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1. Introduction 

1.1. Background 

1.1.1. Land cover and land use 

Land cover and land use information plays an important role in monitoring the 

environment and natural resources as well as in urban management (Rimal et al. 2017; 

Arowolo et al. 2018; Grigoraș and Urițescu 2019). Therefore, the knowledge of the 

spatial distribution and pattern of them in a specific area is necessary.  

Land cover is defined as “the observed (bio)physical cover on the earth’s surface” 

(Di Gregorio 2005), ranging from natural objects, such as vegetation, water surface, bare 

rock, and bare soil, to artificial objects, such as buildings, roads, etc. Meanwhile, land 

use refers to “the arrangements, activities and inputs people undertake in a certain land 

cover type to produce, change or maintain it” (Di Gregorio 2005); in other words, land 

use is the way in which people use land cover types for one or more different purposes. 

For example, the forest is a land cover type. However, the way people use a forest 

determines its land use type. It can be used for logging, conservation, or recreation 

purposes. Similarly, a building (land cover type) can be used for residential, industrial, 

commercial, or entertainment activities (land use types), depending on the intention of 

its owner. In practice, a land cover type may be used for various purposes (like the 

examples above), while a land use type may also consist of one or many land cover types 

(Cihlar and Jansen 2001; Giri 2012), for example, an entertainment complex may 

include built-up, vegetation, and water surface. Furthermore, there is a connection 

between land cover and land use (Jansen and Di Gregorio 2003; Kim 2015). To some 

extent, the connection can help interpret land use information from land cover 

information and vice versa (Cihlar and Jansen 2001; Brown and Duh 2004). 

Although they are defined differently and this issue has been discussed in 

previous studies (Cihlar and Jansen 2001; Brown and Duh 2004; Kim 2015), these two 

terms are still commonly used concurrently or interchangeably in many studies related 

to land cover and land use classification and mapping (Steinhausen et al. 2018; 

Carranza-García et al. 2019; L.H. Nguyen et al. 2020). This problem may sometimes 

cause ambiguity or confusion for readers or map users (Comber et al. 2008), as well as 

certain difficulties in using such maps, because land use information is often used for 

planning (Tapiador and Casanova 2003) and making policy (van Delden et al. 2011), 

while land cover information is often employed in environmental monitoring (Henits et 

al. 2017), modeling (Shooshtari and Gholamalifard 2015), and prediction (Rizeei et al. 

2016). 

1.1.2. Land use/land cover change and landscape pattern 

Land use/land cover change is the conversion from a land use/land cover type to another 

type. In general, according to Giri (2012), the major types of conversion include (1) the 
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conversion of land cover types due to a land use change, for example, the conversion 

from vegetation to built-up due to the construction of residential areas on cultivation 

land; (2) the modification between land cover types without changing land use purpose, 

for example, the transition between crops and bare soil in agricultural activities; and (3) 

the conversion of land use types without changing land cover type, for example, a forest 

is converted from recreation to conservation purposes to conserve an endangered 

species.  

Land use/land cover changes are caused by both natural and anthropogenic 

factors (Serra et al. 2008; Msofe et al. 2019). Natural factors include seasonal changes 

in weather, changes in water levels due to hydrometeorological cycles, alluvial 

accretion, and natural disasters such as hurricanes, floods, tsunamis, landslides, volcanic 

eruptions, wildfires, earthquakes, etc. In terms of anthropogenic factors, activities and 

policies relating to urban expansion, industrialization, agricultural development, and 

exploitation of natural resources strongly influence land change. Among them, 

urbanization and industrialization often lead to rapid, strong, and one-way 

transformation, especially in developing countries (Pham and Yamaguchi 2011; 

Kantakumar et al. 2016; Rimal et al. 2017; Fenta et al. 2017; Andrade-Núñez and Aide 

2018; Cao et al. 2019; Sumari et al. 2020).  

Land use/land cover changes and urban expansion have various impacts on the 

environment and human life, such as run-off characteristics (Sajikumar and Remya 

2015), landscape pattern (Zhang et al. 2010; Dadashpoor et al. 2019), land surface 

temperature (Zhang and Sun 2019), soil erosion (Nampak et al. 2018), environmental 

quality (Kovács et al. 2019), as well as biodiversity and ecosystem services (Tolessa et 

al. 2017; Trisurat et al. 2019). Therefore, information on land use/land cover changes is 

crucial to resource and environmental monitoring as well as land management 

policymaking (Nampak et al. 2018). However, the availability of accurate information 

on spatiotemporal land use/land cover changes, urbanization status, urbanization rates, 

and their driving factors in localities is often untimely even though it is essential 

(Kantakumar et al. 2016).  

As mentioned above, land use/land cover change affects landscape patterns and, 

as a result, ecosystem functions (Lin et al. 2013; Estoque and Murayama 2016; Tolessa 

et al. 2017; Kertész and Křeček 2019; Tang et al. 2020). Therefore, quantification of 

changes in landscape patterns, including shape, size, and spatial distribution, is also 

essential, especially where land use change is dramatic, such as in emerging urban areas. 

The quantification facilitates comparison and assessment of landscape change during 

past and future land use change. At the same time, it can also partly reveal the impact 

trend of land use changes on the structure and function of diverse types of landscapes 

and ecosystems. This information may also be useful for decisionmaking and land use 

planning toward efficient use of resources and sustainable development (Vaz et al. 2014; 

Abdolalizadeh et al. 2019). The landscape pattern change is often assessed through 
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landscape metrics at the three levels including patch, class, and landscape (Turner and 

Gardner 2015; Gergel and Turner 2017; Gudmann et al. 2020). Land use/land cover 

maps are often used as input to calculate landscape metrics on geographic information 

systems. 

1.1.3. Remote sensing, geographic information system, and data fusion in land cover 

and land use study 

Remote sensing (RS) is defined as “the process of detecting and monitoring the physical 

characteristics of an area by measuring its reflected and emitted radiation at a distance 

(typically from satellite or aircraft). Special cameras collect remotely sensed images, 

which help researchers ‘sense’ things about the Earth” (USGS 2022). RS databases are 

increasingly diverse in quantity and quality, meeting different needs. With easy access 

and acquisition of images, such as MODIS, Landsat, and Sentinel, research related to 

the interpretation of RS imagery has become proactive, cost effective, and reproducible. 

Moreover, the development of image processing and classification techniques has 

increasingly improved the accuracy of results (Lu et al. 2011; Shao and Lunetta 2012; 

Noi and Kappas 2017; Toure et al. 2018; Quan et al. 2020). RS is a essential tool for 

land cover and land use mapping and monitoring due to its efficiency, economic 

benefits, and reliability (Toure et al. 2018; Cai et al. 2019). 

A geographic information system (GIS) is defined as “a system that creates, 

manages, analyzes, and maps all types of data. GIS connects data to a map, integrating 

location data (where things are) with all types of descriptive information (what things 

are like there). […] GIS helps users understand patterns, relationships, and geographic 

context” (ESRI 2022). GIS, and more broadly geographic information science – or 

GIScience for short, is considered a multidisciplinary science (Blaschke and Merschdorf 

2014). It is related to geography, cartography, computer science, information science, 

geology, geodesy, RS, photogrammetry, ecology, statistics, urban planning, and others. 

Therefore, it supports working with and combining multidisciplinary tools and datasets. 

In the field of land use and land cover study, the combination of RS and spatial analysis 

techniques in GIS allows researchers to detect and to analyze land cover and land use 

change more easily and timely. This has been confirmed in many studies in the literature 

on a local (Wu et al. 2006; Rawat and Kumar 2015; Tadese et al. 2020), national 

(Sánchez-Cuervo et al. 2012; Schoeman et al. 2013; Xu et al. 2020), continental (Mertes 

et al. 2015; Netzel and Stepinski 2015) and global scale (Giri et al. 2013; X. Li et al. 

2017). In addition, GIS also supports future land use simulation. There are many models 

developed for land-change simulation, such as CLUE-S, CLUMondo, Land Change 

Modeler (LCM), LucSim, DinamicaEGO, SLEUTH, etc. Each model has its own pros 

and cons, and the choice of model to use depends on the goals and the available data of 

the study (Camacho Olmedo et al. 2018). LCM is one of the popular applications used 

to assess and simulate land use change. The advantage of this application is that it is 

simple to use and easy to set up input parameters, has clear instructions, and is integrated 
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with many simulation algorithms. Many studies have used this application for land use 

change prediction for various purposes (Megahed et al. 2015; Nor et al. 2017; Islam et 

al. 2018; Mishra et al. 2018; Lennert et al. 2020). 

Data fusion is defined as a technique that “combines data from multiple sensors, 

and related information from associated databases, to achieve improved accuracy and 

more specific inferences than could be achieved by the use of single sensor alone” (Hall 

and Llinas 1997). In the earth observation field, the rapid development of different kinds 

of sensors and data sources has made data fusion a vital research approach that aims to 

extract more detailed information from the RS imagery (Solberg 2006; Zhang 2010; 

Schmitt and Zhu 2016). By different fusion methods ranging from simple to complex, 

the extracted information can effectively serve various fields such as urban management 

(Guan et al. 2017; Shao, Cheng, et al. 2021; Shao, Sumari, et al. 2021), agriculture 

(Mfuka et al. 2020; Prins and Van Niekerk 2020), environmental monitoring (Xu and 

Ma 2021), etc. In general, RS data is fused at three common levels: pixel level, feature 

level, and decision level (Pohl and van Genderen 2016). 

For land cover and land use classification and monitoring, optical and radar data 

are two types of RS data that are often used as the input for various fusion methods to 

achieve better mapping results. Some prominent recent studies can be mentioned as the 

fusion of Sentinel-1 (S-1) and Sentinel-2 (S-2) data at the pixel level (Tavares et al. 

2019), S-1, S-2, multi-temporal Landsat-8 (L-8) and digital elevation model (DEM) (Liu 

et al. 2018), L-8 and Terra SAR-X textures images at the feature level (Tabib Mahmoudi 

et al. 2019), S-1 and Gaofen-1 images at the decision level (Shao et al. 2016), Quickbird 

multi-spectral and RADARSAT synthetic aperture radar (SAR) data at the decision level 

(Ban et al. 2010), light detection and ranging (LiDAR), S-2, and aerial imagery (Prins 

and Van Niekerk 2020), and Landsat images and Twitter’s location-based social media 

data (Shao, Sumari, et al. 2021). In addition, there have also been attempts to use single 

or multiple RS data independently (Cihlar and Jansen 2001; Jansen and Di Gregorio 

2003; Zhang and Wang 2003) or in conjunction with other ancillary data sources, such 

as census data (Hunt et al. 2001), land use inventory data (Bauer and Steinnocher 2001), 

social sensing data (Y. Zhang et al. 2017), and mobile-phone positioning data (Jia et al. 

2018), to extract a land cover map and then translate it into a land use map, via a set of 

parameters and decision rules based on expert knowledge. These study results 

demonstrate that fusion data from various sources at the three fusion levels can improve 

accuracy in land cover and land use mapping.  

However, there are various fusion techniques ranging from simple to very 

complex methods, and selecting which fusion method should be applied to deliver the 

best results is a challenge. In general, selecting a method for image classification 

depends on many factors. The factors comprise the purpose of study, the availability of 

data, the performance of the algorithm, the computational resources, and the analyst’s 

experiences (Lu and Weng 2007). In addition, the performance of each method also 
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depends partly on the characteristics of the study area, the dataset used, and how the 

method works. A method can yield highly accurate results in one dataset and give poor 

results in others (Xie et al. 2019). Moreover, it is not necessary to employ a complicated 

technique when a simple one can solve the problem well.  

1.1.4. Land use and land cover maps in Vietnam 

In Vietnam, land use status maps are produced by the government at the local and 

national levels every five years. The basis for producing such maps consists of inventory 

data related to land changes, including land allocation, land lease, and change of land 

use purpose during the five-year inventory period (Minister of Natural Resources and 

Environment of Vietnam 2018). The land use categories for the maps are up to five 

levels and 56 classes, which are very detailed and complex. The first version of this type 

of map was generated in 2005 (since the Act on Land 2003 was passed and 

implemented); thus, there is a lack of spatial data on land use for previous years. In 

addition, the five-year interval to produce the maps is not suitable for real-time 

management and research. Furthermore, the maps are extracted on computer-aided 

design (CAD) file formats, which make it difficult and time-consuming to convert and 

use them for geographic information system analysis. Last but not least, it is difficult to 

access this data due to the government’s relatively complicated administrative system. 

Meanwhile, a land cover map has not yet been produced by the government of 

Vietnam. Only a few studies have been done independently by researchers or 

organizations at the national (ADPC 2020; JAXA EORC 2020) or local level (Linh et 

al. 2012; Disperati and Virdis 2015; H.T.T. Nguyen et al. 2020). However, depending 

on the purpose of each study, there are many dissimilarities in the land cover 

classification scheme as well as in the definitions of the classes in those schemes. In 

addition, a number of these studies also used the terms “land cover” and “land use” 

concurrently or interchangeably, which may cause a number of obstacles in using these 

maps, as noted. It should be highlighted that except for the SERVIR-Mekong (ADPC 

2020) and Japan Aerospace Exploration Agency (JAXA EORC 2020) programs for land 

use and land cover mapping for the whole of Vietnam, there are no other studies related 

to land cover classification in the selected study area. 

1.1.5. Study area 

Binh Duong province is located in southeast Vietnam, between 10°51′46″ and 11°30′ N 

latitude and between 106°20′ and 106°58′ E longitude. The total area of the province is 

over 2,694.64 km2, and its population is about 2.5 million people as of 2019 (Binh 

Duong Statistical Office 2020). Administratively, as of 2020, the province was divided 

into five urban districts (also known as cities and towns) including Thu Dau Mot, Di 

An, Thuan An, Tan Uyen, and Ben Cat, and four rural districts including Bac Tan Uyen, 

Bau Bang, Dau Tieng, and Phu Giao (Figure 1.1). Thu Dau Mot city is the 

administrative–economic–cultural center of the province.  
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Figure 1.1. The study area 

Located in the tropical monsoon region, there are two alternating seasons of Binh 

Duong’s climate: a rainy season from May to November and a dry season from 

December to April of the following year. The climate is mostly warm all year round, the 

average temperature in the period of 2015–2019 is about 27.8°C. The difference in 

temperature between months is not too high, about 3°C–5°C. The average air humidity 

is from 70% to 96%. The average annual total rainfall is about 2,275.7 mm, of which 

the rainy season accounts for 90%. The province is surrounded by the Sai Gon-Dong 

Nai River system with many canals and small streams. The terrain has an average 

elevation of 20–25 m and is relatively flat with a slope of 3°–15°. More than 80% of the 

soil constituents in Binh Duong province are acrisols and ferralsols, which are favorable 

for perennial cropping (Binh Duong Statistical Office 2020; Department of Natural 

Resources and Environment of Binh Duong Province 2020).  

In terms of socioeconomics, Binh Duong belongs to the Southern Key Economic 

Zone of Vietnam. Since its reestablishment in 1997, the urbanization and 

industrialization process of the province has been extremely rapid. In a period of ten 

years from 1995 to 2005, the urbanization rate only rose from 17.51% to 30.09%; 

however, in the following ten years (i.e., from 2005 to 2015), this rate grew rapidly from 

30.09% to 76.72%. As of 2019, the rate reached 79.87% (General Statistics Office of 

Vietnam 2020). The first industrial park, i.e., Song Than 1, was established in 1995. As 

of 2019, Binh Duong has 29 industrial parks and 12 industrial clusters, with an average 

occupancy rate of over 70% in which more than 90% of many of them have been filled. 

Binh Duong is currently considered the “industrial capital” of Vietnam. The 

development of industry has considerably contributed to the economic development of 

the province. The gross regional domestic product at current prices increased from VND 
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3,915 billion in 1997 (industry and construction accounted for 50.4%) to VND 48,761 

billion in 2010 (industry and construction accounted for 63%) and 360,797 billion in 

2019 (industry and construction accounted for 66.77%) (Binh Duong Statistical Office 

2016; Binh Duong Statistical Office 2020).  

1.2. Problem statement 

Owing to the expansion of the urban and industrial areas as well as other human 

activities, the land use in Binh Duong province have significantly changed from 1995 

to 2020. The change may continue into the future. However, a study on spatiotemporal 

land use changes and urban expansion in Binh Duong is still a gap. Such study is 

necessary because it helps explore not only the pattern of land use change and urban 

expansion but also the factors influencing these processes. In addition, the effects of the 

change on the landscape pattern can also be revealed. From there, some practical 

experience can be learned for land use planning and policymaking in other areas not 

only in Vietnam but also in other countries. 

To fill this gap, it is necessary to use land use maps or land cover maps at different 

times in the study period as the input for spatial analysis in GIS. However, as mentioned 

in Section 1.1.4, the land use status map of the province has only been released since 

2005 by the government with very complex categories, and no land cover map has been 

released. Therefore, a prerequisite for this study is to generate such maps with a more 

generalized category system from 1995 to 2020 as well as to simulate the maps in the 

next decade. 

With the availability of various satellite data sources and the development of new 

image processing and spatial analysis techniques, there is a potential for combining them 

in land use land cover mapping and prediction to get highly accurate maps for the need. 

Obviously, it is easier to observe and classify land cover types directly from aerial or 

satellite images than to do so with land use types (Zhang and Wang 2003; Giri 2012). 

However, because they may have a connection, land use types can be interpreted from 

land cover information once this relationship is clearly defined. Furthermore, it is 

essential to compare the effectiveness of different approaches to land use land cover 

mapping to choose the optimal one based on the data availability in the study area and 

the objective of the study. 

1.3. Research objective and hypotheses 

The main objective of this study is to use and to develop GIS and RS techniques for 

time-series land cover and land use monitoring and classification from 1995 to 2020 and 

prediction to 2030 for Binh Duong province of Vietnam. The hypotheses of this study 

are that: 

(1) There is a connection between land cover and land use, and this connection can 

be measured and analyzed by geospatial information techniques in Binh Duong 

province. 
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(2) There are diverse effects of data sources, data structure, image processing, and 

fusion technique on land use land cover classification efficiency, and it is possible 

to select an optimal mapping approach given the data availability in the study 

area and the objective of the study. 

(3) There is a significant change in land use patterns of the study area from 1995 to 

2020. 

(4) The urban expansion process in the study area varies both spatially and 

temporally during the study period. 

(5) It is possible to predict future land use of the study area based on various natural 

and socioeconomic factors. 

(6) Land use change and urban expansion cause significant changes in landscape 

patterns of the study area. 

1.4. Data, methods and workflow 

The overall workflow of this dissertation is illustrated in Figure 1.2. Specific 

descriptions of the data and methods used are detailed in the Materials and Methods 

section of Chapters 2, 3, 4, and 5. Below are just brief summaries to provide an 

overview. 

For satellite imagery, the optical and SAR images of the study area acquired 

during the study period were investigated and collected. Landsat-5, -7, and -8 Collection 

1 Level 2 surface reflectance images were ordered and downloaded from the United 

States Geological Survey (USGS) website (via the link https://earthexplorer.usgs.gov/). 

S-1 Level-1 Ground Range Detected (GRD) and S-2 Multispectral Instrument (MSI) 

Level-2A images were downloaded from the Copernicus Scientific Data Hub (via the 

link https://scihub.copernicus.eu/).  

Ancillary data were collected from a variety of sources. The administrative 

boundary data were downloaded from the Database of Global Administrative Areas 

project website (via the link https://gadm.org/). The training and validation data were 

collected based on the field survey, Google Earth history images, and my personal 

experiences. Census data were collected from the provincial statistical yearbooks and 

from the website of the General Statistics Office of Vietnam (via the link 

https://www.gso.gov.vn/). In addition, the Shuttle Radar Topography Mission (SRTM) 

DEM was downloaded from the USGS website. Population density raster data were 

downloaded from the WorldPop website (via the link https://www.worldpop.org/). The 

road network map, land use status maps, and planning maps were collected from the 

provincial government. Other vector data were extracted from the OpenStreetMap 

project (via the link https://www.openstreetmap.org/) and downloaded from the 

GEOFABRIK website (via the link https://download.geofabrik.de/). 

A field survey trip to the study area was conducted between 18 January and 18 

February 2020 to collect ancillary data and gain a deeper understanding of land cover 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://gadm.org/
https://www.gso.gov.vn/
https://www.worldpop.org/
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and land use in the study area. The ArcGIS Collector application was used on this trip 

to take geotagged photos.  

 

Figure 1.2. Overall workflow of the dissertation. 

In terms of methods, in order to solve the research hypotheses and achieve the 

research objective, I used and developed a series of RS and GIS techniques in this 

dissertation. They consisted of (1) image processing techniques for preprocessing 

optical and SAR data, extracting spectral indices and gray-level co-occurrence matrix 

(GLCM) textures, and combining data at different levels, (2) land use land cover 

classification using pixel-based and object-based approaches, Dempster-Shafer (D-S) 

theory, spatial analysis, decision rules, and random forest classifier, (3) accuracy 

assessment based on visual assessment and confusion matrix, (4) change detection based 

on spatial and temporal analysis and statistics such as transition matrices, urban growth 

rate calculation, and district-based, ring-based, and sector-based analysis, (5) simulation 

of future land use based on the Markov chain and decision forest algorithm, and (6) 
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evaluation of landscape pattern change using landscape metrics. The ERDAS IMAGINE 

2020, SNAP 8.0, QGIS 3, IDRISI TerrSet 2020, FRAGSTATS 4.2, and R 3.6 software, 

depending on the purpose, were used for these tasks.  

1.5. Dissertation outline 

This dissertation adopts the integrated dissertation format which is fully article-based. 

Four scientific papers that have been published in peer-reviewed journals become the 

backbone of the dissertation as follows. 

