na região ao longo dos últimos anos. A diversidade da paisagem aumentou de 0,86 em 1985 para 1,07 em 2017, enquanto a dominância diminuiu de 0,93 para 0,72, o que indica que houve uma redução nas diferenças entre os padrões de paisagem. A fragmentação da paisagem reduziu entre 1985 a 2017, enquanto a área média dos fragmentos aumentou. 

    Enhancing Land Cover Mapping through Integration of Pixel-Based and Object-Based Classifications from Remotely Sensed Imagery

    No full text
    Pixel-based and object-based classifications are two commonly used approaches in extracting land cover information from remote sensing images. However, they each have their own inherent merits and limitations. This study, therefore, proposes a new classification method through the integration of pixel-based and object-based classifications (IPOC). Firstly, it employs pixel-based soft classification to obtain the class proportions of pixels to characterize the land cover details from pixel-scale properties. Secondly, it adopts area-to-point kriging to explore the class spatial dependence between objects for each pixel from object-based soft classification results. Thirdly, the class proportions of pixels and the class spatial dependence of pixels are fused as the class occurrence of pixels. Last, a linear optimization model on objects is built to determine the optimal class label of pixels within each object. Two remote sensing images are used to evaluate the effectiveness of IPOC. The experimental results demonstrate that IPOC performs better than the traditional pixel-based hard classification and object-based hard classification methods. Specifically, the overall accuracy of IPOC is 7.64% higher than that of pixel-based hard classification and 4.64% greater than that of object-based hard classification in the first experiment, while the overall accuracy improvements in the second experiment are 3.59% and 3.42%, respectively. Meanwhile, IPOC produces less salt and pepper effect than the pixel-based hard classification method and generates more accurate land cover details and small patches than the object-based hard classification method

    A remote sensing-based approach to investigate changes in land use and land cover in the lower uMfolozi floodplain system, South Africa

    Get PDF
    The goal of this study was to understand land use and land cover (LULC) changes within the lower uMfolozi floodplain system, South Africa, and relate those changes to wetland loss. Changes in LULC were assessed using a geographic object-based image analysis (GEOBIA) algorithm to classify multi-date Landsat images into eight cover types over a period of 20 years, between 1997 and 2017. Post-classification accuracy assessment of all map-outputs was conducted by compiling confusion matrixes and calculating producer, user, and global accuracies and kappa coefficients (K) for each map-output. Levels of accuracy for all map-outputs were within acceptable limits, ranging between 79% and 88% (K = 0.76 and 0.86, respectively). Thereafter, paired t-tests were applied to determine whether the changes in LULC over the study period were significant. Results of this investigation showed a significant (p-value, < 0.01) conversion of wetland to cultivation, by 14%. This finding is important because it demonstrates that in this environment, human agency is one of the major drivers of a persistent decrease in the wetland ecosystem. The major insight from this observation is that there is an urgent need to formulate and implement objectively informed interventions to enhance the sustainability of the uMfolozi floodplain system and that of others elsewhere.https://www.tandfonline.com/loi/ttrs20hj2022Geography, Geoinformatics and Meteorolog

    Use and Improvement of Remote Sensing and Geospatial Technologies in Support of Crop Area and Yield Estimations in the West African Sahel

    Get PDF
    In arid and semi-arid West Africa, agricultural production and regional food security depend largely on small-scale subsistence farming and rainfed crops, both of which are vulnerable to climate variability and drought. Efforts made to improve crop monitoring and our ability to estimate crop production (areas planted and yield estimations by crop type) in the major agricultural zones of the region are critical paths for minimizing climate risks and to support food security planning. The main objective of this dissertation research was to contribute to these efforts using remote sensing technologies. In this regard, the first analysis documented the low reliability of existing land cover products for cropland area estimation (Chapter 2). Then two satellite remote sensing-based datasets were developed that 1) accurately map cropland areas in the five countries of Sahelian West Africa (Senegal, Mauritania, Mali, Burkina Faso and Niger; Chapter 3), and 2) focus on the country of Mali to identify the location and prevalence of the major subsistence crops (millet, sorghum, maize and non-irrigated rice; Chapter 4). The regional cropland area product is distributed as the West African Sahel Cropland area at 30 m (WASC30). The development of the new dataset involved high density training data (380,000 samples) developed by USGS in collaboration with CILSS for training about 200 locally optimized random forest (RF) classifiers using Landsat 8 surface reflectances and vegetation indices and the Google Earth Engine platform. WASC30 greatly improves earlier estimates through inclusion of cropland information for both rainfed and irrigated areas mapped with a class-specific accuracy of 79% across the West Africa Sahel. Used as a mask in crop monitoring systems, the new cropland area data could bring critical insights by reducing uncertainties in xv identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security. Keywords: Agricultural identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security
    corecore