1. Bui DH, Mucsi L. 2021. From land cover map to land use map: A combined 

pixel-based and object-based approach using multi-temporal Landsat data, a 

random forest classifier, and decision rules. Remote Sensing. 13(9):1700. 

https://doi.org/10.3390/rs13091700. Journal subject: Scopus - Earth and 

Planetary Sciences (miscellaneous), Rank: Q1. (Chapter 2) 

2. Bui DH, Mucsi L. 2022. Comparison of layer-stacking and Dempster-Shafer 

theory-based methods using Sentinel-1 and Sentinel-2 data fusion in urban land 

cover mapping. Geo-spatial Information Science. 25(3):425-438. 

https://doi.org/10.1080/10095020.2022.2035656. Journal subjects: Scopus - 

Computers in Earth Sciences and Geography, Planning and Development, 

Rank: Q1. (Chapter 3) 

3. Bui DH, Mucsi L. 2022. Land-use change and urban expansion in Binh Duong 

province, Vietnam, from 1995 to 2020. Geocarto International. 37(27):17096–

17118. https://doi.org/10.1080/10106049.2022.2123564. Journal subject: 

Scopus - Geography, Planning and Development, Rank: Q1. (Chapter 4) 

4. Bui DH, Mucsi L. 2022. Predicting the future land-use change and evaluating 

the change in landscape pattern in Binh Duong province, Vietnam. Hungarian 

Geographical Bulletin. 71(4):349-364. 

https://doi.org/10.15201/hungeobull.71.4.3. Journal subject: Scopus - Earth 

and Planetary Sciences (miscellaneous) and Geography, Planning and 

Development, Rank: Q2. (Chapter 5) 

To this end, the dissertation consists of six chapters as described below. 

• Chapter 1 provides an overview of the dissertation including a brief literature 

review on the main themes of the research, a description of the study area, the 

problem statement, the research objective, hypotheses, and a dissertation outline.  

• Chapter 2 first focuses on detecting the connection between land use and land 

cover in the study area. Then, a novel approach is developed to produce and 

convert a land cover map to a land use map based on this connection. This method 

combines pixel-based and object-based methods using multi-temporal Landsat 

data, random forest classifier, and decision rules. Discussions and comparisons 

on the effects of data integration (single and multi-temporal satellite images) and 

methods (pixel-based, object-based, and decision rules) are given.  

https://doi.org/10.3390/rs13091700
https://doi.org/10.1080/10095020.2022.2035656
https://doi.org/10.1080/10106049.2022.2123564
https://doi.org/10.15201/hungeobull.71.4.3
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• Chapter 3 continues to focus on other aspects of data combination. It investigates 

the performance of fusing SAR and optical data for land cover mapping. S-1 and 

S-2 data are used as representations of each data type. The datasets are combined 

in diverse ways such as single- and multiple-sensor images with and without their 

extracted indices and textures. The layer-stacking method and D-S theory-based 

approach are applied to fuse data at the pixel level and decision level, 

respectively. The effect of data structure and fusion methods is analyzed and 

discussed. 

• Chapter 4 presents the application of the approach proposed in chapter 2, which 

is considered the optimal approach given the data availability in the study area 

and the objective of the study, to generate multi-temporal land use maps from 

1995 to 2020 in the study area. Then, the spatial-temporal changes in land use 

and urban expansion are analyzed and discussed using GIS techniques. 

• Chapter 5 presents the simulation of the future land use up to 2030. A Markov 

chain and decision forest algorithm are used to determine the driving variables 

and to predict the quantity and location of future land use allocation. In addition, 

this chapter also provides an evaluation of the change in the landscape pattern of 

the study area. Landscape metrics at landscape and class levels are calculated and 

analyzed. 

• Chapter 6 summarizes the key findings, implications, limitations, and 

recommendations of the dissertation.  

The style and format may vary and overlap between chapters in other to meet the 

specific requirements of the submitted journals. Generally, in chapters 2 to 5, the 

structure of each chapter is included an independent abstract, introduction, materials and 

methods, results and discussion, and conclusion. Because all the papers are closely 

related to the overall research objective and hypotheses, the dissertation cannot avoid 

repeating some contents through different chapters, such as the literature review, 

description of the study area, data, and methodology.  
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2. From land cover map to land use map: A combined pixel-based 

and object-based approach using multi-temporal Landsat data, a 

random forest classifier, and decision rules 

 

This article is published in Remote Sensing as: 

Bui DH, Mucsi L. 2021. From land cover map to land use map: A combined pixel-

based and object-based approach using multi-temporal Landsat data, a random forest 

classifier, and decision rules. Remote Sensing. 13(9):1700. 

https://doi.org/10.3390/rs13091700 

 

 

 

 

  

https://doi.org/10.3390/rs13091700
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Abstract 

It is essential to produce land cover maps and land use maps separately for different 

purposes. This study was conducted to generate such maps in Binh Duong province, 

Vietnam, using a novel combination of pixel-based and object-based classification 

techniques and geographic information system (GIS) analysis on multi-temporal 

Landsat images. Firstly, the connection between land cover and land use was identified; 

thereafter, the land cover map and land use function regions were extracted with a 

random forest classifier. Finally, a land use map was generated by combining the land 

cover map and the land use function regions in a set of decision rules. The results showed 

that land cover and land use were linked by spectral, spatial, and temporal 

characteristics, and this helped effectively convert the land cover map into a land use 

map. The final land cover map attained an overall accuracy (OA) = 93.86%, with 

producer’s accuracy (PA) and user’s accuracy (UA) of its classes ranging from 73.91% 

to 100%. Meanwhile, the final land use map achieved OA = 93.45%, and the UA and 

PA ranged from 84% to 100%. The study demonstrated that it is possible to create high-

accuracy maps based entirely on free multi-temporal satellite imagery that promote the 

reproducibility and proactivity of the research as well as cost-efficiency and time 

savings. 

Keywords: land cover; land use; multi-temporal; pixel-based; object-based; 

segmentation; image classification; random forest; decision rules; Landsat-8 

2.1. Introduction 

Land cover is defined as “the observed (bio)physical cover on the earth’s surface” (Di 

Gregorio 2005), including vegetation, water surface, bare rock, bare soil, buildings, and 

roads. Meanwhile, land use refers to “the arrangements, activities and inputs people 

undertake in a certain land cover type to produce, change or maintain it” (Di Gregorio 

2005); in other words, land use is the way in which people use land cover types for one 

or more different purposes. Although they are defined differently and this issue has been 

discussed in previous studies (Cihlar and Jansen 2001; Brown and Duh 2004; Kim 

2015), these two terms are still commonly used concurrently or interchangeably in many 

studies related to land cover and land use classification and mapping (Steinhausen et al. 

2018; Carranza-García et al. 2019; L.H. Nguyen et al. 2020). This problem may cause 

ambiguity or confusion for readers or map users (Comber et al. 2008), as well as certain 

difficulties in using such maps, because land use information is often used for planning 

(Tapiador and Casanova 2003) and making policy (van Delden et al. 2011), while land 

cover information is often employed in environmental monitoring (Henits et al. 2017), 

modeling (Shooshtari and Gholamalifard 2015), and prediction (Rizeei et al. 2016). 

Obviously, it is easier to observe and classify land cover types directly from aerial 

or satellite images than to do so with land use types (Zhang and Wang 2003). However, 

there is a strong connection between land cover and land use (Jansen and Di Gregorio 
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2003; Kim 2015), and once this relationship is clearly defined, land use types can be 

interpreted from land cover types. There have been attempts to use single or multiple 

remote sensing data independently (Cihlar and Jansen 2001; Jansen and Di Gregorio 

2003; Zhang and Wang 2003) or in conjunction with other ancillary data sources, such 

as census data (Hunt et al. 2001), land use inventory data (Bauer and Steinnocher 2001), 

social sensing data (Y. Zhang et al. 2017), and mobile-phone positioning data (Jia et al. 

2018), to extract a land cover map and then translate it into a land use map, via a set of 

parameters and decision rules based on expert knowledge. Such studies have shown 

potential in producing a land use map from a land cover map based on remote sensing 

data. However, the reproducibility of their methods is a critical matter of concern. Most 

of these studies have used either commercial high-resolution satellite images and/or 

ancillary data, much of which was only available in their study regions. This matter may 

cause a limitation in repeating the methods of those studies in other study areas. With 

the availability of completely free remote sensing data sources (e.g., Landsat satellite 

family or Sentinel satellite family) that cover most of the terrestrial area of the Earth’s 

surface and are easy to access and download, it is necessary to have the research rely 

entirely on them to extract such maps. It not only enhances the reproducibility of the 

research methods but also their proactivity as well as cost-efficiency and time savings. 

Vietnam is a developing country in Southeast Asia that has seen rapid 

urbanization and industrialization in recent years. According to the General Statistics 

Office of Vietnam (General Statistics Office of Vietnam 2020), the population in 

Vietnam’s urban areas increased by an average of nearly 800,000 people each year in 

the 1999–2019 period. The rate of urbanization in the country, which was calculated as 

a percentage of the urban population per total population, reached 35.05% in 2019. The 

rate of urbanization is higher than the country average for megacities, such as Hanoi and 

Ho Chi Minh City, and also for provinces located in key economic zones, such as Binh 

Duong province. Specifically, in Binh Duong province, which is the area selected for 

this study, the rate of urbanization has increased rapidly since the 2000s up to now. In a 

period of ten years from 1995 to 2005, the urbanization rate only rose from 17.51% to 

30.09%; however, in the following ten years (from 2005 to 2015), this rate grew rapidly 

from 30.09% to 76.72%. As of 2019, the rate reached 79.87%. As a result, in the process 

of urbanization and industrialization, the expansion of existing developed areas and the 

formation of new urban areas as well as new industrial and commercial regions have 

resulted in a rapid transformation of land use and land cover (Ha et al. 2020). Therefore, 

it is necessary to use land cover and land use maps in near real time for planning and 

management activities. 

In Vietnam, land use status maps are produced by the government at the local 

and national levels every five years. The basis for producing such maps consists of 

inventory data related to land changes, including land allocation, land lease, and change 

of land use purpose during the five-year inventory period (Minister of Natural Resources 
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and Environment of Vietnam 2018). The land use categories for the maps are up to five 

levels and 56 classes, which are very detailed and complex. The first version of this type 

of map was generated in 2005 (since the Act on Land 2003 was passed and 

implemented); thus, there is a lack of spatial data on land use for previous years. In 

addition, the five-year interval to produce the maps is not suitable for real-time 

management and research. Furthermore, the maps are extracted on computer-aided 

design (CAD) file formats, which make it difficult and time-consuming to convert and 

use them for geographic information system (GIS) analysis. Last but not least, it is 

difficult to access this data due to the government’s relatively complicated 

administrative system. 

Meanwhile, a land cover map has not yet been produced by the government of 

Vietnam. Only a few studies have been done independently by researchers or 

organizations at the national (ADPC 2020; JAXA EORC 2020) or local level (Linh et 

al. 2012; Disperati and Virdis 2015; H.T.T. Nguyen et al. 2020). However, depending 

on the purpose of each study, there are many dissimilarities in the land cover 

classification scheme as well as in the definitions of the classes in those schemes. In 

addition, a number of these studies also used the terms “land cover” and “land use” 

concurrently or interchangeably, which may cause a number of obstacles in using these 

maps, as noted. It should be highlighted that except for the SERVIR-Mekong (ADPC 

2020) and Japan Aerospace Exploration Agency (JAXA) (JAXA EORC 2020) programs 

for land use and land cover mapping for the whole of Vietnam, there are no other studies 

related to land cover classification in the selected study area. 

With these issues in mind, this study was carried out in an effort to extract the 

land cover map and land use map of Binh Duong province separately. To achieve this 

objective, we proposed a novel combination of pixel-based and object-based 

classifications using random forest, decision rules, and free multi-temporal remote 

sensing data, specifically multi-temporal Landsat-8 imagery. The specific objectives of 

this study included: 

• To identify the relationship between land cover and land use in Binh Duong 

province based on multi-temporal satellite images and field surveys. 

• To test and assess the performance of the combination of pixel-based and object-

based classification techniques and GIS analysis on multi-temporal Landsat images 

to generate a land cover map and a land use map separately. 

2.2. Study area 

Binh Duong province is located in southeast Vietnam, between 10°51′46″ and 11°30′ N 

latitude and between 106°20′ and 106°58′ E longitude (Figure 2.1). The total area of the 

province is over 2694.64 km2, and its population is about 2.5 million people, of whom 

79.87% live in urban areas as of 2019 (Binh Duong Statistical Office 2020). 
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Figure 2.1. The study area. 

Binh Duong’s climate is divided into two separate seasons, which are 

characterized by the tropical monsoon and sub-equatorial climates, with a rainy season 

from May to November, and a dry season from December to April of the following year. 

The total annual precipitation is about 2275 mm, in which the rainy season accounts for 

over 90%. The province has a stable geology, relatively flat terrain featuring ancient 

alluvial hills with an average height of 20–25 m and a slope of 3–15°. There are two 

large rivers (the Dong Nai and the Sai Gon) with many canals and other small streams. 

2.3. Materials and methods 

The overall workflow is illustrated in Figure 2.2 and described in detail in the 

subsections. 

2.3.1. The main land cover and land use classes in the study area 

Based on the results of the field survey trip combined with observation of Landsat 

images and Google Earth history images, the main land cover types in Binh Duong 

province are defined below. 

• Barren land: Totally bare soil areas without any cover or with very sparse vegetation 

or bare land areas partly covered with sunburned vegetation and/or very sparse fresh 

vegetation. 

• Impervious surface with high albedo: Factories and commercial buildings whose 

material is often light-colored corrugated iron or concrete, or stone mining sites. 

• Impervious surface with low albedo: Residences, small commercial and office 

buildings, roads whose material is often concrete, clay, corrugated iron, asphalt, or 

a mix of these materials, or stone mining sites. 

• Grass: Fresh grass on cultivated grass farms, golf courses, and green spaces. 

• Crops: Crops on farms and green spaces or plant nurseries with high density. 

• Mature woody trees: Industrial trees, fruit trees, forests, and trees in green spaces 

which are of mature age with high coverage density. 
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Figure 2.2. The overall workflow. 
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• Young woody trees: Industrial trees, fruit trees, forests, and trees in green spaces 

which are young in age with low coverage density because their canopies/crowns 

are still separate. 

• Water: Rivers, canals, lakes, ponds, and pools. 

Meanwhile, determining the main land use classes in the study area was relatively 

difficult. Although the Vietnamese government has issued a current land use 

classification system (Minister of Natural Resources and Environment of Vietnam 

2018), there were many land use categories with similar or very ambiguous definitions 

(e.g., defense land versus security land, land for religious facilities versus land for belief 

facilities, etc.), which caused difficulties in finding the relationship between land cover 

and land use. Additionally, many categories did not exist in the study area or occupied 

only a very small part and were thus unrepresentative of the study area. Therefore, this 

study only used this land use classification system combined with the European Union’s 

Coordination of Information on the Environment (CORINE) land cover system (Kosztra 

et al. 2017) and the Food and Agriculture Organisation’s Land Cover Classification 

System (LCCS) (Di Gregorio 2005) as references. The final land use categories were 

defined and modified based on the actual characteristics of the study area. Thus, land 

use classes in this study were defined as follows. 

• Unused land: Areas where there are temporarily no construction works or which are 

leveled, or agricultural land in the harvest stage or in an early stage of the cultivation 

season with very young trees. 

• Industry and commerce: Factories, buildings, a road network, and other built-up 

areas for production activities and/or commerce and services. 

• Recreation and green space: Areas for relaxation and recreation activities, or areas 

for landscaping or creating a microclimate. 

• Mixed residence: Houses, apartments, a road network, and other built-up areas for 

living and daily life activities. It may also include some entertainment buildings 

intermingled within residential areas. 

• Mining sites: Areas for mining, exploitation, processing, and storing construction 

stone. 

• Agriculture with annual plants: Agricultural land used for growing plants with the 

growth period from planting to harvesting not exceeding one year, such as rice, 

maize, vegetables, cultivated grass, etc., or plant nurseries. 

• Agriculture with perennial plants: Agricultural land used for growing plants with 

the growth period from planting to harvesting over one year, such as fruit trees, 

industrial trees, and forests. 

• Water surface: Water body surface. 
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2.3.2. Collecting and pre-processing satellite images 

Landsat-8 Operational Land Imager (OLI) level 2 surface reflectance images for Binh 

Duong province (projection: WGS 84/UTM Zone 48N, path/row: 125/52) were ordered 

and downloaded from the United States Geological Survey (USGS) website (USGS 

2020). The images (bands 2, 3, 4, 5, 6, 7) were collected at two consecutive periods: 

• Period T1: from the end of November 2019 to the end of January 2020, 

corresponding to the period from the late rainy season to the early dry season. 

• Period T2: from the beginning of February to the end of April 2020, corresponding 

to the period from the middle to the end of the dry season. 

There were two reasons for selecting Landsat images at these two periods. Firstly, 

most of the study area was covered by dense clouds during the rainy season, i.e., from 

May to November; therefore, it was almost impossible to choose or to mosaic an image 

that was completely free of clouds in this period. Secondly, due to human activities, 

seasonal hydrological activities, and the characteristics of each land cover type, there 

was a transformation of land cover at some locations between the T1 and T2 periods. 

These changes might be used to improve the land cover classification and to interpret 

land use types. This will be discussed in detail in Section 2.4.1. 

As a result, at period T1, a completely cloud-free image acquired on 6 January 

2020 was chosen. At period T2, images acquired on 23 February 2020 were selected. 

However, there was a small region in the study area covered by clouds on 23 February. 

Therefore, an image acquired on 7 February 2020, which was completely cloud-free in 

that small region, was additionally selected. Thus, the cloud region in the 23 February 

image was masked and replaced with the corresponding cloudless region in the 7 

February image. 

Then, selected images were subsetted to the study area and stacked together to 

create an input dataset with twelve bands (i.e., six bands in each period), which was 

ready for the next processing steps. The administrative boundary of the study area used 

for subsetting was downloaded from the Database of Global Administrative Areas 

(GADM) project website (GADM 2020). 

2.3.3. Collecting training and validation data 

A field survey trip to the study area was conducted from 18 January to 18 February 

2020. From the results of the trip combined with the observations on the selected 

Landsat images at the T1 and T2 periods and the Google Earth History photos, a set of 

training and validation data was collected for classification and an accuracy assessment, 

respectively. 

For the pixel-based classification, the two-stage sampling technique (De Gruijter 

et al. 2006) was used. A total of 390 polygons were collected in homogeneous areas and 

assigned to the respective land cover classes. Subsequently, 70% of the polygons in each 
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class were selected randomly, and all the pixels within them were extracted to create the 

training dataset (4909 pixels); in the remaining number of polygons, 30% of the pixels 

were extracted periodically to create the validation data (586 pixels). It should be 

highlighted that because mining sites often had heterogeneous surfaces, consisting of 

interspersed high-albedo and low-albedo impervious surfaces, it was difficult to obtain 

a homogeneous region. Therefore, there were no polygons or points collected in these 

areas in this step. 

For training in object-based classification, based on the segmented result, there 

were 399 and 349 segments selected for training in the first and second rounds, 

respectively. It should be noted that since an extended rectangular boundary was used 

in the segmentation step (see Section 2.3.5), several segments that were outside the 

administrative boundary of the study area were selected to achieve the best result. 

Finally, to evaluate the accuracy of the final land use map, 586 points in the land cover 

validation dataset were used again, which were carefully assigned to the respective land 

use classes. In addition, 25 other points collected randomly at the mining sites were 

added. As a result, a total of 611 points were used at this stage. 

The distribution of training and validation data depended on the proportion and 

spatial distribution of each class in the study area (Figure 2.3). The detailed number of 

polygons and points for each class at each stage is summarized in Appendix A. 

 
Figure 2.3. The spatial distribution of training and validation data. 

2.3.4. Pixel-based classification 

The pixel-based approach was used in this study to produce the land cover map by 

applying random forest classifier and some post-classification techniques. The pixel-
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based approach was used due to its ability to generate a more detailed land cover map 

than one based on the object-based approach. 

To pave the way for conversion from a land cover map to a land use map in the 

next steps, based on the fact that land cover at a location might be unchanged or changed 

from one type to another type between the two selected periods (see Section 2.4.1), an 

additional classification scheme with twelve classes was determined as in Table 2.1. It 

should be noted that despite the fact that there was a change from water to barren land 

at the coastal region of some water surfaces (e.g., reservoirs and lakes) between T1 and 

T2, that change only took place in a very small area. This issue made it difficult to obtain 

training and validation samples. Therefore, that type of change was ignored, and the 

classification process used only eleven classes. 

Table 2.1. Pre-land cover and land cover classification scheme. 

No. Land Cover 

Class at T1 

Land Cover 

Class at T2 

Pre-Land Cover 

Class 

Land Cover 

Class 

Note 

I. Unchanged classes 

1 Barren land Barren land (1) Barren land (1) Barren land 
 

2 Crops Crops (2) Crops (2) Annual 

plants 

 

3 Grass Grass (3) Grass (3) Grass 
 

4 Young woody 

trees 

Young woody 

trees 

(4) Young woody 

trees 

(4) Perennial 

plants 

 

5 Mature woody 

trees 

Mature woody 

trees 

(5) Mature woody 

trees 

(4) Perennial 

plants 

 

6 IS with high 

albedo 

IS with high 

albedo 

(6) IS with high 

albedo 

(5) Impervious 

surface 

 

7 IS with low 

albedo 

IS with low 

albedo 

(7) IS with low 

albedo 

(5) Impervious 

surface 

 

8 Water Water (8) Water (6) Water 
 

II. Changed classes 

9 Barren land Crops/grass (9) Barren land to 

crops/grass 

(2) Annual 

plants 

 

10 Crops/grass Barren land (10) Crops/grass to 

barren land 

(2) Annual 

plants 

 

11 Mature woody 

trees 

Barren land (11) Mature woody 

trees to barren land 

(1) Barren land 
 

12 Water Barren land (12) Water to 

barren land 

(6) Water Ignored 

Note: IS = Impervious surface. 

A classified map (pre-land cover map) was produced using this classification 

scheme with the random forest algorithm (Breiman 2001), whose effectiveness in 

processing high-dimensional data has been proven to be fast and insensitive to 

overfitting (Belgiu and Drăguţ 2016). The “randomForest” package (Liaw and Wiener 

2002) was used on R software (version 3.6.3) for the classification procedure. In this 

process, the number of variables randomly sampled as candidates at each split (mtry) 

was set at the default value, which was equal to the square root of the total number of 
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features. Meanwhile, the maximum number of trees (ntree) was decided based on the 

plot showing the relationship between ntree and the decrease of out-of-bag (OOB) error 

rates (Figure 2.4). As a result, ntree was set at 750 trees. 

 
Figure 2.4. The relationship between out-of-bag (OOB) error rate and number of trees (ntree) 

in the random forest (RF) model for extracting the pre-land cover map. 

Then, the pre-land cover map was re-classified from eleven to six classes to create 

the land cover map. The conversion of classes is also shown in Table 2.1. In addition, 

to remove “salt and pepper” noise on the land cover map, the Clump and Eliminate 

functions in ERDAS IMAGINE 2020 software were used, respectively. Clumps (i.e., 

contiguous groups of pixels in one thematic class) smaller than four pixels were 

eliminated and given the value of nearby larger clumps. The final land cover map with 

the six classes was produced following this process. 

In addition, a similar classification procedure was also performed on single 

images at T1 and T2 independently to compare the results with the classification output 

from the multi-temporal image. 

2.3.5. Object-based classification 

The purpose of this step was to produce land use function regions (i.e., industrial and 

commercial regions, mining regions, and recreation regions), which would be used to 

combine with the final land cover map to produce the final land use map. The object-

based classification approach was used to create these regions. The object-based 

approach is capable of overcoming the spectral and spatial limitations of single pixels. 
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An extended rectangular boundary (Figure 2.3) was used at this stage instead of 

the administrative boundary to ensure landscape continuity in areas surrounding the 

administrative boundary for more accurate segmentation. Firstly, the input raster dataset 

(12 bands) was segmented using the Full Lambda Schedule (FLS) Image Segmentation 

function in ERDAS software. In this study, after various experiments and visual 

analysis, the parameters were set as follows: 

• Pixel:Segment Ratio: 50 

• Relative Weights of Spectral: 0.5 

• Relative Weights of Texture: 0.5 

• Relative Weights of Size: 0.5 

• Relative Weights of Shape: 0.5 

• Size limits: minimum: 10; maximum: 1000 

Subsequently, the segmentation image was converted to a polygon shapefile. 

From this shapefile and the input raster dataset, the following statistical and texture 

attributes of each raster band were extracted for each segment (i.e., each polygon) using 

a series of functions per feature in ERDAS (Table 2.2). As a result, 156 attributes of 

each segment were extracted. 

Table 2.2. Extracted attributes per feature. 

ERDAS Function Extracted Attributes 

Raster statistics per feature Mean, Max, Min, Median, Standard 

Deviation 

Kurtosis texture per feature Mean, Standard Deviation 

Variance texture per feature Mean, Standard Deviation 

Skew texture per feature Mean, Standard Deviation 

Mean Euclidean Distance texture per feature Mean, Standard Deviation 

Finally, land use function regions were created using the random forest classifier 

on the extracted feature shapefile and then using spatial analysis techniques. The process 

is shown in Figure 2.5. With the random forest algorithm, the ntree parameter was set 

to 650 trees for the first round and 600 trees for the second round (Figure 2.6); 

meanwhile, the mtry parameter was also set to the default value. The spatial analysis 

was conducted in QGIS software (version 3.4.15) and the criteria were chosen based on 

a trial-and-error process. There were two rounds of classification: 

• The first round: to extract golf courses (recreation areas) and mining regions. The 

classification scheme included four potential classes: mining, recreation, industry 

and commerce, and other. The industrial and commercial region class was classified 

in this step in an effort to facilitate a better classification of the mining region. 

• The second round: to extract industrial and commercial regions after subtracting 

recreation areas and mining areas in the first round. The classification scheme 

included two potential classes, industry and commerce, and other. 
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Figure 2.5. Process for extracting land use function regions. 

 

 
Figure 2.6. The relationship between OOB error rate and ntree in the RF models for extracting 

land use function regions. 

2.3.6. Producing the land use map 

The final land use map was created by combining the final land cover map and the land 

use function regions in a set of decision rules. The overall decision workflow is 

demonstrated in Figure 2.7. 
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Figure 2.7. Decision rules for producing the land use map. 

2.3.7. Accuracy assessment 

The accuracy of the land cover maps, function regions, and final land use map produced 

at each processing step was assessed by both visual assessment and a confusion matrix 

with overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) 

calculated. In addition, with the aim of assessing and comparing the accuracy of the 

generated maps in more detail, this study also computed two other parameters, quantity 

disagreement (QD) and allocation disagreement (AD), instead of the Kappa coefficient, 

which has been proven by Pontius and Millones to be redundant or misleading (Pontius 

and Millones 2011). Their study detailed the concept and method for calculating these 

two parameters. 
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2.4. Results 

2.4.1. The link between land cover and land use types 

After defining the main land cover and main land use classes in the study area, the link 

between land cover and land use was interpreted by analyzing the spectral, spatial, and 

temporal characteristics of each land cover and land use type, as well as human and 

seasonal hydrological activities. The connection helped form a set of decision rules (see 

Section 2.3.6) to efficiently convert the land cover map to a land use map. These 

connections are detailed below and illustrated in Figure 2.8. 

• Barren land was often an area that was temporarily unused for any purpose. Its 

spectral signature overlapped partially with that of the impervious surfaces. 

However, the spectral signature of barren land regions fluctuated depending on the 

amount of vegetation scattered in the region. The less vegetation there was, the 

stronger the surface reflectance. Furthermore, the density and freshness of 

vegetation in barren land regions might slightly change with the seasons. 

• Built-up areas and mining sites were all characterized by the domination of the 

impervious surface. The high density of the high-albedo impervious surface was 

usually characteristic of the industrial and commercial regions. These areas often 

consisted of large, corrugated iron buildings (usually larger than 1000 m2/building) 

of a variety of colors, with each color marked by a different spectral signature. Thus, 

the spectral reflectance fluctuation in these regions was relatively wide in all bands. 

Meanwhile, low-albedo impervious surface often fell within mixed residential areas, 

including private houses, blocks of flats, transportation networks, or small 

commercial buildings and office blocks with the building size often less than 500 

m2. They were made up of different materials, such as corrugated iron, concrete, 

asphalt, brick, and clay tile. Hence, the value of each pixel in the Landsat image was 

a mixture of surface reflectance from these materials, and the spatial spectral 

variance was not too wide. With stone-mining sites, they included impervious 

surface (both high and low albedo) and water, and the area of existing quarries was 

often larger than 20 ha. Furthermore, in general, in terms of temporal change, 

impervious surface was almost unchanged in a short time. 

• Regions relevant to the domination of vegetation included recreation and green 

space regions and agricultural regions. Golf courses were dominated by a large fresh 

grass area. Meanwhile, green spaces could include woody or herbaceous plants with 

a small area and located in developed regions. For agricultural regions, in 

agricultural and forestry activities in Vietnam, woody trees were considered as 

perennial plants, and crops/cultivated grass were considered as annual plants. 

Comparing spectral signatures between grass, crops, and mature woody trees, it can 

be seen that although their curve shapes were relatively similar, fresh grass had the 

highest spectral  reflectance  values  in  most  bands,  particularly  in  the  NIR  band.  
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(a) 

 

(b) 

 

(c) 

 
Figure 2.8. The characteristics of and connection between land cover and land use. (a) Spatial 

and visual characteristics; (b) Spectral characteristics; (c) Temporal characteristics. 
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Mature woody tree regions seemed to have the lowest values in all bands. With 

young woody trees, because their canopies have not intersected yet, it led to low 

coverage density, and the spectral reflectance of such regions was a mixture of the 

plants and the ground. This resulted in the spectral signature of this class being quite 

different from the other three vegetative classes. In addition, due to seasonal 

agricultural activities, cultivated grass/crops on farms might be changed to barren 

land and vice versa; meanwhile, grass on golf courses was unchanged. 

• Mature woody tree regions could be changed to barren land after clear-cutting. This 

usually occurred on farms during the timber harvest (acacia, dipterocarps, etc.) or 

clear-cut poorly productive old trees for the new planting (with rubber, cashew, fruit 

trees, etc.). This also occurred in the area being leveled for construction activities in 

the future. The regions after such clear-cutting activities were considered as 

temporarily unused land. 

• Water could be changed to barren land due to seasonal hydrological activities and 

vice versa. These semi-flooded areas were considered as falling within the water 

class. 

2.4.2. Extracted maps and their accuracy 

2.4.2.1. The pre-land cover classification result and the final land cover map 

The OA, QD, and AD of the pre-land cover classification result achieved 89.76%, 

5.68%, and 5.35%, respectively. The UA and PA of most classes achieved over 80%, in 

which the highest accuracy took place in the water class, which reached 100% for both 

PA and UA. In contrast, the crops class attained the poorest accuracy among eleven 

classes, with 53.33% of UA and 61.54% of PA. Many pixels of this class were 

misclassified in the mature woody tree class, whereas a number of pixels in the grass 

class were placed in this category. The misclassification from grass to crops also led to 

PA in the grass class also being low (65.22%). 

A final land cover map was generated from the result of the pre-land cover 

classification. For this map, except for the grass class, which attained PA = 73.91%, UA 

and PA achieved over 88% in all the other classes (Table 2.3). Compared to the 

classification results from single images (Table 2.4), the UA and PA of most classes of 

the final land cover map were equal to or higher than those of the single-date land cover 

maps, in which the most significant differences could be observed in the classes of grass 

and annual plants. The water class also experienced a slight increase in accuracy when 

using the multi-temporal image. As a result, the OA of the classification result from 

multi-temporal images, which reached 93.86%, was higher than those of the single-date 

images, corresponding to OA = 89.59% for the land cover map at T1 and OA = 90.78% 

for the land cover map at T2. Similarly, the final land cover map also showed a lower 

disagreement in allocation compared to the land cover maps at T1 and T2, corresponding 

to AD of 1.51%, 2.16%, and 2.53%, respectively. The disagreement in terms of quantity 
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for the final land cover map (QD = 4.59%) was also less than that of the land cover map 

at T2 (QD = 6.48%); however, it was higher than that at T1 (QD = 1.98%). However, in 

general, the total disagreements for all three maps were low and acceptable. 

The final land cover map is illustrated in Figure 2.9. 

 
Figure 2.9. Final land cover map. 

 



30 

Table 2.3. Confusion matrix of final land cover map produced from the multi-temporal image. 

Class Classification Total PA (%) 

BL AP GR IS WA PP 

Referenced BL 150 0 0 9 0 0 159 94.34 

AP 5 77 0 0 0 5 87 88.51 

GR 0 6 17 0 0 0 23 73.91 

IS 11 0 0 184 0 0 195 94.36 

WA 0 0 0 0 39 0 39 100.00 

PP 0 0 0 0 0 83 83 100.00 

Total 166 83 17 193 39 88 586 
 

UA (%) 90.36 92.77 100.00 95.34 100.00 94.32 
  

OA = 93.86%; QD = 4.59%; AD = 1.51% 

Note: BL = barren land; AP = annual plants; GR = grass; IS = impervious surface; WA = water; 

PP = perennial plants; PA = producer’s accuracy; UA = user’s accuracy; OA = overall accuracy; 

QD = quantity disagreement; AD = allocation disagreement. 

 

Table 2.4. The accuracy of land cover maps produced from the single-date images. 

Class T1 Image T2 Image 

PA (%) UA (%) PA (%) UA (%) 

Barren land 92.70 90.16 95.45 87.91 

Annual plants 55.77 80.56 75.00 77.14 

Grass 69.57 42.11 42.86 88.24 

Impervious surface 93.33 93.81 92.82 94.27 

Water 87.18 97.14 94.87 100.00 

Perennial plants 100.00 99.00 100.00 92.22  
OA = 89.59%; QD = 1.98%; 

AD = 2.16% 

OA = 90.78%; QD = 6.48%; 

AD = 2.53% 

2.4.2.2. Function regions 

Extracted function regions were assessed by visually comparing the study results with 

Landsat images and Google Earth History images. Some example regions are 

demonstrated in Figure 2.10. It can be seen that the shapes and sizes of the industrial 

parks, quarries, and golf courses compared relatively favorably to reality. Due to 

extracting from the remote sensing image, the boundaries of the image-based regions 

were not as smooth as they are in reality; however, in general, these image-based regions 

almost covered the entire land use areas. Although a few constructed buildings around 

quarries for processing and storing stone were classified under the mining function 

region, and some small, discrete stone storage yards were not included in this class, these 

miscategorizations were acceptable to some extent. Overall, it was appropriate to use 

the generated function regions to produce the land use maps. 
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Figure 2.10. Examples of extracted function regions. 

2.4.2.3. Land use map 

The final land use map is illustrated in Figure 2.11, and its accuracy assessment is 

demonstrated in Table 2.5. The map achieved 93.45% of OA, 4.58% of QD, and 1.52% 

of AD, as well as the UA and PA of its classes ranged from 84% to 100%. With visual 

evaluation, some pixels at the boundary areas of the mining sites were considered as a 

residence area. This might come from the misclassification between barren land and 

impervious surface on the land cover map or generated mining function regions with 

inaccurate boundaries. 

Table 2.5. Confusion matrix of the final land use map. 

Class Classification Total PA 

(%) UL IC RG MR MS AA AP WA 

R
ef

er
en

ce
d

 

UL 150 0 0 9 0 0 0 0 159 94.34 

IC 3 79 0 0 0 0 0 0 82 96.34 

RG 0 0 23 0 0 0 0 0 23 100.0 

MR 8 6 0 99 0 0 0 0 113 87.61 

MS 0 3 0 0 21 0 0 1 25 84.00 

AA 5 0 0 0 0 77 5 0 87 88.51 

AP 0 0 0 0 0 0 83 0 83 100.0 

WA 0 0 0 0 0 0 0 39 39 100.0 

Total 166 88 23 108 21 77 88 40 611 
 

UA (%) 90.36 89.77 100.0 91.67 100.0 100.0 94.32 97.50 
  

OA = 93.45%; QD = 4.58%, AD = 1.52% 

Note: UL = unused land; IC = industry and commerce; RG = recreation and green space; MR 

= mixed residence; MS = mining site; AA = agriculture with annual plants; AP = agriculture 

with perennial plants; WA = water surface. 
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Figure 2.11. Final land use map. 

2.5. Discussion 

The results of this study showed that land cover and land use in Binh Duong province 

were not only linked by spatial distribution and spectral properties but also by temporal 

characteristics. On the one hand, each land use type has its own spatial pattern and 

structure characterized by the properties of the land cover classes within it, such as 
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composition, spatial distribution, spectral signature, and dominant class as well as the 

shape and size of objects. On the other hand, the change or non-change of land cover at 

a given site over different times of the year may also demonstrate the manner in which 

humans interact with the land, thereby showing type of land use. In this study, 

characterizing the properties and finding the relationship between land cover and land 

use are considered as a vital key to producing a land cover map and a land use map from 

satellite images. Once these relationships are clearly defined and the suitable 

classification schemes established, a set of decision rules can be established to 

demonstrate how to translate a land cover map into a land use map. Then, these maps 

can be efficiently extracted. 

With our proposed procedure, the maps achieved high overall accuracy. It shows 

the potential of using a combination of pixel-based and object-based classification 

techniques and GIS techniques on free multi-temporal satellite images to effectively 

extract and translate a land cover map into a land use map. Many studies have also 

shown effectiveness in using a combination of these methods in the area of land cover 

and land use mapping (Shackelford and Davis 2003; Wang et al. 2004; Malinverni et al. 

2011; Aguirre-Gutiérrez et al. 2012; Ceccarelli et al. 2013; Chen et al. 2018); however, 

the difference in this study is the production of a land cover map and land use map 

separately, which these previous studies have not done. 

As the final land use map in our research was generated by combining the land 

cover map and the land use function regions in a set of decision rules, its accuracy 

depended on that of the combined components. The advantages to and limitations in 

how these components are produced are discussed in detail below. 

First of all, the method for collecting training and validation data in our study is 

close to the stratified random sampling method. The distribution of the training and 

validation data depends on the spatial distribution and the proportion of each class in the 

study area. For example, in areas where many different types of land cover and land use 

classes are presented, e.g., in the southern part of the province, sampling density is 

higher than in other parts (Figure 2.3). In addition, the number of samples of the 

dominant classes, such as the woody tree or impervious surface classes, is also greater 

than those of others (Appendix A). Thus, it can be assumed that there is no bias in the 

research results, thereby ensuring the accuracy and reliability of the generated maps. 

Furthermore, in the case of a large study area, where more samples need to be collected, 

it is more appropriate to use the stratified random sampling method, because it ensures 

that rare classes are not ignored, and it also requires a smaller sample size than the simple 

random sampling method. This can help save time and effort. 

In land cover mapping, in our study, the higher the overall accuracy, the higher 

accuracy within classes and the low total disagreement of the final land cover map have 

shown a certain efficiency when using multi-temporal images in a pixel-based 



34 

classification compared to using single-date images. These results are consistent with 

those of Feng et al. (2019), Henits et al. (2016), Yang et al. (2015), and Zoungrana et al. 

(2015). The pixel-based classification results using a single-date satellite image often 

encounter common misclassification problems, such as those between impervious 

surface and barren land (Shao et al. 2016), between dark impervious surface, object-cast 

shadow, and water (Zhang et al. 2012), between water boundary areas and barren land 

(Ji et al. 2015), between sparse vegetation and barren land (Shalaby and Tateishi 2007), 

and between different vegetation classes (Ghosh et al. 2014), due to the spectral 

similarity between the classes. However, using multi-date images can provide additional 

useful information to increase classification efficiency (Zoungrana et al. 2015). As noted 

in Section 2.4.1, there may be a change in land cover and/or its features between two or 

more time points, which leads to a change in the spectral signature in some areas with 

no change in others. Therefore, the spectral similarities of these classes may be reduced 

or removed when using multi-temporal images; thus, it is possible to reduce 

misclassification. In addition to an improvement in land cover mapping, using multi-

temporal images could also facilitate the extraction of land use information, paving the 

way for land use mapping. For example, by detecting the change/non-change between 

grass/crops and barren land, it was possible to distinguish agricultural areas from 

recreation areas and agricultural areas from unused land. 

However, taking a more detailed look at the pre-land cover classification result, 

a high misclassification between some classes, especially between unchanged 

vegetation classes, still occurred in our research. This can be explained as follows: since 

only two temporal Landsat-8 images in the dry season are used in this study, they are 

not able to cover all situations of land cover change at different time points in a year. 

Meanwhile, depending on the characteristics of crop and farming techniques, the timing 

of cultivation and harvest on different parcels may not be the same; therefore, there are 

some parcels covered by crops at both of the selected periods. This problem, combined 

with the spectral similarity of crops, grass, and woody trees, led to a high 

misclassification from grass to crops and from crops to mature woody trees. It should 

be noted that in addition to reducing the accuracy of the land cover map, the 

misclassification can also affect the extraction of wrong land use information in the steps 

that follow. Therefore, this limitation should be considered in further studies to improve 

the accuracy of extracted maps. Adding more remote sensing image data at different 

times should be considered for the classification process. In addition, other optical image 

data such as Sentinel-2 may be used in combination to address the problem of some 

cloud-covered areas in the dry season. In the rainy season, as noted, it is almost 

impossible to select or to mosaic an optical image that is completely free of clouds in 

the study area. Hence, it is suggested that a combination with synthetic aperture radar 

(SAR) images (e.g., Sentinel-1 imagery), which are unaffected by clouds (Gulácsi and 

Kovács 2020), should be experimented with. We will pursue this in further studies. 
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It is a fact that a land use type consists of many land cover types, not only one 

(Cihlar and Jansen 2001). Although industrial and commercial regions, for instance, are 

dominated by impervious surfaces with high albedo, they may also consist of impervious 

surfaces with low albedo, such as roads, yards, or small offices, or even grass and trees 

that are considered as landscaping. Similarly, mining site regions also comprise both 

high- and low-albedo impervious surfaces as well as water. Thus, if based only on a 

pixel-based classification—i.e., based solely on spectral characteristics—it is difficult 

to form boundaries between regions with different land use types. In this study, the 

segmentation technique and object-based classification have shown the suitability of 

creating such boundaries and then forming land use function regions. Firstly, 

segmentation techniques group adjacent pixels into a homogeneous object (i.e., a 

segment) with clear boundaries by taking into account not only spectral properties but 

also spatial information, such as texture, shape, and size. Then, the multiple statistical 

and texture variables are calculated from twelve bands of multi-temporal images based 

on the value distribution and spatial relationship of all the pixels within each segment; 

thus, they characterize the spatial distribution of land cover, in other words, the spatial 

pattern and structure of the land use type, within each segment. This captured 

information is the basis for classifying segments into land use classes. A comparison of 

value distribution of some derived attributes between different land use types is 

illustrated in Figure 2.12. Similar to pixel-based classification, adding more temporal 

images can help capture more spectral and spatial information, resulting in more 

efficient segmentation and classification. Despite a potential higher time cost in the 

processing, it is deemed acceptable. 

 
Figure 2.12. Value distribution of some derived attributes of classes. 

It should be highlighted that at the segmentation stage, the setting of parameters 

will affect the performance of segmentation (Ruiz Hernandez and Shi 2018). The errors 
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of over-segmentation and under-segmentation (Liu and Xia 2010) may lead to incorrect 

boundaries. However, there are no perfect parameters for this stage (Mucsi et al. 2017). 

The performance of segmentation results is mostly based on user experience (Ruiz 

Hernandez and Shi 2018), and the setting also depends on satellite image resolutions 

and the spatial structure of study areas. Therefore, for similar studies, it is necessary to 

select and test the value of the parameters carefully to obtain the most accurate land use 

boundaries. 

It is necessary to conduct spatial analysis at the post-classification stage to group 

adjacent segments with the aim of creating complete land use function regions. This 

workflow is transferable; however, the criteria used in this process were formed based 

on personal experience, visual observations, and experiments (trial and error). Although 

these values are applicable to neighboring areas, such as localities in Southern Vietnam 

with characteristics similar to those of the study area, it is suggested that these values 

need to be re-assessed and revised when applying them to other regions where the land 

cover and land use characteristics differ from those of our study area. 

In addition, in this study, using the object-based approach just to form the land 

use function zones, not to directly generate the land use map, can help save time and 

effort. It may be a very time-consuming and labor-intensive process to directly extract 

the land use map for the entire study area using the object-based approach. Firstly, due 

to the variance in the shape, size, color, and other properties of objects of different 

classes or even within each class, using a universal scale parameter for segmentation is 

not often helpful to extract all types of land cover (Johnson and Jozdani 2018) and/or 

land use. It is necessary to use a multi-scale approach to achieve the best result; however, 

this approach may require a great deal of time and effort to determine appropriate 

parameters. Secondly, it can be seen in our study that land use function zones are not 

created immediately after the classification step. Further spatial analysis steps are 

conducted at the post-classification stage to form them, and this stage also requires trial-

and-error attempts as well as expert knowledge. Meanwhile, following our proposed 

workflow could help save time and effort while still creating a highly detailed land use 

map. 

Another limitation of this study is that entertainment complexes (e.g., Dai Nam 

Wonderland) were placed within the mixed residence class. This is because in Binh 

Duong province in particular as well as in Vietnam in general, these areas often consist 

of a mixture of low-albedo construction areas and green spaces, which have a spatial 

pattern and structure similar to new high-end residential areas in medium-resolution 

images. The integration of landscape metrics into classification stages, which is similar 

to studies by Zheng et al. (2016) and Gudmann et al. (2020), will probably help in this 

case. This approach should be considered in future research. 
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2.6. Conclusions 

In short, land cover and land use in Binh Duong province were interconnected and 

characterized by a combination of spectral, spatial, and temporal properties. By 

analyzing that relationship, classification schemes and decision rules for converting a 

land cover map to a land use map have been effectively defined. 

The high overall accuracy of the final land cover map (OA = 93.86%) and the 

final land use map (OA = 93.45%) produced in this study proved the suitability and 

effectiveness of a combination of pixel-based and object-based classifications using a 

random forest classifier and decision rules on free multi-temporal remote sensing data. 

Using multi-temporal images in a pixel-based classification confirmed their 

effectiveness for improving the accuracy of the generated land cover map compared to 

those using single-date images (OA = 89.59–90.78%). Furthermore, by capturing both 

spectral and spatial information, the segmentation technique and object-based 

classification created boundaries between regions with different land use types and then 

relatively precisely formed land use function regions, which paved the way for 

producing the final land use map. 

Overall, our research results have shown the potential for separately producing a 

land cover map and a land use map effectively, which was based entirely on free multi-

temporal remote sensing data using the proposed method. These tasks offer many 

advantages in terms of saving time and cost, increasing the reproducibility and 

proactivity of the research, and ease of comparison between areas at different times. 

However, a combination with a field survey and/or expert knowledge of the study area 

is indispensable, since it promotes a deeper understanding of land cover and land use to 

define a more accurate classification scheme and reasonable decision rules. 

However, despite the effective efforts, there are still some limitations, as 

discussed, in our study that need to be remedied in future work to further improve work 

efficiency.  
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Abstract 

Data fusion has shown potential to improve the accuracy of land cover mapping, and 

selection of the optimal fusion technique remains a challenge. This study investigated 

the performance of fusing Sentinel-1 (S-1) and Sentinel-2 (S-2) data, using layer-

stacking method at the pixel level and Dempster-Shafer (D-S) theory-based approach at 

the decision level, for mapping six land cover classes in Thu Dau Mot City, Vietnam. 

At the pixel level, S-1 and S-2 bands and their extracted textures and indices were 

stacked into the different single-sensor and multi-sensor datasets (i.e. fused datasets). 

The datasets were categorized into two groups. One group included the datasets 

containing only spectral and backscattering bands, and the other group included the 

datasets consisting of these bands and their extracted features. The random forest (RF) 

classifier was then applied to the datasets within each group. At the decision level, the 

RF classification outputs of the single-sensor datasets within each group were fused 

together based on D-S theory. Finally, the accuracy of the mapping results at both levels 

within each group was compared. The results showed that fusion at the decision level 

provided the best mapping accuracy compared to the results from other products within 

each group. The highest overall accuracy (OA) and Kappa coefficient of the map using 

D-S theory were 92.67% and 0.91, respectively. The decision-level fusion helped 

increase the OA of the map by 0.75% to 2.07% compared to that of corresponding S-2 

products in the groups. Meanwhile, the data fusion at the pixel level delivered the 

mapping results, which yielded an OA of 4.88% to 6.58% lower than that of 

corresponding S-2 products in the groups. 

Keywords: Land cover mapping; data fusion; random forest; Dempster-Shafer theory; 

optical data; radar data; pixel level; decision level 

3.1. Introduction 

Land cover information plays an important role in monitoring the environment and 

natural resources as well as in urban management (Rimal et al. 2017; Arowolo et al. 

2018; Grigoraș and Urițescu 2019). Therefore, the knowledge of the spatial distribution 

and pattern of land cover in a specific area is necessary. Among the various sources for 

delivering land cover information and producing land cover maps, remote sensing is 

considered as an essential one due to its efficiency, economic benefits, and reliability 

(Cai et al. 2019). 

Data fusion is defined as a technique that “combines data from multiple sensors, 

and related information from associated databases, to achieve improved accuracy and 

more specific inferences than could be achieved by the use of single sensor alone” (Hall 

and Llinas 1997). In the earth observation field, the rapid development of different kinds 

of sensors and data sources has made data fusion a vital research approach that aims to 

extract more detailed information from the remote sensing imagery (Solberg 2006; 

Zhang 2010; Schmitt and Zhu 2016). By different fusion methods ranging from simple 
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to complex, the extracted information can effectively serve various fields such as urban 

management (Guan et al. 2017; Shao, Cheng, et al. 2021; Shao, Sumari, et al. 2021), 

agriculture (Mfuka et al. 2020; Prins and Van Niekerk 2020), environmental monitoring 

(Xu and Ma 2021), etc. In general, remote sensing data is fused at three common levels: 

pixel level, feature level, and decision level (Pohl and van Genderen 2016). 

For land cover classification and monitoring, optical and radar data are two types 

of remote sensing data that are often used as the input for various fusion methods to 

achieve better mapping results. For instance, Tavares et al. (2019) combined Sentinel-1 

(S-1) and Sentinel-2 (S-2) data at the pixel level for urban land cover mapping in Belem, 

Eastern Brazilian Amazon. The authors used the simple method of layer stacking for 

fusing data and applied the random forest (RF) algorithm as a classifier. Their results 

showed that, in comparison to other combinations, the integration of all spectral and 

backscattering bands achieved the best mapping result with overall accuracy (OA) 

reached 91.07%. Liu et al. (2018) combined S-1, S-2, Multi-Temporal Landsat 8 and 

digital elevation model (DEM) data for mapping eight forest types in Wuhan city, China. 

The authors derived various spectral indices and textures and compositing the data in 

various scenarios. Afterward, they applied a complex hierarchical strategy, including 

multi-scale segmentation, threshold analysis, and the RF algorithm. Their results 

showed that the fusion of imagery, terrain, and multi-temporal data reached the highest 

classification accuracy (OA = 82.78%) among the scenarios. Tabib Mahmoudi, 

Arabsaeedi, and Alavipanah (2019) classified urban land cover by fusing Landsat-8 and 

Terra SAR-X textures images at the feature level. They used the multi-resolution 

segmentation technique and knowledge-based classification based on thresholds and 

decision rules to fuse the data. The accuracy of the fusion result was not too high, as the 

OA and Kappa coefficient were 50.53% and 0.37, respectively. However, they improved 

by 2.48% and 0.06, respectively, compared to that of Landsat-8 imagery. Shao et al. 

(2016) fused S-1 and Gaofen-1 images at the decision level based on Dempster-Shafer 

(D-S) theory to map the urban impervious surfaces in the metropolitan area of Wuhan 

city in China. Their results indicated that fusion at the decision level achieved an OA 

ranging from 93.37% to 95.33%, which is better than those from single-sensor data. 

Ban, Hu, and Rangel (2010) fused Quickbird multi-spectral (MS) and RADARSAT 

synthetic aperture radar (SAR) data at the decision level for mapping 16 urban land 

cover classes at the rural–urban fringe of the Greater Toronto Area, Ontario, Canada. 

Complex hierarchical object-based and rule-based approaches were applied in both 

single-sensor data and their fused outputs. The study results revealed that decision-level 

fusion helped improve the accuracy of some vegetation classes by a range from 17% to 

25%. In addition, some emerging data sources, such as LiDAR or social data, can also 

be used in conjunction with conventional data sources. For example, Prins and Van 

Niekerk (2020) investigated the effectiveness of combining LiDAR, Sentinel-2, and 

aerial imagery for classifying five crop types. The data were combined in various ways, 
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and 10 machine learning algorithms were used. Their results showed that the highest 

OA of 94.4% was achieved when applying the RF algorithm on the combination of all 

three data sources. Shao et al. (2021) combined Landsat images and Twitter’s location-

based social media data to classify urban land use/land cover and analyze urban sprawl 

in the Morogoro urban municipality, Africa. Their results proved the potential of 

combining remote sensing, social sensing, and population data for classifying urban land 

use/land cover and evaluating the expansion of urban areas and the status of access to 

urban services and infrastructure. 

These study results demonstrate that fusion data from various sources at the three 

fusion levels can improve accuracy in land cover mapping. In these studies, various 

fusion techniques were used, ranging from simple to very complex methods. However, 

selecting which fusion method should be applied to deliver the best results is a challenge. 

In general, selecting a method for image classification depends on many factors. The 

factors comprise the purpose of study, the availability of data, the performance of the 

algorithm, the computational resources, and the analyst’s experiences (Lu and Weng 

2007). In addition, the performance of each method also depends partly on the 

characteristics of the study area, the dataset used, and how the method works. A method 

can yield highly accurate results in one dataset and give poor results in others (Xie et al. 

2019). Moreover, it is not necessary to employ a complicated technique when a simple 

one can solve the problem well. Therefore, for studies related to land cover mapping, it 

is essential to compare the performance of different methods to choose the optimal one 

that gives the most accurate results. 

Since being launched into space in 2014 under the Copernicus program (The 

European Space Agency 2021), Sentinel-1 and Sentinel-2 missions provide a high-

quality satellite imagery source for earth observation. The Sentinel-1 mission comprises 

a two-satellite constellation: Sentinel-1A (S-1A) and Sentinel-1B (S-1B). The mission 

provides C-band SAR images with a 10-m spatial resolution and a 6-day temporal 

resolution. Meanwhile, the Sentinel-2 mission also consists of a two-satellite 

constellation: Sentinel-2A (S-2A) and Sentinel-2B (S-2B). S-2A/B data together have a 

revisit time of 5 days, and they deliver the multi-spectral products with a spatial 

resolution ranging from 10 m to 60 m. The advantages of the Sentinel data are a high 

spatial resolution and a short revisit time, and S-2 are multi-spectral, while S-1 are 

unaffected by cloud and acquiring time. Furthermore, they are free and easy to access 

and download. Combining these data can help enhance the efficiency of monitoring land 

cover information, and as mentioned, selection of the optimal combination method is 

needed. To the extent of the authors’ knowledge from the literature review, no study to 

date has compared the efficiency of the fusion of S-1 and S-2 data at the pixel level and 

decision level for land cover mapping. 

With these issues in mind, the purpose of this paper is to evaluate and compare 

the performance of fusing S-1 and S-2 data at the pixel level and decision level for land 
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cover mapping in a case study of Thu Dau Mot City, Binh Duong province, Vietnam. 

To achieve this objective, our proposed procedure is briefly highlighted as follows: 

• Pre-processing data and deriving textures and indices. 

• Stacking the obtained products into different datasets. 

• Applying the RF algorithm on the datasets to produce land cover maps at 

pixel level. 

• Fusing the RF results of single-sensor datasets based on D-S theory to 

produce land cover maps at decision level. 

• Comparing the accuracy of the mapping results at both levels. 

3.2. Study area 

Thu Dau Mot City is the administrative, economic, and cultural center of Binh Duong 

province, Vietnam. The city is located in the southwest of the province, between 

10°56′22″ to 11°06′41″ N latitude and 106°35′42″ to 106°44′00″ E longitude (Figure 

3.1). It belongs to the tropical monsoon climate, which has the rainy season from May 

to November and the dry season from December to April of the following year. Its 

annual mean temperature is 27.8°C; its annual rainfall ranges from 2104 mm to 2484 

mm; and its annual mean air humidity varies from 70 to 96% (Binh Duong Statistical 

Office 2019). The mean elevation of the city is from 6 to 40 m, and it increases from 

west to east and from south to north. However, the terrain surface is relatively flat, and 

the majority of the city has a slope of 7 degrees or less. The total area of the city is about 

118.91 km2, and its population was 306,564 in 2018 (Binh Duong Statistical Office 

2019). 

 
Figure 3.1. Study area. 
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The main types of land cover in the city are built up, vegetation, bare land, and 

water surface. Based on a field survey trip in January 2020 and careful consideration of 

the characteristics of each land cover subject, the land cover in the study area was 

categorized into the following classes (Figure 3.2): 

i. Bare land with high albedo (BL_H): including totally bare soil areas without any 

cover or very little vegetation. 

ii. Bare land with low albedo (BL_L): including bare land areas partly covered with 

sunburned vegetation and/or little fresh vegetation. 

iii. Built-up with high albedo (BU_H): mainly including factories and industrial 

buildings that are often light-colored corrugated iron or concrete. 

iv. Built-up with low albedo (BU_L): mainly including residences, commercial and 

office buildings, and roads that are often concrete, clay, tole, asphalt, or a mix of 

these materials. 

v. Vegetation (VE): including crops, fruit trees, industrial trees, mature trees for 

landscaping, and fresh grass. 

vi. Open water surface (WA): including rivers, canals, lakes, ponds, and pools. 

 
Figure 3.2. Land cover classes in the study area. 
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3.3. Materials and methods 

3.3.1. Data 

3.3.1.1. Satellite images 

One free-cloud tile of S-2A Multispectral Instrument (MSI) Level-2A and one tile of S-

1A Ground Range Detected (GRD), which cover the study area, were downloaded from 

the Copernicus Scientific Data Hub (https://scihub.copernicus.eu/).  

The S-2A MSI Level-2A product provides the bottom of atmosphere (BOA) 

reflectance images. The product includes four bands of 10 m (2, 3, 4, 8), six bands of 20 

m (5, 6, 7, 8A, 11, 12), and two bands of 60 m (1, 9). The cirrus band 10 was omitted as 

it does not contain surface information. The product’s band wavelength ranges from 

about 493 nm to 2190 nm, and its radiometric resolution is 12 bits. 

The S-1A GRD product provides the C-band SAR data, which had been detected, 

multi-looked and projected to ground range using an Earth ellipsoid model. The acquired 

imagery was collected in the Interferometric Wide Swath (IW) mode with high 

resolution (a pixel spacing of 10 m and a spatial resolution of approximately 20 m × 22 

m) in dual-polarization mode: vertical transmit-vertical receive (VV) and vertical 

transmit-horizontal receive (VH). 

Due to its climatic characteristics, the study area is often covered by clouds 

during the rainy season (i.e. from May to November). Therefore, in this study, the optical 

product was collected in the dry season. One free-cloud tile of S-2, acquired on 22 

February 2020 was selected. Meanwhile, although the radar product is not affected by 

cloud coverage, the selected tile of S-1 was acquired on 25 February 2020 to minimize 

the change in the land cover. 

3.3.1.2. Vector data 

The administrative boundary of the study area was downloaded from the Database of 

Global Administrative Areas (GADM) project website (https://gadm.org/). It was used 

for subsetting and masking the satellite images. 

The training dataset for the six land cover classes was collected based on the 

results of the field trip in January 2020 combined with Google Earth images. The 

validation data were collected based on a stratified random sampling strategy. Based on 

the classification result of the S-2 dataset, the proportion of each land cover class was 

roughly estimated by visual observation. Based on the proportion, 70 points of BL_H, 

150 points of BL_L, 90 points of BU_H, 150 points of BU_L, 140 points of VE, and 50 

points of WA were randomly selected. Thus, a total of 650 points were generated. These 

points were visually interpreted by the S-2 image, Google Earth image, and the authors’ 

personal knowledge. Some points being on mixed pixels, which could not be interpreted 

correctly, were discarded. As a result, only 532 points could be used for validation, 

https://scihub.copernicus.eu/
https://gadm.org/
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including 56 points of BL_H, 86 points of BL_L, 89 points of BU_H, 135 points of 

BU_L, 115 points of VE, and 51 points of WA. 

3.3.2. Methods 

Five main steps were carried out to achieve the study goals. First, the downloaded S-1 

and S-2 data were pre-processed, and their textures and indices were extracted. In the 

second step, the products obtained were stacked into different datasets, including the 

datasets from single sensors and the fused datasets from multiple sensors. The datasets 

were categorized into two groups based on whether they included textures and indices 

or not. In the third step, the RF classifier was then applied to each dataset, and the 

accuracy of their results was assessed. In the fourth step, the classification results of the 

single-sensor datasets within each group were used as the inputs for the decision-level 

fusion based on D-S theory. Finally, the accuracy of classification results at the decision 

level was assessed and compared to those at the pixel level. The overall process followed 

in this study is presented in Figure 3.3 and described in detail below. 

3.3.2.1. Pre-processing and extracting indices and textures 

The S-2 tile was downloaded as a Level 2 product in WGS 84/UTM Zone 48 N 

projection, which has already applied geometric and atmospheric correction and is ready 

to use for classification. Bands 2, 3, 4, 8 (10 m) 5, 6, 7, 8A, 11, 12 (20 m) were used in 

this study. The 20-m bands were resampled to the 10-m ones using the nearest neighbor 

method to ensure the preservation of original values. Then, the Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were 

extracted. These two indices were included in this study because they have been widely 

used and have shown the potential to improve land cover classification results (Shao et 

al. 2016; Tian et al. 2016). 

Several common pre-processing steps were applied with the downloaded S-1 

GRD tile. They included apply orbit file, thermal noise removal, calibration, speckle 

filtering, range-Doppler terrain correction using WGS 84/UTM Zone 48 N projection 

and 30 m Shuttle Radar Topography Mission (SRTM), and conversion to dB (sigma0 

dB) for both VH and VV. The pre-processed products had a resolution of 10 m. Speckle 

filtering was used for reducing noise to improve image quality (Filipponi 2019); 

however, it also can lead to a massive loss of information when extracting texture 

features (Hu et al. 2018). Therefore, there were two sets of products in this step: VH and 

VV with speckle filtering were used as input data for classifiers, and the ones without 

speckle filtering were used for extracting textures. Afterward, eight gray-level co-

occurrence matrix (GLCM) textures were derived for both VH and VV by using a 9 × 9 

window size in all directions. The derived textures included mean, correlation, variance, 

homogeneity, contrast, dissimilarity, entropy, and angular second moment. As a result, 

16 texture products were generated. 
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Figure 3.3. Process flowchart. 

Because there was a small shift in pixels between the optical and SAR products, 

the resulting products were aligned using band 2 of S-2 as a reference image to make 

them fit together. Finally, all products were subset to the study area. These pre-

processing steps were conducted on the Sentinel Application Platform (SNAP) and 

Quantum Geographic Information System (QGIS) software. 

3.3.2.2. Combination, classification, and accuracy assessment 

After pre-processing, the products were stacked into different datasets, including the 

datasets from single sensors (D1, D2, D3, and D4) and the fused datasets from multiple 

sensors (D5 and D6). This study applied the common combination method of layer 
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stacking to fuse the data from S-1 and S-2 together at the pixel level. The datasets were 

then categorized into two groups: a group of datasets containing only spectral and 

backscattering bands (group 1) and a group of datasets consisting of these bands and 

their extracted textures and indices (group 2). Table 3.1 summarizes the information of 

all datasets. 

Table 3.1. Summary of the input datasets. 

Dataset Data sources Variables Note 

D1 S-1 only VH, VV Group 1 

D2 S-2 only 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 Group 1 

D3 S-1 with GLCM 

textures 

VH, VV, and textures of mean, correlation, 

variance, homogeneity, contrast, 

dissimilarity, entropy, and angular second 

moment of VH and VV 

Group 2 

D4 S-2 with indices 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, NDVI, NDWI Group 2 

D5 D1 and D2 All variables of D1 and D2 Group 1, 

pixel-level 

fusion 

D6 D3 and D4 All variables of D3 and D4 Group 2, 

pixel-level 

fusion 

D7 Random forest 

results of D1 and 

D2 

Probability of each land cover class, and 

OA, or UA, or PA of each result 

Group 1, 

decision-level 

fusion 

D8 Random forest 

results of D3 and 

D4 

Probability of each land cover class, and 

OA, or UA, or PA of each result 

Group 2, 

decision-level 

fusion 

Note: GLCM = gray-level co-occurrence matrix; VV = vertical transmit-vertical receive; 

VH = vertical transmit-horizontal receive; NDVI = Normalized Difference Vegetation Index; 

NDWI = Normalized Difference Water Index; OA = overall accuracy; UA = user’s accuracy; 

PA = producer’s accuracy. 

In this study, the RF algorithm, developed by Breiman (2001), was selected as 

the classifier for land cover classification at the pixel level. A random forest consists of 

a set of decision trees, each of which is generated by randomly drawing a subset from 

the training dataset. From the results of the trees, a majority vote is conducted to 

determine the final output (Xie et al. 2019). RF is easy to use, highly efficient, fast to 

process, and suitable for remote sensing applications (Belgiu and Drăguţ 2016; 

Gudmann et al. 2020). Since its results come from voting, RF has the ability to produce 

classification output as probabilities of each class, which was used as the input for fusion 

at the decision level. The classification process was implemented on R software, using 

the “randomForest” package (Liaw and Wiener 2002). Two important parameters 

affecting the classification performance of the RF model are the maximum number of 

trees (ntree) and the number of variables randomly sampled as candidates at each split 

(mtry). The mtry parameter was set at the default value, which is equal to the square 

root of the total number of features. After testing the relationship between the ntree and 

the decrease in out-of-bag error rates, the ntree was set at 300 trees as out-of-bag error 
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rates were relatively stable after this point. The composited datasets were used as inputs 

for the classification process. As a result, six land cover maps were generated at the 

pixel level, and their accuracy was then assessed. In addition, four classification results 

of single-sensor datasets, in the form of probabilities of each land cover class, were also 

produced to use in the next stages. 

At the decision level, the probability-form classification results were fused within 

each group. The classification result of D1 was fused with that of D2 (D7), while the 

results of D3 and D4 were combined (D8). This study applied the data fusion method 

based on the D-S evidence theory (Dempster 1967; Shafer 1976) using the dst package 

(Boivin and Stat.ASSQ 2020) in R software. D-S evidence theory, which is often 

described as a generalization of the Bayesian theory, is based on belief functions and 

plausible reasoning. The advantages the theory offer in data classification include: (i) 

flexible construction of the mass function and the data organization; (ii) no requirement 

regarding the prior knowledge or conditional probabilities, which makes it suitable for 

handling data with unseen labels; and (iii) possibility to provide the uncertainty of the 

result (Chen et al. 2014). Theoretical calculation steps were carried out according to the 

detailed description of Shao et al. (2016). The Basic Probability Assignment (BPA – or 

mass function) of each pixel, which is a prerequisite for fusion according to D-S theory, 

was calculated as follows: 

mi (A)= pv× pi 

in which mi (A) is the mass function value of the calculated pixel in class A of data source 

i, pv is the probability of belonging to each land cover class of the calculated pixel, and 

pi is the probability of correct classification of data source i. In this study, the OA, user’s 

accuracy (UA) and producer’s accuracy (PA) were used in turn to measure the 

probability of correct classification for the calculation. 

As a result, six land cover maps (two by using OA, two by using UA, and two by 

using PA) were generated at this decision level, and their accuracy was then assessed. 

Finally, the accuracy of all classification results at both pixel and decision levels was 

compared by both visual assessment and OA, PA, UA, and Kappa coefficients. 

3.4. Results and discussion 

The accuracy assessments of all classification results are presented in Table 3.2. The 

land cover maps of the two groups are also presented in Figures 3.4 and 3.5. The fusion 

results using PA were chosen as a representation of the decision level in these figures. 

In group 1, the fusion method using D-S theory provided the most accurate 

results, in which OA ranged from 90.23% to 90.60% and the Kappa coefficient was 

0.88. The best result in this group occurred in the fusion of D7, based on the OA. 

Similarly, results from the decision-level fusion in group 2 also gave the highest 

accuracy, with the OA ranging from 91.35% to 92.67% and the Kappa coefficient 

varying from 0.89 to 0.91. The fusion of  D8 using UA produced  the  best result in this  
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Table 3.2. Comparison of the overall accuracy and Kappa coefficient of the classification 

result of all datasets. 

Dataset Overall Accuracy (%) Kappa coefficient 

Group 1: datasets without textures and indices 

D7 using OA 90.60 0.88 

D7 using PA 90.23 0.88 

D7 using UA 90.23 0.88 

D2 89.47 0.87 

D5 84.59 0.81 

D1 42.86 0.29 

Group 2: datasets with textures and indices 

D8 using UA 92.67 0.91 

D8 using PA 91.92 0.90 

D8 using OA 91.35 0.89 

D4 90.60 0.88 

D6 84.02 0.80 

D3 52.07 0.41 

Note: OA = overall accuracy; UA = user’s accuracy; PA = producer’s accuracy. 

 

 

 
Figure 3.4. Land cover maps from the datasets without textures and indices: (a) dataset D1; 

(b) dataset D2; (c) dataset D5; (d) dataset D7 using PA. 
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Figure 3.5. Land cover maps from the datasets with textures and indices: (a) dataset D3; (b) 

dataset D4; (c) dataset D6; (d) dataset D8 using PA. 

group with an OA of 92.67% and a Kappa coefficient of 0.91. It was also the product 

with the most accuracy in all datasets. Therefore, the highest accuracy was found in the 

results of fusion at the decision level in both groups, whether using OA, UA, or PA for 

mass function construction. In contrast, the poorest results occurred in S-1 only (OA = 

42.86%, Kappa = 0.29) in group 1 and in S-1 with its texture variables (OA = 52.07%, 

Kappa = 0.41) in group 2. In general, both groups followed a similar trend in the 

accuracy of mapping results from datasets and decreased in the following order: 

decision-level fusion dataset, single optical dataset, pixel-level fusion dataset, and single 

SAR dataset. 

As a result, the fusion results from S-1 and S-2 products at the decision level 

increased mapping accuracy by a range of 0.75% to 2.07% in comparison to the results 

of corresponding S-2 products in the two groups. D-S theory considered each land cover 

class from different inputs as independent evidence. Evidential probability was 

constructed entirely based on the results of the classification algorithm at the pixel level, 

without taking into account the input of that algorithm. Therefore, this evidence theory 

could reduce the impact of noise data and feature selection in land cover classification 

(Shao et al. 2016). By that advantage, the use of D-S theory at the decision level in this 
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study produced mapping results with a higher level of accuracy. This finding is 

consistent with many previous studies (Ran et al. 2012; Shao et al. 2016; Mezaal et al. 

2018). It is clear that the result of the D-S fusion depends on how the mass function is 

constructed. Mezaal, Pradhan, and Rizeei (2018) converted the posterior probabilities 

of the classification results to the form of mass function directly; Ran et al. (2012) 

identified the parameter for the mass function construction from a literature review and 

expert knowledge; The pv parameter of the mass function in Shao et al. (2016) was 

similar to our study, and the pi was based on the PA of each class. This study is 

distinguished by testing the construction of mass function using the OA, UA, and PA in 

turn for the parameter of pi to get a more comprehensive assessment of the effectiveness 

of the D-S theory-based fusion. As mentioned, each of the three construction methods 

yielded better results than that of single-sensor and fused datasets at the pixel level. The 

results show that whether using the OA, UA, or PA for mass function construction, 

applying the D-S fusion method on S-1 and S-2 data provides a better result for land 

cover mapping. In addition, the results suggest that such a method is applicable for high-

accuracy mapping in other urban areas. 

However, the fusion data from different sensors using the layer-stacking 

technique at the pixel level did not improve classification efficiency. It reduced the 

accuracy of classification by a range of 4.88% to 6.58% compared to the results of 

corresponding optical products in the two groups. Although most studies in the literature 

reported the ability to improve the overall accuracy when fusing various data sources at 

the pixel level compared to using a single data source, some studies have shown the 

opposite (de Furtado et al. 2015; Fonteh et al. 2016). Zhang and Xu (2018) found that 

whether the combination of optical and SAR data could improve the accuracy of urban 

land cover mapping or not depended on the fusion levels and the fusion methods. 

Therefore, in our study, the extraction and selection of variables as well as the choice of 

combination technique and classification algorithm may have influenced the outcome 

of the classification. To improve mapping performance at the pixel level, further studies 

are needed to determine the optimal variable selection for data integration and to test 

other fusion techniques, such as the component substitution methods or the multi-scale 

decomposition methods (Kulkarni and Rege 2020). 

When comparing the results from group 1 and group 2, the accuracy of most of 

the datasets containing indices and textures was higher than that of the corresponding 

datasets without these extracted variables, except for the pair of datasets D5 and D6. 

The most significant increase took place in the pair of datasets D1 and D3, where the 

addition of the GLCM textures along with VH and VV raised the OA by 9.21%. The 

accuracy of the remaining pairs also increased by a range of 1.12% to 2.07% when 

including these extracted variables in the datasets. This finding confirms that the GLCM 

textures can provide additional useful information to improve classification results (Lu 

et al. 2014; Zakeri et al. 2017; Tavares et al. 2019); however, the effectiveness of 
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spectral indices is still controversial. Our results showed the spectral indices were 

effective in land cover classification to some extent. While many studies have included 

some common spectral indices (e.g. NDVI, NDWI, and Normalized Difference Built-

up Index) in the input dataset and enhanced the accuracy of mapping results (Shao et al. 

2016; Tian et al. 2016; Abdi 2020), other studies have indicated the opposite results 

(Tavares et al. 2019; Adepoju and Adelabu 2020). This discrepancy may result from 

differences in land cover characteristics of the study areas and the selection of indices 

included in the dataset. Therefore, these indices should be used with caution in future 

studies. 

A detailed comparison of PA and UA in each class of each classification result is 

presented in Tables 3.3 and 3.4. In addition, three example regions from classification 

maps in group 2 are presented in Figure 3.6 to provide a visual comparison. The Google 

Earth images were captured on 16 April 2020 using the historical imagery function on 

Google Earth Pro software. As seen in Tables 3.3 and 3.4, while S-1 only and S-1 with 

GLCM texture classification results yielded relatively low accuracy, the majority of PA 

and UA of all classes from other classifications were high (over 85%). BL_L was the 

class that had the most misclassifications, which resulted in the lowest accuracy in most 

cases. 

At the pixel level, the fusion data from different sources significantly reduced the 

PA of BL_L and the UA of BU_L when compared to the corresponding S-2 products in 

both fusion cases. The former was reduced by 31.39% in the datasets without derived 

products and by 27.91% in the datasets with derived products. Meanwhile, the latter was 

decreased by 19.79% in the datasets of group 1 and by 22.05% in the datasets of group 

2. The  misclassification  between  these  two  classes  could be clearly seen in the three  

Table 3.3. The producer’s accuracy and user’s accuracy of the classification result of the 

datasets without textures and indices. 

Dataset Accuracy index Class 

BL_H BL_L BU_H BU_L VE WA 

D1 PA (%) 10.71 46.51 41.57 43.70 64.35 23.53 

UA (%) 60.00 31.50 37.37 51.30 49.01 40.00 

D2 PA (%) 91.07 93.02 87.64 83.70 91.30 96.08 

UA (%) 89.47 73.39 92.86 91.13 97.22 98.00 

D5 PA (%) 92.86 61.63 92.13 86.67 86.96 90.20 

UA (%) 94.55 69.74 95.35 71.34 97.09 95.83 

D7 using OA PA (%) 91.07 94.19 86.52 88.15 92.17 94.12 

UA (%) 89.47 78.64 95.06 89.47 97.25 97.96 

D7 using UA PA (%) 91.07 88.37 86.52 89.63 92.17 96.08 

UA (%) 89.47 83.52 92.77 86.43 96.36 96.08 

D7 using PA PA (%) 91.07 95.35 86.52 85.93 92.17 94.12 

UA (%) 89.47 77.36 95.06 89.92 96.36 97.96 

Note: BL_H = Bare land with high albedo; BL_L = Bare land with low albedo; BU_H = Built-

up with high albedo; BU_L = Built-up with low albedo; VE = Vegetation; WA = Open water 

surface; OA = overall accuracy; UA = user’s accuracy; PA = producer’s accuracy. 
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Table 3.4. The producer’s accuracy and user’s accuracy of the classification result of the 

datasets with textures and indices. 

Dataset Accuracy index Class 

BL_H BL_L BU_H BU_L VE WA 

D3 PA (%) 7.14 47.67 78.65 45.93 60.00 60.78 

UA (%) 50.00 44.57 46.67 50.82 58.47 73.81 

D4 PA (%) 96.43 91.86 92.13 83.70 95.65 86.27 

UA (%) 94.74 73.83 94.25 91.87 96.49 100.00 

D6 PA (%) 83.93 63.95 91.01 87.41 87.83 88.24 

UA (%) 95.92 74.32 88.04 69.82 98.06 100.00 

D8 using OA PA (%) 91.07 90.70 95.51 87.41 95.65 86.27 

UA (%) 98.08 75.00 97.70 90.77 95.65 100.00 

D8 using UA PA (%) 94.64 87.21 95.51 91.11 94.78 94.12 

UA (%) 98.15 83.33 98.84 89.13 95.61 96.00 

D8 using PA PA (%) 92.86 91.86 95.51 86.67 95.65 90.20 

UA (%) 98.11 75.96 97.70 92.13 95.65 100.00 

 

 
Figure 3.6. Comparison of the classification results from the datasets with textures and indices 

in three example regions. 
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sample regions, in which the BU_L areas, especially roads, were misclassified as bare 

land. Moreover, with the BU_H class, the misclassification from bare land areas to 

factories and from factories to low albedo built-up areas decreased, but the 

misclassification between factories and totally bare soil areas increased. Therefore, the 

UA and PA of classes increased or decreased unevenly, but overall, the total reduction 

was greater than the total increase in both fusion cases. 

On the contrary, at the decision level, although the UA and PA of classes also 

increased or decreased unevenly, the total reduction was lower than the total increase in 

both fusion cases. By visual assessment, the greatest improvement was found in the 

classes BU_H, BU_L, and BL_L. In these classes, the misclassification from high-

albedo build-up to bare soil and to low-albedo built-up was significantly reduced, 

contributing to the increase in the OA of the mapping result. However, because the 

BU_H class only took a small proportion of the study area (about 5% of the total area), 

the reduced misclassification only resulted in a slight increase in the OA compared to 

the maps from the optical datasets. 

In general, in most cases of both single-sensor datasets and integrated datasets, 

the BU_L and BL_L had the highest rate of misclassification among all classes, which 

may be due to the similarity in their spectral characteristics. The study results of Chen 

et al. (2019), Li et al. (2017), Shao et al. (2016), and Wei et al. (2020) and many others 

have also shown this issue. Meanwhile, although the UA of water class achieved up to 

100%, some water areas were misclassified as high albedo built-up area by visual 

assessment in all datasets at the nearshore of an artificial swimming pool in example 

region 3. The misclassification from WA to BU_H in this region may be explained by a 

few factors. First, the pool is in the Dai Nam Wonderland water park, and in fact, it is 

an artificial sea with saline water, not a freshwater swimming pool. The depth of this 

artificial sea gradually rises from the nearshore to the offshore, where the shallower 

water leads to higher reflectance contribution from the floor material of the water area 

(Chuvieco and Huete 2016); Second, the floor of this artificial sea is made of light-

colored concrete, which belongs to BU_H class. These factors combined may have 

caused the misclassification from water to high-albedo built-up area at the nearshore 

area of the sea. For the vegetation class, the difference in the accuracy was not 

significant between the fused datasets and corresponding optical datasets. 

3.5. Conclusions 

In summary, the fusion of S-1 and S-2 data based on D-S theory at the decision level 

yielded better mapping results compared to others. It comes from the advantages of the 

D-S theory-based technique in reducing the impact of noise data and feature selection 

in land cover classification. The most obvious improvement was found in the classes of 

barren land and built up. As a result, the datasets fused at the decision level increased 

the OA by a range of 0.75% to 2.07% compared to the S-2 datasets. The fusion of S-1 
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and S-2 data with their derived textures and indices at the decision level using D-S 

theory brought the best results in this study, achieving an OA and Kappa coefficient of 

92.67% and 0.91, respectively. 

Moreover, the integration of SAR and optical products using the layer-stacking 

technique at the pixel level did not give more power to the classification process. It 

reduced the accuracy of the mapping result by 4.88% to 6.58% compared to that of the 

optical datasets. These findings may be influenced by the processing and selection of 

features, fusion technique, and classifier. Further studies on this issue are needed. 

Furthermore, the inclusion of GLCM textures and spectral indices in the datasets 

helped improve the mapping results. However, while the effectiveness of the textures is 

clear, the contribution of the indices needs to be studied further. 

In general, the results of this study show that using the D-S fusion method for 

high-accuracy mapping in other urbanized areas holds great potential. This study 

represents an initial step, and it paves the way for further research on land cover mapping 

using additional available data from the active and passive sensors for performance 

improvement. 
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Abstract 

This study aims to analyze land-use change and urban expansion in Binh Duong 

province, Vietnam, from 1995 to 2020. Multitemporal Landsat images were used to 

develop land-use maps. Area statistics and transition matrices were employed to explore 

the land-use change; meanwhile, annual expansion rate (AER), expansion contribution 

rate (ECR), and district-, ring-, and sector-based analyses were employed to analyze the 

urban expansion. The results showed that there was a large transition from agricultural 

and unused lands to other uses. This resulted in an expansion of developed areas, 

recreational regions, mining sites, and water surfaces, a drastic decline of agricultural 

land for annual crops, and a fluctuation of perennial cropland and unused land. The study 

also indicated that the urban area has expanded 65 times within 25 years at an increasing 

rate. The AER and ECR were uneven between subregions, and there was a gradual 

expansion and shift from south to north of the province. The factors affecting the 

changes comprise natural conditions, development histories, policies and practices for 

urbanization, industrialization, and agricultural development, and product price 

fluctuations in the market. Practical lessons learned from this study could be useful for 

land planning and policymaking in other localities. 

Keywords: Land-use change; urban expansion; change detection; spatiotemporal 

analysis; remote sensing 

4.1. Introduction 

Land-use change has various impacts on the environment and human life, such as run-

off characteristics (Sajikumar and Remya 2015), landscape pattern (Zhang et al. 2010; 

Dadashpoor et al. 2019), land surface temperature (Zhang and Sun 2019), soil erosion 

(Nampak et al. 2018), as well as biodiversity and ecosystem services (Tolessa et al. 

2017; Trisurat et al. 2019). Therefore, studies on land-use change are crucial to resource 

and environmental monitoring as well as land management policymaking (Nampak et 

al. 2018). Land-use changes are caused by both natural and anthropogenic factors (Serra 

et al. 2008; Msofe et al. 2019). In terms of anthropogenic factors, activities and policies 

relating to urban expansion, industrialization, agricultural development, and 

exploitation of natural resources strongly influence land-use change. Among them, 

urbanization and industrialization often lead to rapid, strong, and one-way 

transformation, especially in developing countries (Pham and Yamaguchi 2011; 

Kantakumar et al. 2016; Rimal et al. 2017; Fenta et al. 2017; Andrade-Núñez and Aide 

2018; Cao et al. 2019; Sumari et al. 2020). However, the availability of accurate 

information on spatiotemporal land-use changes, urbanization status, urbanization rates, 

and their driving factors in localities is often untimely even though it is essential 

(Kantakumar et al. 2016). 
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Remote sensing (RS) is a reliable tool for land cover and land-use monitoring 

(Toure et al. 2018). RS databases are increasingly diverse in quantity and quality, 

meeting different needs. With easy access and acquisition of images, such as MODIS, 

Landsat, and Sentinel, research related to the interpretation of RS imagery has become 

proactive and cost effective. Moreover, the development of image processing and 

classification techniques has increasingly improved the accuracy of results (Lu et al. 

2011; Shao and Lunetta 2012; Noi and Kappas 2017; Toure et al. 2018; Quan et al. 

2020). The combination of RS and spatial analysis techniques in geographic information 

systems allows researchers to detect land cover and land-use change more easily and 

timely. This has been confirmed in many studies in the literature on a local (Wu et al. 

2006; Rawat and Kumar 2015; Tadese et al. 2020), national (Sánchez-Cuervo et al. 

2012; Schoeman et al. 2013; Xu et al. 2020), continental (Mertes et al. 2015; Netzel and 

Stepinski 2015) and global scale (Giri et al. 2013; X. Li et al. 2017). 

Binh Duong province is a province located in the Southern Key Economic Zone 

of Vietnam. Over the past 25 years, Binh Duong has emerged as a typical area of rapid 

urbanization and industrialization. As a consequence, the land-use change took place 

dramatically. However, a study on spatiotemporal land-use change and urban expansion 

in Binh Duong is still a gap. Thus, it is necessary to study these issues in this area. Such 

study helps explore not only the pattern of land-use change and urban expansion but 

also the factors influencing these processes. From there, some practical experience can 

be learned for land-use planning and policymaking in other areas not only in Vietnam 

but also in other countries. 

Therefore, this study aims to (1) explore the spatiotemporal dynamics of land-

use in Binh Duong province from 1995 to 2020, (2) analyze the urban expansion and its 

orientation over the past 25 years, and (3) analyze the factors affecting the land-use 

change and urban expansion of Binh Duong province. 

The rest of this paper is organized as follows. Section 4.2 introduces the study 

area. Section 4.3 describes the data and methods used. The results are reported in Section 

4.4. In Section 4.5, a discussion and recommendation are given. Finally, the conclusions 

are presented in Section 4.6. 

4.2. Study area 

Binh Duong province is located in the Southeast region of Vietnam, covering 

approximately 2,694.64 km2, with a total population of about 2.5 million as of 2019 

(Binh Duong Statistical Office 2020). Administratively, as of 2020, the province was 

divided into five urban districts (also known as cities and towns) and four rural districts 

(Figure 4.1). Thu Dau Mot city is the administrative–economic–cultural centre of Binh 

Duong province. 
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Figure 4.1. Study area. 

Since its reestablishment in 1997, the urbanization and industrialization process 

of the province has been extremely rapid. In 1995, the urbanization rate, which was 

calculated as a percentage of the urban population per total population, accounted for 

only 17.51%; in 2019, the rate reached 79.86% (General Statistics Office of Vietnam 

2020). The first industrial park, i.e. Song Than 1, was established in 1995. As of 2019, 

Binh Duong has 29 industrial parks and 12 industrial clusters, with an average 

occupancy rate of over 70% in which more than 90% of many of them have been filled. 

Binh Duong is currently considered the ‘industrial capital’ of Vietnam. The 

development of industry has considerably contributed to the economic development of 

the province. The gross regional domestic product at current prices increased from VND 

3,915 billion in 1997 (industry and construction accounted for 50.4%) to VND 48,761 

billion in 2010 (industry and construction accounted for 63%) and 360,797 billion in 

2019 (industry and construction accounted for 66.77%) (Binh Duong Statistical Office 

2016; Binh Duong Statistical Office 2020). Owing to the expansion of the urban and 

industrial areas as well as other human activities, the land cover, and land-use in the 

province have significantly changed over the past 25 years. 

4.3. Material and methods 

The overall workflow consisted of selection of time points and satellite images, 

preprocessing, generation of land use maps according to the method of Bui and Mucsi 

(2021), accuracy assessment, change detection, and urban expansion analysis. The 

classification steps for generating land-use maps were performed in ERDAS IMAGINE 

2020 and R software; meanwhile, other analysis steps were performed in QGIS 3.10 
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software. The workflow is illustrated in Figure 4.2 and some highlights of the process 

followed are described below. 

 
Figure 4.2. Overall workflow. 

4.3.1. Selection of time points and satellite images 

The Landsat level-2 surface reflectance images (projection: WGS 84/UTM Zone 48 N, 

path/row: 125/52) were employed in this study. The images were ordered and 

downloaded from the United States Geological Survey website (via the link: 

https://earthexplorer.usgs.gov/). A survey of the availability and quality of Landsat 

images from 1994 to 2020 (hereinafter, referenced years) in the study area was 

conducted to select suitable images and time points for the classification process. To 

generate the land-use map of each year, the method required at least two cloud-free 

images as the input for classification. Therefore, the criteria for selecting the time points 

and images included the following: (1) The images belong to Landsat-5, −7, or −8 

sensors. (2) There is no error of scan-line corrector for the Landsat-7 images. (3) It is 

possible to collect or mosaic to create two cloud-free images in the same year or in two 

https://earthexplorer.usgs.gov/
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consecutive years. As a result, six referenced years were identified to create land-use 

maps: 1995, 2001, 2005, 2010, 2015, and 2020. The images used at each referenced year 

are listed in Table 4.1. No Landsat-7 image was selected because the three mentioned 

criteria were not met. In addition, except for 2001, most selected images were in the dry 

season. 

Table 4.1. Summary of Landsat images used. 

Time point Acquired date Sensor 

1995 14-Nov-94 Landsat-5 

02-Feb-95 Landsat-5 

2001 27-Sep-00 Landsat-5 

06-Nov-00 Landsat-5 

14-Nov-00 Landsat-5 

15-Apr-01 Landsat-5 

09-May-01 Landsat-5 

2005 11-Dec-04 Landsat-5 

11-Feb-04 Landsat-5 

13-Feb-05 Landsat-5 

2010 09-Dec-09 Landsat-5 

11-Feb-10 Landsat-5 

2015 24-Jan-15 Landsat-8 

29-Mar-15 Landsat-8 

09-Feb-15 Landsat-8 

2020 06-Jan-20 Landsat-8 

23-Feb-20 Landsat-8 

07-Feb-20 Landsat-8 

4.3.2. Preprocessing 

The Landsat images collected were level 2 images, which have been geocorrected, 

projected to WGS84 Zone 48 N, and converted to surface reflectance, so they were ready 

for use. In this study, bands 2, 3, 4, 5, 6, and 7 for Landsat 8 images and bands 1, 2, 3, 

4, 5, and 7 for Landsat 5 images were used. The preprocessing steps included masking 

cloud, mosaicking, subsetting, and stacking. The administrative boundary data 

downloaded from the Database of Global Administrative Areas project website (via the 

link: https://gadm.org/) were used for the subsetting step. Each year, two subsetted 

images were stacked to create a multitemporal image with 12 bands. Then, these 

multitemporal images were used as input for the classification. 

4.3.3. Generation of land-use maps 

In this study, we employed a classification scheme and method proposed by Bui and 

Mucsi (2021) to generate land-use maps of Binh Duong province from 1995 to 2020. 

This is a hybrid approach, combining pixel-based and object-based classification with 

spatial analysis and decision rules, to generate a land-use map from multi-temporal 

Landsat images. This method has proven to be effective in generating highly accurate 

land-use maps in the study area. 

https://gadm.org/


62 

For classification scheme, the main land-use types in the study can be classified 

into eight classes: unused land, industry and commerce, recreation and green space, 

mixed residence, mining sites, agriculture with annual plants, agriculture with perennial 

plants, and water surface. For the procedure, there are three main steps to produce a 

land-use map including pixel-based classification to generate land cover map (Step 1), 

object-based classification and spatial analysis to extract land-use function regions (Step 

2), and the combination of the land cover map and function region in a set of decision 

rules to produce the final land-use map (Step 3). A detailed description can be found in 

the mentioned study. 

During Steps 1 and 2, the random forest classifier was applied to both pixel- and 

objected-based classifications. The training data were collected based on the field survey 

between January and February 2020, Google Earth history images, and our personal 

experiences. For consistency, the parameters of mtry and ntree were set to default values 

at all classification rounds, i.e. the mtry was equal to the square root of the total number 

of variables, and the ntree was 500 trees. Further, a 3 × 3 majority filter was applied to 

reduce the ‘salt-and-pepper’ noise instead of the clump and eliminate in Step 1. Other 

parameters in this stage were set similar to the study of Bui and Mucsi (2021). 

In addition, to increase the accuracy of results, several additional works were 

performed manually as follows: (1) Some land-use function regions were added 

manually after Step 2. They included the regions that could not be automatically formed 

due to some reasons, such as only accounting for a very small area insufficient for 

training and classification (e.g. industry and commerce regions in 1995, golf courses in 

1995, 2001, 2005), being excluded after spatial analysis within Step 2 (e.g. small and 

discrete patches of recreation area and mining site), or being entertainment complexes 

(e.g. the Dai Nam wonderland and new city park). (2) A 30-m buffer was applied to the 

mining function regions in Step 2 to make their boundary precise. (3) In the land cover 

maps generated after Step 1, some easily observable areas where barren lands were 

misclassified into impervious surfaces were corrected. Consequently, six land-use maps 

for the six referenced years were developed. 

4.3.4. Accuracy assessment 

The accuracy of the extracted land-use maps was assessed based on the overall accuracy 

(OA), user’s accuracy (UA), and producer’s accuracy (PA). To collect the validation 

data, we applied the stratified random sampling method with a compromise approach 

proposed by Congalton and Green (2019). In each map, 1,000 points were generated 

randomly. Among them, the minimum points for each class were set to 50 points, and 

the other points were allocated proportionally to the area of each class. The advantage 

of this method is that it can ensure that the distribution of validation points was 

proportional to the area of each land-use type, whereas the PA and UA of the rare classes 

were statistically significant (Congalton and Green 2019). The generated points were 
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then visually interpreted and labelled based on the Landsat images, Google Earth history 

images, and our personal experiences. The allocation of validation points in each map 

is listed in Table 4.2. 

Table 4.2. Allocation of validation points (unit: points). 

Year 

Class 

1995 2001 2005 2010 2015 2020 

Unused land 90 66 89 106 111 105 

Industry & Commerce 50 51 53 59 65 75 

Recreation & Green space 50 50 50 50 52 53 

Mixed residence 51 55 62 70 80 100 

Mining site 50 50 51 50 50 50 

Agriculture with annual plants 171 158 129 83 72 70 

Agriculture with perennial plants 474 504 502 514 502 480 

Water surface 64 66 64 68 68 67 

TOTAL 1000 1000 1000 1000 1000 1000 

There is no common threshold for the acceptable accuracy rate in the literature 

because it depends on the purpose of the research (Congalton and Green 2019). In this 

study, we adopted the values given by Thomlinson et al. (1999) where OA was at least 

equal to 85% and PA and UA of classes were equal to or greater than 70%. 

4.3.5. Change detection and urban sprawl analysis 

Besides statistics on the area accounted for by each land-use type in each year, transition 

matrices were employed to assess the detailed ‘from-to’ change between land-use 

classes in different years. It is a common approach in land-use change studies to compare 

maps between different time points (B. Zhang et al. 2017). The rows of the transition 

matrix represent the land-use classes of the former time point (T1), whereas the columns 

represent the ones of the later time point (T2). The main diagonal elements indicate the 

landscape area that shows the persistence of class i. Off diagonal entries indicate a 

transition from class i in T1 to a different class j in T2. 

Urban sprawl is defined as ‘the spreading of urban developments (such as houses 

and shopping centres) on undeveloped land near a city’ (Merriam-Webster 2022). 

Although some studies distinguished the terms ‘urban expansion’ and ‘urban sprawl’ 

(Amponsah et al. 2022; Pratama et al. 2022), most studies in the literature used the two 

terms with the same meaning. In this paper, we also used them interchangeably. To 

analyze the spatial and temporal processes of the urban expansion, the land-use maps 

were first reclassified into two: urban and nonurban. In this study, the urban area was 

considered as both mixed residential regions as well as industrial and commercial zones; 

meanwhile, other land-use types belonged to the nonurban area. Afterward, the annual 

expansion rate (AER) and expansion contribution rate (ECR) were calculated to measure 

the characteristics of the urban sprawl of each administrative unit of Binh Duong 

province. The metrics were defined by Kantakumar et al. (2016) as follows: 

𝐴𝐸𝑅 =
𝐵(𝑖,𝑡2)−𝐵(𝑖,𝑡1)

𝑡2−𝑡1
      (1) 
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𝐸𝐶𝑅 =
𝐵(𝑖,𝑡2)−𝐵(𝑖,𝑡1)

𝐵𝑡2−𝐵𝑡1
× 100%     (2) 

where AER is the annual urban expansion rate during the period (in km2.year−1), ECR is 

the percentage share of urban expansion of an individual administrative unit in the study 

area (in percent); B(i,tj) is the built-up area within administrative unit i at time tj (in km2), 

and Btj is the total built-up area in the study area at time tj. 

In addition, we employed the ring- and sector-based analyses. A ring-based 

analysis is a spatial analysis based on concentric circles separated by a certain distance, 

meanwhile, a sector-based analysis is based on sectors (i.e. fan-shaped areas) that have 

the same central vertex but in different orientations. These approaches have proven their 

effectiveness in exploring the spatial distribution of urban areas in terms of distance and 

orientation relative to a predefined urban centre point (Yin et al. 2011; Jiao 2015; Peng 

et al. 2015; Rimal et al. 2017; Acheampong et al. 2018; Cao et al. 2019). Analyzing 

urban expansion in terms of distance and orientation is important because it can reveal 

the pattern of urbanization, and it also can reflect the impact of land-use planning and 

policies on the urbanization process. In these analyses, defining a place as the urban 

centre point is an essential requirement. We considered the Thu Dau Mot market as the 

urban centre. From this point, 32 buffer zones with a distance of 2 km and 16 sector fans 

with an angle of 22.5° were generated to measure the distance and orientation, 

respectively (Figure 4.3). After that, the buffer zones and sectors were overlaid with 

land-use maps. The urban area was then summarized in each buffer zone and sector. 

 
Figure 4.3. Ring- and sector-based analyses. 
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4.4. Results 

4.4.1. Accuracy of extracted land-use maps 

The OA of the extracted land-use maps in 1995, 2001, 2005, 2010, 2015, and 2020 were 

89.2%, 88.9%, 89.6%, 90.8%, 93.0%, and 90.1%, respectively. The PA of the maps 

ranged from 70.8% to 100%, whereas the UA ranged from 70.9% to 100% (Table 4.3). 

These results showed that the maps are suitable for land-use change analyses. 

Table 4.3. Accuracy of extracted land-use maps. 

Year 

Class 

1995 2001 2005 2010 2015 2020 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

UL 70.8 75.6 80.0 78.8 73.3 83.1 82.7 81.1 87.5 88.3 80.2 88.6 

IC 88.2 90.0 71.0 86.3 78.8 98.1 82.8 89.8 87.5 86.2 87.7 85.3 

RG 95.9 94.0 97.3 72.0 91.7 88.0 95.9 94.0 98.1 98.1 90.2 86.8 

MR 81.4 94.1 73.6 70.9 90.7 79.0 75.0 81.4 80.5 87.5 82.4 75.0 

MS 92.6 100 94.2 98.0 96.2 98.0 96.0 96.0 100 98.0 98.0 96.0 

AA 83.5 80.1 83.7 81.0 79.4 77.5 84.0 75.9 81.7 80.6 77.8 80.0 

AP 93.7 91.4 93.9 94.2 95.1 92.4 95.3 94.9 96.8 96.2 94.0 94.6 

WS 98.5 100 91.7 100 96.9 98.4 94.3 97.1 98.5 95.6 100 97.0 

  OA = 

89.2% 

OA = 

88.9% 

OA = 

89.6% 

OA = 

90.8% 

OA = 

93.0% 

OA = 

90.1% 

Note: OA = overall accuracy; PA = producer’s accuracy; UA = user’s accuracy; UL = Unused 

land; IC = Industry & Commerce; RG = Recreation & Green space; MR = Mixed residence; 

MS = Mining site; AA = Agriculture with annual plants; AP = Agriculture with perennial 

plants; WS = Water surface. 

4.4.2. Land-use dynamics 

The land-use maps in Binh Duong province at six time points are illustrated in Figure 

4.4, and the detailed dynamics of each class from 1995 to 2020 are presented in Figure 

4.5 and Table 4.4. In addition, a transition matrix of land-use types between 1995 and 

2020 was developed (Table 4.5). 

In terms of spatial distribution, mixed residential areas, industrial and 

commercial zones, recreation areas, and quarries were concentrated in the south of the 

province, and the north was mainly agricultural land for perennial plants; meanwhile, 

the fields of annual plants were mainly distributed along rivers, canals, and streams of 

the Sai Gon-Dong Nai river system. Agriculture with perennial plants was always the 

dominant class in the study area, with a proportion of 70.5% or more. In general, it is 

clear that from 1995 to 2020, a large amount of the agricultural land and unused land 

was converted to other uses. This conversion led to a strong change in the proportion 

between each land-use class over the past 25 years. 

Between 1995 and 2020, there was a dramatic continuous upward trend in the 

mixed residential areas as well as industrial and commercial zones. In 1995, the area of 

mixed residence only accounted for 4.9 km2. It rose to 21.9 km2 in 2001, 133.5 km2 in 

2015, and 222.8 km2 in 2020. Similarly, from occupying an area of only 0.2 km2 in 1995, 
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Figure 4.4. Land-use maps of Binh Duong province in the referenced years. 
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Figure 4.5. Dynamics of land-use in (a) proportion and (b) area. 

Table 4.4. The annual change rate of each land-use type in each period (in km2.year−1). 

Land-use type 1995–

2001 

2001–

2005 

2005–

2010 

2010–

2015 

2015–

2020 

Unused land −17.6 25.0 15.4 4.4 −4.9 

Industry & Commerce 0.6 1.9 5.7 5.2 8.9 

Recreation & Green space 0.1 −0.1 0.8 0.6 0.8 

Mixed residence 2.8 8.5 6.6 8.9 17.9 

Mining site 0.0 0.4 0.2 0.3 0.2 

Agriculture with annual plants −10.0 −32.9 −40.9 −9.7 −2.2 

Agriculture with perennial plants 23.0 −0.9 8.7 −9.9 −20.3 

Water surface 1.0 −2.0 3.5 0.1 −0.3 
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Table 4.5. Transition between land-use classes from 1995 to 2020 (in km2). 

Transition Summary 

2020 

1995 

UL IC RG MR MS AA AP WS Loss Gain Total 

loss/gain 

UL 26.1 21.1 1.3 22.4 0.4 2.6 103.8 1.1 152.7 222.2 69.5 

IC 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 109.9 109.7 

RG 0.0 0.0 0.3 0.1 0.0 0.0 0.0 0.0 0.1 11.8 11.7 

MR 0.1 0.6 0.0 4.0 0.0 0.0 0.1 0.0 0.9 218.8 217.9 

MS 0.1 0.0 0.0 0.1 0.3 0.1 0.3 0.3 0.9 6.5 5.6 

AA 40.1 17.9 2.6 48.1 3.4 59.1 357.9 14.7 484.8 29.5 −455.3 

AP 181.5 69.9 7.9 147.8 2.7 25.9 1459.0 4.1 439.8 466.5 26.7 

WS 0.3 0.2 0.1 0.2 0.0 1.0 4.3 58.1 6.1 20.2 14.1 

Note: UL = Unused land; IC = Industry & Commerce; RG = Recreation & Green space; 

MR = Mixed residence; MS = Mining site; AA = Agriculture with annual plants; 

AP = Agriculture with perennial plants; WS = Water surface. 

the industrial and commercial zones expanded to 11.3 km2 in 2005 and 110.0 km2 in 

2020. As a result, the mixed residential areas as well as industrial and commercial zones 

expanded by a total of 217.9 and 109.7 km2, respectively, within the 25 years. These 

expansions took about 217.7, 66.0, and 43.5 km2 from perennial cropland, annual 

cropland, and unused land, respectively. 

Although not as dramatic as the two built-up classes, the recreation, green space, 

and mining sites also had an uptrend in its area. From 1995 to 2005, the area of recreation 

and green space increased slightly from 0.5 to 0.8 km2. After that, it increased rapidly to 

12.1 km2 in 2020. To tradeoff for this expansion, the areas of perennial plants, annual 

crops, and unused land reduced a total of 7.9, 2.6, and 1.3 km2, respectively. Meanwhile, 

the mining sites experienced continuous growth from 1.2 km2 in 1995 to 6.8 km2 in 2020 

for the 25 years. This expansion took a total of 6.5 km2 from agricultural and unused 

land, whereas, since 2005, some quarries in Di An district have been closed permanently 

and converted to other land uses. 

During the study period, 6.1 km2 of water surface were occupied for other 

purposes, mainly for agricultural activities. Meanwhile, 20.2 km2 of water surface were 

added, mainly from agricultural land, unused land, and mining sites. Consequently, 

although there was a fluctuation over time, the water surface area increased from 

64.2 km2 in 1995 to 78.3 km2 in 2020. 

Contrariwise, although supplemented by the conversion from other types, the 

area of agriculture with annual plants continuously decreased significantly over the 

25 years. The area of annual plants reduced by 83.7%, from 543.9 km2 in 1995 to 

88.6 km2 in 2020. From occupying more than 20% of the province’s area, its proportion 

reduced to only 3.3%. In which, the nine-year period from 2001 to 2010 was the period 

that experienced the most dramatic decline. Meanwhile, the change in agricultural land 

for perennial plants can be categorized into two main trends: upward from 1995 to 2010 

and downward from 2010 to 2020. The area increased from 1,898.8 km2 in 1995 to 
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2,076.5 km2 in 2010 before reducing to 1,925.5 km2 in 2020. In addition to the 

conversion to other types of land-use, there was a transition between annual and 

perennial croplands over the studied period. About 357.9 km2 of annual cropland was 

converted into perennial cropland from 1995 to 2020. Besides, about 25.9 km2 of 

perennial croplands have been converted into annual croplands. 

In terms of unused land, there was a fluctuation over the 25 years. Its area 

decreased from 1995 to 2001 and from 2015 to 2020; meanwhile, it increased from 2001 

to 2015. In the 25 years, the total unused land area converted to other purposes was 

152.7 km2, mainly for re-cultivation and construction. In addition, 222.2 km2 of other 

classes, mainly from agricultural land, were temporarily converted to unused land. 

Therefore, from accounting for 178.8 km2 in 1995, Binh Duong province had 

approximately 248.3 km2 of temporarily unused land in 2020. 

4.4.3. Urban expansion analysis 

The pattern of urban expansion in Binh Duong province is illustrated in Figure 4.6. The 

study result revealed that the developed area in Binh Duong province expanded rapidly, 

nearly 65 times, from 5.1 km2 in 1995 to 332.8 km2 in 2020. In addition, the gradual 

increase in the slope of segments in the line graph in Figure 4.6 indicates that the urban 

sprawl rate of the following period was always higher than that of the previous period. 

The AER increased from 3.4 km2.year−1 in 1995–2001 to 6.9, 10.2, 11.8, and 

22.3 km2.year−1 in the periods of 2001–2005, 2005–2010, 2010–2015, and 2015–2020, 

respectively. 

 
Figure 4.6. Urban expansion in Binh Duong province from 1995 to 2020. 
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However, the analysis result showed that the growth rate and contribution to the 

urban expansion among districts were not equal (Table 4.6) in each period. For urban 

districts, Di An and Thuan An districts had the highest two urbanization rates in the 

province from 1995 to 2005; their rates reached 3.1 and 4.1 km2.year−1, respectively. 

Thus, they were the main contributors to the urban expansion of the entire province in 

that period, with the ECR of each district ranging from about 30%–40%. However, in 

later periods, the urbanization rate of these two districts tended to decrease. Meanwhile, 

the AER of Tan Uyen, Ben Cat, and Thu Dau Mot gradually increased, and they shared, 

in turn, the top positions of main contributors from 2005 to 2020. In particular, the period 

of 2015–2020 witnessed an extremely rapid urban expansion of Tan Uyen and Ben Cat 

at an AER of approximately 6.0 km2.year−1, whereas the AERs of Di An and Thuan An 

decreased to within 1.0–2.0 km2.year−1. For rural districts, urban areas have only 

expanded significantly since 2015. The most significant was Bau Bang achieving an 

AER of 2.8 km2.year−1 and an ECR of 10.5%, whereas other districts had an AER 

between 1.5 and 2.2 km2.year−1. 

Table 4.6. Annual expansion rate (AER in km2.y−1) and expansion contribution rate (ECR in 

percent) of districts. 

District Type 1995–2001 2001–2005 2005–2010 2010–2015 2015–2020 

AER ECR AER ECR AER ECR AER ECR AER ECR 

Thu Dau 

Mot 

Urban 0.6 16.2 0.9 8.6 2.5 20.2 2.9 20.8 3.5 13.3 

Thuan An Urban 1.1 33.0 4.1 39.2 2.1 16.8 3.0 21.4 2.0 7.5 

Di An Urban 1.3 38.1 3.1 29.9 1.6 13.4 2.3 16.0 1.0 3.7 

Tan Uyen Urban 0.2 5.9 1.2 11.1 1.7 14.3 3.6 25.3 6.0 22.4 

Ben Cat Urban 0.1 3.3 0.8 7.9 2.7 21.8 1.4 9.8 5.7 21.5 

Phu Giao Rural 0.0 0.2 0.2 1.5 0.3 2.2 0.3 2.2 2.2 8.1 

Dau Tieng Rural 0.0 0.7 0.1 0.7 0.3 2.8 0.1 0.5 1.5 5.5 

Bau Bang Rural 0.1 2.3 0.1 0.5 0.5 4.4 0.1 0.8 2.8 10.5 

Bac Tan 

Uyen 

Rural 0.0 0.3 0.1 0.7 0.5 4.1 0.5 3.3 2.0 7.6 

The results of the sector- and ring-based analysis were illustrated in Figures 4.7 

and 4.8, respectively. Within 25 years, there has been a shift in the direction of urban 

expansion in the study area (Figure 4.7). From 1995 to 2015, the developed areas mainly 

expanded in the Southeast and East–Southeast directions from the urban centre point. 

However, since 2005, besides these two main directions, the urban area has been 

gradually expanded in the north and east directions, including Northwest, North–

Northwest, North, North–Northeast, Northeast, East–Northeast, and East. Besides, from 

2015 to 2020, the expansion to the north direction was stronger, whereas the expansion 

in the Southeast, East–Southeast, and East directions decreased significantly. Because 

this study was based on the administrative boundary, and Thu Dau Mot market––the 

predefined urban center––was located on the east bank of the Saigon River, whereas the 

west bank was the Ho Chi Minh City, there was almost no urban development in the 

directions from South–Southwest to West–Northwest (in the clockwise direction). 



71 

In addition, urbanization occurred strongly within 22 km from the urban centre 

over the 25 years (Figure 4.8). This zone encompasses the centre area of Thu Dau Mot 

city within 4 km and the Thuan An, Di An, Tan Uyen, and Ben Cat districts within a 

distance of 6–22 km from the urban centre. The outward movement of peak value from 

the distance of 10 km to 14 km indicated that the urban areas expanded strongly in the 

direction of gradually moving away from the urban centre. Meanwhile, from the 

distance of 22 km onward, urbanization seemed to have only begun to accelerate since 

2015, mainly in some central areas of the rural districts, yielding small peaks at distances 

of 26, 30, 40, and 46 km from the urban centre. 

 
Figure 4.7. Spatial orientation of urban area from 1995 to 2020 (Units: km2). 

 

 

 
Figure 4.8. Variation in urban area by distance from urban centre from 1995 to 2020. 
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Overall, the results of the district-, sector-, and ring-based analyses clearly 

showed that urbanization gradually expanded and shifted from the south to the north of 

the province during the 25 years. Before 2005, urban expansion mainly took place in 

Thuan An, Di An, and southern Thu Dau Mot. In the periods after 2005, the urban 

expansion rate in the southern districts decreased because the industrial activities in 

these localities had stabilized, the districts were almost filled by mixed residential areas 

and industrial zones. Afterward, industrial zones and mixed residential areas rapidly 

expanded to Tan Uyen, Ben Cat, and northern Thu Dau Mot as well as spread to rural 

districts at an increasingly rapid rate. 

4.5. Discussions 

4.5.1. Factors affecting land-use change from 1995 to 2020 

In summary, the common trends in land-use change over the 25 years in Binh Duong 

province is the conversion from agricultural land and unused land to other types of land-

use. These changes are attributable to urbanization and industrialization, agricultural 

development policies and practices, natural conditions, and rubber price fluctuation. 

This section mainly discusses the factors causing the transition of agricultural land, 

unused land, water surface, mining activity, and recreational areas. The factors leading 

to rapid urban expansion in the province are discussed in Section 4.5.2. 

Urbanization and industrialization are the primary causes of change. They lead 

not only to the inevitable expansion of built-up areas but also to other changes. These 

processes increase the demand for building materials for housing, industrial 

infrastructure, transportation systems, etc. (Schiller et al. 2020). Products of quarries in 

Binh Duong province serve the needs of not only the province but also neighbouring 

provinces. Consequently, although the mining activity may cause damages to the 

landscape, ecosystem, environmental quality, and health of people living around these 

areas (Bui et al. 2020; Vandana et al. 2020), the expansion of stone quarries occurred 

continuously during the 25 years. In addition, urban development includes not only the 

construction of residential, commercial, and industrial regions but also the establishment 

of amenity, relaxation, and leisure areas (Ty et al. 2014) as well as green space. In the 

period 1995–2005, there was only one recreation area, i.e. the Song Be golf course, and 

a few industrial parks. From 2005, many other recreation areas were formed, including 

the Dai Nam wonderland (2008), new city park (2009), Twin Dove golf course (2010), 

Harmonie golf course (2018), and Mekong golf course (2019). In addition, many new 

industrial parks were established and put into operation. The emergence of these areas 

caused the area of recreation and green space to increase rapidly. Overall, it can be 

observed that the majority area of the mentioned transition during the process of 

urbanization and industrialization is from agricultural land and unused land. 

The changes in water surface area mainly came from the operation of the Dau 

Tieng reservoir, agricultural and aquacultural activities, hydrological regime, and the 
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accumulation of rainfall water in exquarries. In addition, the construction of the Phuoc 

Hoa irrigation dam on Be River in the northern part of the province contributed to an 

increase in the water surface area since the 2010s. Phuoc Hoa Dam locates between Binh 

Duong and Binh Phuoc provinces and is connected to the Dau Tieng reservoir. This 

project has significant roles in supplying domestic and industrial uses and irrigation of 

more than 58,360 ha of agricultural land in Binh Duong, Binh Phuoc, Ho Chi Minh City, 

Tay Ninh, and Long An. Besides, the dam helps improve the environment and water 

quality in the downstream areas of the Sai Gon and Vam Co Dong rivers (Vu Van and 

Nguyen Hai 2015). 

In addition to the conversion to other types of land-use, there was a transition 

between annual and perennial croplands over the studied period. In fact, the conversion 

from annual cropland into perennial cropland was mainly from low-yielding crops to 

higher-value perennial trees, such as rubber, pepper, cashew, and fruit trees, which were 

more favourable with the climate and soil of Binh Duong. Especially before 2011, owing 

to the continuous growth in demand for rubber leading to its price increase (Fox and 

Castella 2013; Hurni and Fox 2018), the conversion to rubber plantations was common 

in the northern part of the province. The expansion of rubber farms was also a general 

trend occurring in many other localities in Vietnam and Southeast Asia during this 

period. The rubber plantation area in Vietnam increased from 3,950 km2 in 1999 to 

5,500 km2 in 2007 (Fox and Castella 2013), mainly in the central highlands and southern 

part. Meanwhile, in the entire Mainland Southeast Asia, 74,960 km2 of land was 

converted to rubber farms from 2003 to 2014, of which 30% was conversions from low 

vegetations (mainly annual crops) (Hurni and Fox 2018). In addition, since 2010, the 

province has had an agricultural development planning policy until 2020, in which 

priority is given to the expansion of areas specialized in rubber, fruit trees, and safe 

vegetables. Therefore, the area planted with annual crops continued to be replaced by 

perennial crops (People’s Committee of Binh Duong Province 2010; People’s 

Committee of Binh Duong Province 2018). Meanwhile, the conversion from perennial 

croplands into annual croplands is mainly due to the impact of the sharp drop in rubber 

prices since 2011 (Hurni and Fox 2018). Many farmers have cut down their rubber 

plantations to grow short-term crops, mainly grass for animal husbandry. In addition, 

the agroforestry practices, i.e. the intercropping practices of the young rubber with 

annual crops such as legumes, corn, sesame rice, cassava, papaya, and bananas, are a 

factor increasing annual croplands in the classified maps. These issues are also found in 

other rubber-growing areas (Stroesser et al. 2018; Kusakabe and Chanthoumphone 

2021; Huang et al. 2022; Su et al. 2022). In summary, the transition between annual and 

perennial croplands is due to the effects of agricultural development policies and 

practices, natural conditions, and product price fluctuations in the market. 

In the study area, unused land is a type of land-use with special characteristics. It 

is considered as the intermediate class in the transition between other classes. Therefore, 
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besides the variation in area, its spatial distribution is hardly fixed, especially in 

agricultural regions. The conversion to and from unused land comes from two main 

reasons: agricultural activities and planning of urban and industrial development. In the 

former, the agricultural land is often converted to unused land and then re-cultivated in 

a short time, which can easily be seen in between 1995 and 2001, as an example. In the 

latter, its behaviour is more complicated. The planned areas are levelled and converted 

into bare land (considered as temporarily unused land) to prepare for construction in the 

following stages. However, there is a fact in Vietnam that these areas may be quickly 

converted into built-up areas or remain as bare land for a long time depending on the 

development plan and investment progress. Therefore, the accumulation of this kind of 

‘unbuilt-up’ bare land coupled with the emergence of new bare land areas for other 

reasons can cause the area of unused land to fluctuate over time. 

4.5.2. Factors affecting urban expansion from 1995 to 2020 

The orientation of urban development in Binh Duong found in this study clearly reflects 

the natural conditions and history of the province as well as the province’s development 

policies and land-use planning. 

First, Thu Dau Mot city, which is the urban centre of the province, is a long-

established urban area on the banks of the Saigon River. Along with Thu Dau Mot, there 

are some towns developed in the south, such as Lai Thieu, Bung, and Di An. This area 

had favourable conditions for urbanization and industrialization such as its location near 

Ho Chi Minh City, convenient rail, and road traffic, a long history of urban development, 

commercial activities and handicrafts, and dense population (Le 2019). Therefore, after 

re-establishing the province in 1997, the provincial government focused on urbanization 

and industrialization in the southern region, including Thu Dau Mot, Thuan An, and Di 

An (Party Committee of Binh Duong Province 1997; Party Committee of Binh Duong 

Province 2001). 

Second, since 2007, the government has, in turn, issued decisions on the master 

plan for socio-economic development and urban development of Binh Duong province 

until 2020, with a vision for 2030 (Prime Minister of Vietnam 2007; People’s 

Committee of Binh Duong Province 2012; Prime Minister of Vietnam 2014), to upgrade 

Binh Duong into a centrally-controlled city (as known as a municipality, Vietnamese: 

thành phố trực thuộc trung ương) in the period 2020–2030. With the orientation to 

become an ‘industrial metropolis’ and develop evenly based on a regional strategy to 

reduce the imbalance in urban distribution, the provincial government has expanded the 

distribution of industrial zones to the north. Accordingly, the Binh Duong metropolis is 

divided into three subregions: (1) Southern urban region (Di An, Thuan An): compact 

urban model, high density. (2) Central urban region (Thu Dau Mot, Ben Cat, Tan Uyen): 

multifunctional and multicentre model, medium density. The administrative-political 

centre is moved to the new urban area of Hoa Phu–Phu Tan (as known as the Binh 
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Duong new city) in the north of Thu Dau Mot, located in the Binh Duong Industrial–

Service–Urban Complex. (3) Northern urban region (the other districts): satellite urban 

model, low density. Under these policies, the urban and industrial areas in Binh Duong 

gradually expanded to the north in latter periods. 

Third, the increasing urbanization rate of the province stems from 

industrialization. In addition to the master plans, a series of flexible policies have been 

implemented by the provincial government for industrial development. They comprise 

policies on land acquisition, development of transport systems and industrial 

infrastructure, reform of administrative procedures, attraction of investment capital, and 

attraction of human resources (Le 2019; Le et al. 2019; Nguyen et al. 2019; Do et al. 

2020). These policies can be briefly summarized as follows: (1) accelerating the land 

clearance and conversion from agricultural land to urban and industrial land by policies 

on resettlement, vocational training, and job creation for people whose land has been 

acquired; (2) simplifying administrative procedures to attract domestic and foreign 

investment to industrial parks; (3) mobilizing nonbudget capital to develop the 

infrastructure of industrial zones and improve the transport system based on the build-

operate-transfer model; (4) implementing policies on housing and social benefits for 

workers. These policies have created a favourable investment environment and 

confidence for investors. As a result, investment capital into the province continuously 

increased. The total foreign direct investment capitals in the periods of 2001–2005, 

2006–2010, and 2010–2015 were USD 1.8 billion, 5.7 billion, and 10.2 billion, 

respectively, in which investment capital in industrial zones accounted for 90% (Binh 

Duong Statistical Office 2016). In consequence, many projects have been invested, new 

factories have been continuously formed and expanded. Since the first industrial park 

was established in 1995, as of 2019, Binh Duong has 29 industrial parks and 12 

industrial clusters, with an average occupancy rate of over 70% in which many of them 

have been filled over 90%. 

Last, as a result of the mentioned policies, the industrial development in the 

province created a job market with high and stable income. The monthly average income 

per capita at current prices of Binh Duong province and the Southeast region is higher 

than that of other regions of Vietnam (Table 4.7). People tend to migrate from low- to 

high income areas (Phan and Coxhead 2010). Career opportunities with high income 

combined with housing and social benefits have led to not only the movement of people 

from rural to urban areas within the province but also the migration of foreigners (Figure 

4.9), thereby increasing the population. Industrial development and population growth 

increased the demand for housing, transportation, and other utilities, creating a force for 

the expansion of mixed residential areas and other facilities. Since 2002, with the 

explosion of urban migration, the provincial government first implemented the concept 

of industrial park development in association with mixed residential areas and utilities 
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for the planning of My Phuoc industrial park. This concept was then widely applied to 

the planning of urban and industrial zones in later stages. 

Table 4.7. Monthly income per capita at current prices of Binh Duong province, economic 

regions, and the whole country of Vietnam (in thousand VND). 

Year 

Region 

1999 2010 2019 

Binh Duong province no data 2698 7433 

Southeast 571 2304 6280 

Whole country of Vietnam 295 1387 4295 

Mekong River Delta 342 1247 3886 

Central Highlands 345 1088 3095 

North Central area and Central coastal area 229 1018 3331 

Red River Delta 282 1580 5191 

Northern midlands and mountain areas 199 905 2640 

Source: General Statistics Office of Vietnam (2021). 

 

 
Figure 4.9. (a) Population growth and (b) growth rate in Binh Duong province (1997–2019). 

Overall, the pattern of urban expansion in Binh Duong from 1995 to 2020 is the 

gradual transition from a compact urban form to a dispersed urban form, which is also 

found in many other cities in developing regions (Marengo 2015; Sumari et al. 2019; 

Xu, Dong, et al. 2019; Xu, Jiao, et al. 2019). This pattern is the result of the combined 

effects of natural conditions, history, economic development, demographics, land-use 

and urban planning, and policies. These findings are consistent with the results of many 

studies on urban sprawl in cities around the world (Reilly et al. 2009; Mahendra and 

Seto 2019; Shao, Sumari, et al. 2021; Mahtta et al. 2022). Of which, either population 

growth or economic growth was often considered the main driver for urban expansion, 

depending on the regional variations (Mahendra and Seto 2019; Mahtta et al. 2022). For 

Binh Duong, the importance of these two drivers changes over time. This is consistent 

with the findings of Mahtta et al. (2022) when they studied the role of population and 

economic growth in urban land expansion in more than 300 cities between 1970 and 
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2014. The authors revealed that although population growth was the primary driver, the 

effect of economic growth has increased significantly in importance since 2000, 

especially in low-income, low-middle-income, and upper-middle-income countries. 

They also stated that this increase occurred up to a point. Population growth, mainly due 

to migration, would again be an important driver since a country entered the highest 

income category. This is what happened in Binh Duong during the study period although 

only on a local scale. 

4.5.3. Take-away for practice 

Some practical experience, which may help in land planning and policymaking for other 

localities, can be learned from the pattern of land use change and urban sprawl in Binh 

Duong province as follow. 

• Besides having good land-use and urban planning, focusing on infrastructure 

development, investment attraction, and human resources attraction are essential 

factors to accelerate the process of industrialization and urbanization. 

• Despite rapid urbanization, inefficient land use (i.e. unused land) remains a 

dilemma. Measures to accelerate the progress of projects to increase the 

efficiency of urban land use are necessary. 

• Urbanization often leads to an impact on the real estate market and causes 

housing prices to increase rapidly. This issue needs to be regulated. 

• The rapid increase in housing prices due to urbanization along with fluctuations 

in agricultural market prices can have a negative impact on the land-use practices 

of farmers. It is necessary to regulate these issues to limit the conversion of land 

use purposes or the conversion of crops to follow short-term market trends. 

4.6. Conclusion 

Although the information on spatiotemporal land-use change and urbanization status is 

necessary for land-use planning and decisionmaking, it is still lacking in many urban 

regions, especially emerging urban areas such as Binh Duong province of Vietnam. By 

using land-use maps extracted from multitemporal Landsat images and spatial analysis 

techniques, the spatiotemporal pattern of land-use change and urban expansion in Binh 

Duong province from 1995 to 2020 were analyzed in this study. 

The research results showed that there were different trends in the area variation 

of land-use types, and there was a large transition from agricultural and unused land to 

other types of land-use within 25 years. This study also revealed that the urban area of 

the province expanded 65 folds within the 25 years at an increasing rate. The expansion 

rates were uneven between subregions, and there was a gradual expansion and shift from 

south to north of the province and spreading to rural districts at an increasingly rapid 

rate during the study period. It led to a gradual transition from a compact urban form to 

a dispersed urban form. The factors affecting land-use change and urban expansion of 

Binh Duong province were also discussed. They comprise the natural conditions, 
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development history, policies and practices for urbanization, industrialization, and 

agricultural development, and fluctuation in the prices of products in the market. 

The results of this study reveal a pattern of rapid urbanization in developing 

countries under the impact of land policies. Some practical lessons can be drawn from 

them. They can lay the groundwork for further studies on urban planning, land 

management, and policymaking in other localities not only in Vietnam but also in other 

countries. Further, land-use change can also cause adverse effects on the quality of the 

environment, landscape, and human health. Further studies on these issues are required. 
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Abstract 

The main purpose of this study is to simulate future land use up to 2030 and to evaluate 

the change in landscape pattern due to land-use change from 1995 to 2030 in Binh 

Duong province, Vietnam. Land-use maps generated from multi-temporal Landsat 

images from 1995 to 2020 and various physical and social driving variables were used 

as inputs. Markov chain and Decision Forest algorithm integrated in Land Change 

Modeler application of IDRISI software were used to predict quantity and location of 

future land-use allocation. Meanwhile, FRAGSTATS software was used to calculate 

landscape metrics at class and landscape levels. The simulation results showed that there 

will be 253.8 km2 of agricultural land urbanized in the period from 2020 to 2030. The 

urban areas will gradually expand from the edge of the existing zones and fill the newly 

planned areas from South to North and Northeast of the province. The results also 

revealed that the studied landscape was decreasing in dominance and increasing 

diversity and heterogeneity at landscape level. The processes of dispersion and 

aggregation were taking place at the same time in the entire landscape and in the urban 

class. Meanwhile, the classes of agriculture, mining, and greenspace were increasingly 

dispersed, but the shape of patches was becoming more regular. The water class 

increased the dispersion and the irregularity of the patch shape. Finally, the landscape 

metrics of the unused land fluctuated over time. 

Keywords: land-use prediction; landscape pattern; remote sensing; Land Change 

Modeler; FRAGSTATS; IDRISI 

5.1. Introduction 

Socio-economic development can impact on land-use change process in many ways 

(Lambin and Meyfroidt 2010). In developing countries, the process of urbanization and 

the shift of socio-economic development policies, such as from agriculture-based to 

industry-oriented economy, lead to high land-use demand (Nourqolipour et al. 2016). 

As a result, the land-use transition is intense. Much of the transition in this context has 

been from natural and semi-natural to artificial landscapes. In recent years, due to 

population growth and urbanization, land-use change has taken place strongly in the 

vicinity of existing urban areas and in the key economic development zones in Vietnam 

(Truong et al. 2018; Nguyen and Kim 2020; Ha et al. 2020).  

For example, in Binh Duong province, which is in the neighbourhood of the 

largest metropolis of Vietnam, and in the southern key economic zone, urbanization and 

industrialization have taken place very strongly in the last 25 years (Le 2019; Le et al. 

2019). As a result, a large amount of agricultural land has been converted into industrial 

zones and urban areas. This type of conversion is still ongoing.  

Land-use change affects landscape patterns and, as a result, ecosystem functions 

(Lin et al. 2013; Estoque and Murayama 2016; Tolessa et al. 2017; Kertész and Křeček 

2019; Tang et al. 2020). Therefore, quantification of changes in landscape patterns, 
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including shape, size, and spatial distribution, is essential, especially where land-use 

change is dramatic, such as in emerging urban areas. The quantification facilitates 

comparison and assessment of landscape change during past and future land-use change. 

At the same time, it can also partly reveal the impact trend of land-use changes on the 

structure and function of diverse types of landscapes and ecosystems. This information 

may be useful for decision-making and land-use planning toward efficient use of 

resources and sustainable development (Vaz et al. 2014; Abdolalizadeh et al. 2019). The 

landscape pattern change is often assessed by landscape metrics at the three levels 

including patch, class, and landscape (Turner and Gardner 2015; Gergel and Turner 

2017; Gudmann et al. 2020). 

To calculate landscape metrics, land-use maps are often used as input. The maps 

in the past can be generated by historical geodetic measurement and administrative land-

change records over the years. Another fast and effective method that is widely applied 

is to interpret from remote sensing images (Rahman 2016; B. Zhang et al. 2017; Singh 

et al. 2018). Although the use of remote sensing images to create land-use maps has 

some limitations such as resolution, classification algorithms, the ability to distinguish 

land use, etc., this is still a useful approach due to its promptness and proactivity. 

Meanwhile, future land-use maps can be collected from land-use planning maps or from 

simulation based on past variability trends and future demand in terms of quantity and 

spatio-temporal distribution (Zheng et al. 2015; Saxena and Jat 2019; Yin et al. 2021). 

There are many models developed for land-change simulation, such as CLUE-S, 

CLUMondo, Land Change Modeler (LCM), LucSim, DinamicaEGO, SLEUTH, etc. 

Each model has its own pros and cons, and the choice of model to use depends on the 

goals and the available data of the study (Camacho Olmedo et al. 2018). LCM is one of 

the popular applications used to assess and simulate land-use change. The advantage of 

this application is that it is simple to use, easy to set up input parameters, has clear 

instructions, and many simulation algorithms are integrated. Many studies have used 

this application for land-use change prediction for various purposes (Megahed et al. 

2015; Nor et al. 2017; Islam et al. 2018; Mishra et al. 2018). 

With the mentioned issues in mind, this study was carried out for two main 

purposes including (1) Using LCM to simulate the future land use in Binh Duong 

province in 2025 and 2030, and (2) Quantification and evaluation of landscape change 

due to land-use change from 1995 to 2020 and forecast to 2030. 

5.2. Materials and methods 

5.2.1. Study area 

This study was conducted in Binh Duong province which located in the southeast region 

of Vietnam (Figure 5.1). The land-use change in the province took place dramatically 

from 1997 when the province was re-established. Agricultural land and unused land 

were converted to other uses, most of which were devoted to expanding residential and 
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industrial areas. These changes were mainly due to socio-economic factors including 

urbanization, industrialization, and structural changes in agricultural production, and 

related policies (Le 2019; Le et al. 2019; Bui and Mucsi 2022). 

 
Figure 5.1. Study area in two maps. a = Composite from Landsat-8 OLI image (RGB: 6-5-2) 

acquired on 06/01/2020 and downloaded from the USGS website 

(https://earthexplorer.usgs.gov/); b = Land-use map in 2020 derived from the study of Bui, 

D.H. and Mucsi, L. (2022). 

5.2.2. Data 

This study used the land-use maps in 1995, 2001, 2005, 2010, 2015, and 2020 which 

were generated from multi-temporal Landsat images from the study of Bui, D.H. and 

Mucsi, L. (2022). The map was in the WGS-84 UTM 48N projection and a spatial 

resolution of 30 m and consisted of 8 land-use types (Table 5.1). The overall accuracy 

of these maps was reported to be 89.2, 88.9, 89.6, 90.8, 93.0, and 90.1 percent, 

respectively. The producer’s accuracy ranged from 70.8 to 100 percent, while the user’s 

accuracy ranged from 70.9 to 100 percent. Therefore, it is appropriate and dependable 

to use them for land-change prediction and landscape analysis. 

Table 5.1. Land-use categories. 

ID Original land-use class New class for Land Change Modeler New ID 

1 Unused land Agricultural land 1 

2 Industry and Commerce Industry and Commerce 2 

3 Recreation and Greenspace Others 3 

4 Mixed residence Mixed residence 4 

5 Mining site Others 3 

6 Agriculture with annual plants Agricultural land 1 

7 Agriculture with perennial plants Agricultural land 1 

8 Water surface Others 3 

To explore the drivers for the land-use change, which was a key step for the 

simulation model of land-use change, several kinds of data were collected and pre-
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processed. SRTM 1 Arc-Second 30m digital elevation model (DEM) was downloaded 

from the website https://earthexplorer.usgs.gov/. Slope and aspect were extracted from 

the DEM. Population density raster data were downloaded from the website 

https://www.worldpop.org/ with a spatial resolution of 100 m. A raster of the mean 

population density in the period of 2010–2020 was calculated and resampled to a 30-m 

spatial resolution using bilinear method. All these raster data were pre-projected to 

WGS-84 UTM 48N. In addition, open water surfaces were extracted from the Open 

Street Map project (https://www.openstreetmap.org/) and downloaded from the website 

https://download.geofabrik.de/. Forest protection areas and planned industrial parks for 

2020 and 2030 were extracted from the planning map of the provincial government. The 

3-level main road network was extracted from the administrative map in 2014 and 

modified based on the Google satellite images.  

The location points of the administrative and economic centre of the province 

and districts (hereinafter referred to as province centre and district centres, respectively), 

airport, train stations, and river ports were manually digitalized based on the Google 

satellite images. All these data were collected in vector format. Therefore, they were 

rasterized to a spatial resolution of 30 m and a projection of WGS-84 UTM 48N. After 

that, the maps of Euclidean distance to the open water surfaces, planned industrial parks, 

main roads, province centre, district centres, and transportation ports were extracted in 

turns. Furthermore, based on the land-use maps, the map of Euclidean distance to current 

residential and industrial areas in 2001 and 2020 was also produced, respectively. 

5.2.3. Land-use change prediction 

This study tended to simulate the land use of the study area in 2025 and 2030 based on 

the land-use maps of previous periods and land-use change drivers. We only focused on 

simulating the transition from agricultural land to urban land, which was the major 

transition taking place in recent years. The land-used maps were re-classed from eight 

to four categories as shown in Table 5.1. It should be noted that the two urban classes 

were not grouped together because their expansion was driven by varied factors. As a 

result, the transition from agricultural land to urban land would be included two sub-

models. One was the transition from agricultural land to industrial and commercial 

regions (agri_to_indus), and the another was the transition from agricultural land to 

mixed residential areas (agri_to_resid). Other conversion types were ignored.  

The LCM application integrated in the Terrset IDRISI 2020 software was used. 

The simulation process consists of calibration, validation, and prediction. The overall 

process is illustrated in the Figure 5.2. The LCM includes six algorithm options for 

simulation, including Multi-layer Perceptron neural network, Decision Forest (DF), 

Logistic regression, Support Vector Machine, Weighted Normalized Likelihoods, and 

SimWeight. After some trials, the DF algorithm was chosen. The number of trees was 

https://earthexplorer.usgs.gov/
https://www.worldpop.org/
https://www.openstreetmap.org/
https://download.geofabrik.de/
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set at 100, and the number of variables at split was the square root of a number of input 

variables. 

 
Figure 5.2. Simulation process. 

At the calibration phase, the land-use maps of 2001 and 2010 were used as the 

earlier and later maps, respectively, combined with a set of variables to build the model. 

The purpose of these phases was to select appropriate variables as drivers for the land-

use change transitions. The variable selection was based on the Out of bag (OOB) 

accuracy in the output report of the transition sub-models. If the OOB accuracy when 

holding a given variable constant was greater than OOB accuracy with all variables, it 

means that the given variable might not be significant in the model (Eastman 2020a), 

and it was excluded. At the validation phase, the predicted map in 2020 was simulated 

and compared with the reality map in 2020 to validate the model. The performance of 

the model was evaluated by the Kappa coefficients (Pontius 2000; Hagen 2002; Hagen 

2003; Hagen-Zanker et al. 2005) and Figure of merit (FoM) (Pontius et al. 2008) for the 

hard-classification and the area under the curve (AUC) (Mas 2018) for the soft-

classification outputs. 
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After the performance of the model was confirmed and satisfied, the prediction 

phase was performed. In this phase, the land-use maps in 2015 and 2020 were used as 

input to predict the maps in 2025 and 2030 with the same set of drivers selected at the 

calibration and validation phases. The reason to use the maps 2015 and 2020 was that 

the urban area in Binh Duong province has expanded at an increasing rate from 1995 to 

2020 (Bui and Mucsi 2022), therefore, the two latest maps used may capture the most 

recent trend of urban expansion. This may more accurately reflect future land-use 

demand for the simulation. The land-use demand was calculated based on the Markov 

chain with the assumption that future conversion would be at a similar rate to the current 

period (Zheng et al. 2015). This calculation was built-in into LCM. The LCM also 

allows setting constraints and incentives for a particular type of conversion. The weights 

for these regions can be set between in a range of 0 to 1, where 0 is strictly forbidden 

and 1 is strongly encouraged. In this study, the protection forest was considered the 

prohibited area for both types of urbanization (weight of 0). For the agri_to_indus sub-

model, it was encouraged to develop inside the planned industrial parks with a weight 

of 1, and the rest was set to a weight of 0.1. For the agri_to_resid sub-model, the weights 

were set to 1 and 0 for areas outside and inside the planned industrial parks, respectively. 

After the prediction phases, the 4-class predicted maps in 2025 and 2030 were 

overlaid with the land-use map in 2020 (8 classes) to generate the 8-class land-use maps 

in 2025 and 2030, which would be used for calculating landscape metrics. 

5.2.4. Landscape metrics 

To measure the change in landscape patterns over time, this study used landscape 

metrics (McGarigal et al. 2012; Turner and Gardner 2015; Gergel and Turner 2017) at 

landscape and class levels. Because the mixed residential, industrial, and commercial 

areas formed the urban landscape, they were re-classed into a common class named 

urban. From the land-use maps, landscape metrics were calculated in FRAGSTATS 4.2 

software based on the eight-cell neighbour rule (McGarigal et al. 2012). The metrics 

were chosen so that they were representative of the features of the landscape, were not 

redundant, and have been widely and effectively used in previous studies (Su et al. 2014; 

Dadashpoor et al. 2019). The features measured included dominance, diversity, and 

fragmentation. The selected metrics is shown in Table 5.2, and a detailed definition and 

description of the metrics can be found in the FRAGSTATS Manual document 

(McGarigal et al. 2012). 

5.3. Results 

5.3.1. Simulation of land-use change in future 

5.3.1.1. Driving factors 

Based on the results of the analysis of OBB accuracy in the DF outputs, the drivers 

included in the two sub-models are presented in Table 5.3. The drivers included in these 

sub-models are reasonable. A common point of both sub-models is that natural factors 
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related to topography (DEM, slope, aspect) do not affect urbanization. Possibly because 

the terrain of the whole area is relatively flat, except for a few low-mountain areas within 

the protected area, the weighting of these factors is likely to be the same in most places. 

The impact of other drivers of each sub-model was explained in detail below. 

Table 5.2. Landscape metrics used. 

Metric Name Level used 

Landscape Class 

AREA_MN Mean Patch Size x x 

CONTAG Contagion Index x – 

IJI Interspersion and Juxtaposition Index x x 

LPI Largest Patch Index x x 

LSI Landscape Shape Index x x 

NP Number of Patches x x 

PD Patch Density – x 

PLAND Percentage of Landscape – x 

SHDI Shannon's Diversity Index x – 

SHEI Shannon's Evenness Index x – 

Table 5.3. Drivers for sub-models. 

No. Input drivers Selected drivers by Decision Forest 

algorithm 

Agri_to_resid Agri_to_indus 

1 DEM – – 

2 Slope – – 

3 Aspect – – 

4 Distance to water sources – x 

5 Distance to province centre x – 

6 Distance to district centres x x 

7 Distance to existing residential areas x – 

8 Distance to existing industrial areas – x 

9 Distance to planned industrial zones – x 

10 Distance to main road x – 

11 Distance to ports – x 

12 Mean population density in 2010-2020 x – 

For the agri_to_resid sub-model, the included drivers can be explained by the 

following reasons. First, the new settlements are often formed from the edge of existing 

neighbourhoods. Second, the more populous the places, the higher the demand for 

housing and utilities. Third, the choice of housing also depends on the accessibility to 

utility services, which are often concentrated in the central areas of the province and 

districts. Last, to access these facilities as well as workplaces, accessibility to the 

transportation network is clearly an influencing factor. Meanwhile, the excluded factors 

may be due to several reasons. According to the general development orientation of the 

province, residential areas are formed close to industrial zones, which make up industrial 

– urban – service complexes, thus, making the distance to the existing industrial park 

redundant. Except for Tan Son Nhat Airport, the rest of ports (train stations and river 

harbours) are cargo stations, not passenger stations, so it has no impact. The distance to 
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the water source is not included probably because residential areas mainly use water 

from boreholes or water supply systems, which are relatively well distributed in urban 

areas. 

Similarly, for the sub-model of agri_to_indus, the impact of included drivers can 

be explained as follow. First, new factories tend to form near previously developed 

places where infrastructure already exists. Second, the selection of sites within or near 

planned industrial zones is also to take advantage of the planned infrastructure and 

preferential policies from the provincial government. Third, reducing the distance to 

district centres and ports can increase market access and reduces transportation costs. 

Last, the ability to access water is probably to serve the needs of exploiting water 

resources for production activities. Meanwhile, the excluded drivers can be explained 

by some reasons. Similar to the case of the agri_to_resid sub-model, the distance to the 

existing residential areas is redundant. Distance to the province centre is also redundant 

compared to the distance to district centres. Besides, population density does not affect 

industrial development, maybe because of convenient transportation, people can go to 

work farther, so it is not necessary to form factories near densely populated areas to 

utilize human resources. Interestingly, the distance travelled does not affect the model 

either. Maybe because the current transport system has developed relatively widely, and 

the planning of new industrial zones also leads to the expansion of the transport network 

to access these zones. Therefore, this variable has no effect. 

5.3.1.2. The performance of selected model 

Four different maps of the study area (reality map, hard prediction map, soft prediction 

map and cross-validation map in 2020) are illustrated in Figure 5.3. 

For hard prediction, the Kappa coefficients and FoM were used to evaluate the 

accuracy of the predicted map in 2020 and thereby validate the performance of the 

selected model. The results showed that Kappa, Kappa location, and Kappa histogram 

coefficients reached 0.71, 0.72, and 0.99, respectively. The simulated map contained the 

percentages of hits, null successes, misses, and false alarms of 3.77, 87.75, 4.54, and 

3.94 percent, respectively. As a result, the FoM achieved 30.77 percent, producer’s 

accuracy achieved 41.71 percent, and user’s accuracy achieved 48.88 percent. 

It can be seen that these values were relatively low. An important source of error 

was that the hard classification result was only one outcome in many equally plausible 

scenarios (Eastman 2020b). Therefore, it was difficult to predict exactly the location in 

terms of pixel-level where the change would take place. As can be seen visually, the 

hits, false alarms, and misses tended to occur in the same location in close proximity. 

This revealed that predicting the location of the change was relatively accurate. For 2-

dimensional assessment, when validating by fuzzy Kappa using the exponential decay 

function (radius of neighbourhood = 4, halving distance = 2), the fuzzy Kappa value 

reached 0.77 and the average similarity achieved 0.94, which is much better than the 
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traditional kappa coefficients. In addition, for 3-dimensional assessment, according to 

Pontius, R.G. et al. (2008), the FoM is proportional to net changes in the study area. In 

this study, the actual rate of change from agricultural land to urban in the period 2010–

2020 accounted for 4.32 percent of the entire area and 8.52 percent of the total 

agricultural area in 2010. The calculated FoM value was relatively high compared to 

these rates. Furthermore, Peng, K. et al. (2020) mentioned that “the spatial allocation 

algorithm cannot well simulate the isolated patches that newly emerged”. Last but not 

least, the FoM value in this study was higher than that in other studies, where the FoM 

was less than 20 percent (Megahed et al. 2015; Peng et al. 2020). 

 
Figure 5.3. Reality map (a), hard-prediction map (b), soft-prediction map (c), and cross-

validation map (d) for the study area in 2020. 

The soft prediction result was validated by the AUC. The AUC is an index used 

to evaluate “how well a continuous surface predicts the locations given the distribution 

of a Boolean variable” (Eastman 2020b), and it was calculated from the receiver 
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operator characteristic (ROC). The AUC value ranges from 0.5 (bad model) to 1 (perfect 

model) (Estoque and Murayama 2016; Peng et al. 2020). The AUC in our model reached 

0.96, which validated that the model could simulate potential areas for urban expansion 

from agricultural land with high accuracy. 

5.3.1.3. Predicted maps and land-use change in 2025 and 2030 

The simulation results gave that a total of 126.9 km2 and 253.8 km2 of agricultural land 

are expected to urbanize by 2025 and 2030, respectively. Specifically, residential areas 

may expand to 309.3 km2 in 2025 and 395.9 km2 in 2030, corresponding to an increase 

of 86.5 km2 (138.8%) and 173.1 km2 (177.7%), respectively, compared to 2020. The 

residential development is still concentrated in the South of the province and around the 

centre of the districts, where the infrastructure for development is an advantage. 

Meanwhile, the area of industrial and commercial zones may reach 150.4 km2 in 2025 

and 190.8 km2 in 2030, corresponding to an increase of 40.4 km2 (136.7%) and 80.8 km2 

(173.4%), respectively, compared to 2020. The new factories are going to fill the 

existing industrial parks and expand to the new planned industrial zones in the North 

and Northeast. 

Corresponding to this urban expansion, from 2020 to 2025, perennial cropland, 

unused land, and annual cropland may be decreased by 77.8 km2, 40.7 km2, and 8.4 km2, 

corresponding to a decline of 4.0, 16.4, and 9.4 percent, respectively, compared to 2020. 

Meanwhile, by 2030, these land-use types may be decreased by a total of 168.8 km2, 67 

km2, and 18 km2, corresponding to a decline of 8.8, 27.0, and 20.3 percent, respectively, 

compared to 2020. The predicted land use in 2025 and 2030 are illustrated in Figure 5.4. 

 
Figure 5.4. Predicted land use in 2025 (left) and in 2030 (right). 
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5.3.2. Landscape pattern change 

5.3.2.1. Landscape level 

The trends of the landscape indices at the landscape level are shown in Figure 5.5. 

Landscape change was analysed according to dominance, diversity, and fragmentation. 

 
Figure 5.5. Landscape metrics calculated at landscape level. LPI = Largest Patch Index; SHEI 

= Shannon’s Evenness Index; SHDI = Shannon’s Diversity Index; NP = Number of Patches; 

IJI = Interspersion and Juxtaposition Index; AREA_MN = Mean Patch Size; CONTAG = 

Contagion Index; LSI = Landscape Shape Index. 
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Dominance: The dominance in the studied landscape was revealed by the LPI 

and SHEI. LPI increased in the period 1995–2010, then decreased in the period 2010–

2020. It was also predicted to continuously decrease sharply in the period 2020–2030. 

Meanwhile, the SHEI decreased during the period 1995–2001 but increased 

continuously from 2001 to 2020 and was expected to continue to increase until 2030. 

The overall trend for LPI was to decrease while SHEI was to increase over the entire 

study period. This showed that although there was still a high dominance of a class in 

the landscape (in this case, the woodland), the area proportion of the classes was tending 

towards a more uniform distribution. In other words, there is a trend of transitioning 

from a landscape with only one dominant land-use type to a mixed landscape with many 

different land uses (Weng 2007).  

Diversity: Landscape diversity was reflected by the SHDI, which tended to 

increase over the study period. Of which, the SHDI decreased in the period 1995–2001, 

increased continuously in the period 2001–2020, and was forecasted to continue to 

increase until 2030. This indicated an increase in diversity, which also means 

heterogeneity, in the landscape. 

Fragmentation: The results showed an increasing trend of AREA_MN and IJI 

and a decreasing trend of NP, CONTAG, and LSI. NP and AREA_MN were the two 

indices that had an opposing trend and represented the characteristics of the land-use 

transformation in the study area, which had both dispersion and aggregation processes. 

When the landscape was fragmented, new fragments were formed (NP increased), and 

the average area of fragments decreased (AREA_MN decreased). But as these 

individual patches were gradually expanded, and clumped together into a larger patch, 

NP would be decreased and AREA_MN would be increased. The increasing trend of 

AREA_MN and decreasing trend of NP in the whole study period revealed that the 

aggregation process may be probably stronger, especially from 2020 to 2030. An 

increase in the IJI indicated that the landscape was more dispersion. However, this trend 

only took place strongly in the period 2001–2015, which most influenced the overall 

trend, while in other periods the increase was insignificant. A decrease in the CONTAG 

indicated a slight decrease in the degree of aggregation and infectivity between regions 

of the same class, i.e., an increase in the degree of interlacing, while a decrease in LSI 

revealed that structure fragments become less irregular and less complex. 

In general, the results showed that the indices have a fluctuation over time, and 

the fragmentation of the landscape still existed in parallel with the aggregation, but the 

aggregation was somewhat stronger. This can be largely attributed to the strong 

transition from crops to woody land from 1995 to 2005, and then urban expansion in 

later stages, when urban areas formed separately at first were gradually expanded and 

became more interconnected, forming more compact regions with more regular shapes. 

In addition, part of this may also be because the prediction was only interested in the 

transition from agricultural land to urban. 
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5.3.2.2. Class level 

The calculation results of the class-level metrics are presented in Table 5.4. 

Table 5.4. Landscape metrics calculated at class level. 

Land-use 

type Year PLAND NP PD LPI LSI AREA_MN IJI 

Agriculture 

with 

perennial 

plants 

1995 70.52 3472 1.29 57.91 71.20 54.69 37.08 

2001 75.64 2834 1.05 60.91 60.79 71.86 32.49 

2005 75.51 3383 1.26 72.07 64.28 60.10 47.87 

2010 77.13 2832 1.05 72.55 44.99 73.32 66.77 

2015 75.29 2728 1.01 70.91 43.41 74.31 71.27 

2020 71.52 3310 1.23 66.94 54.20 58.17 73.36 

2025 68.62 3520 1.31 58.55 52.97 52.49 72.48 

2030 65.24 3122 1.16 28.82 49.26 56.27 72.36 

Agriculture 

with annual 

plants 

1995 20.20 10238 3.80 2.16 113.30 5.31 31.78 

2001 17.98 11060 4.11 2.12 119.89 4.38 29.78 

2005 13.09 14550 5.40 0.78 129.10 2.42 39.67 

2010 5.49 8519 3.16 0.47 93.41 1.74 45.32 

2015 3.69 5853 2.17 0.21 73.99 1.70 52.95 

2020 3.29 5482 2.04 0.14 69.11 1.62 50.53 

2025 2.98 5024 1.87 0.14 66.74 1.60 53.45 

2030 2.62 4458 1.66 0.14 63.01 1.58 54.19 

Urban 1995 0.19 381 0.14 0.03 21.54 1.34 63.72 

2001 0.95 787 0.29 0.14 33.34 3.27 63.33 

2005 2.50 1128 0.42 1.90 38.66 5.97 66.03 

2010 4.77 2633 0.98 2.84 55.96 4.88 58.14 

2015 7.39 2949 1.10 4.63 56.56 6.75 63.28 

2020 12.36 4514 1.68 8.24 70.90 7.37 58.48 

2025 17.07 3779 1.40 12.34 62.17 12.16 59.66 

2030 21.79 2874 1.07 17.22 49.90 20.41 61.28 

Mining site 1995 0.04 28 0.01 0.01 7.74 4.17 51.16 

2001 0.05 39 0.01 0.01 8.55 3.63 63.53 

2005 0.11 17 0.01 0.06 6.83 17.87 74.70 

2010 0.16 34 0.01 0.04 7.07 12.51 79.77 

2015 0.22 26 0.01 0.10 7.12 22.73 83.54 

2020 0.25 27 0.01 0.09 8.21 25.16 86.22 

2025 0.25 27 0.01 0.09 8.21 25.16 86.36 

2030 0.25 27 0.01 0.09 8.21 25.16 86.10 

Recreation 

and Green 

space 

1995 0.02 25 0.01 0.01 4.07 1.81 64.62 

2001 0.04 67 0.02 0.03 6.41 1.55 72.27 

2005 0.03 106 0.04 0.02 6.84 0.79 77.29 

2010 0.19 347 0.13 0.09 11.42 1.45 77.48 

2015 0.30 804 0.30 0.09 20.79 1.02 72.71 

2020 0.45 1291 0.48 0.09 28.50 0.94 68.84 

2025 0.45 1291 0.48 0.09 28.50 0.94 61.69 

2030 0.45 1291 0.48 0.09 28.50 0.94 56.19 



93 

Land-use 

type Year PLAND NP PD LPI LSI AREA_MN IJI 

Water 

surface 
1995 2.38 458 0.17 1.55 25.50 14.02 33.12 

2001 2.61 593 0.22 1.64 28.38 11.83 37.75 

2005 2.30 554 0.21 1.33 29.73 11.20 52.99 

2010 2.96 708 0.26 1.64 33.65 11.26 54.51 

2015 2.97 729 0.27 1.55 34.57 10.97 56.80 

2020 2.91 887 0.33 1.47 36.80 8.83 63.31 

2025 2.91 887 0.33 1.47 36.80 8.83 65.51 

2030 2.91 887 0.33 1.47 36.80 8.83 66.93 

Unused land 1995 6.64 6346 2.36 0.24 87.63 2.82 38.99 

2001 2.73 4360 1.62 0.10 70.75 1.68 55.99 

2005 6.45 7324 2.72 0.29 90.14 2.37 50.55 

2010 9.30 6595 2.45 1.15 86.88 3.80 58.98 

2015 10.13 7152 2.66 1.63 85.72 3.81 54.59 

2020 9.22 8616 3.20 0.79 90.33 2.88 50.84 

2025 7.71 7397 2.75 0.79 83.81 2.81 49.47 

2030 6.73 6340 2.35 0.51 76.58 2.86 47.92 

Agriculture with perennial plants (AP): The PLAND and LPI of AP increased 

between 1995 and 2010, decreased between 2010 and 2020, and were expected to 

continue to decline until 2030, while the NP and AREA_ MN fluctuated. The PLAND 

always accounted for the largest proportion in the landscape (over 65%), and the LPI 

and AREA_MN were also much higher than the rest classes, while its NP is smaller than 

that of agriculture with annual plants (AA) and unused land (UL). It showed that AP 

was the dominant class in terms of the area and size of the patches. Since 2010, there 

has been a trend of gradually decreasing dominance and increasing dispersion (PLAND, 

LPI, and AREA_MN decreased, and NP and IJI increased), but the degree of dominance 

and aggregation was still high, and the shape of the patch was gradually less complex 

(LSI decreased). 

Agriculture with annual plants: The PLAND of AA was steadily decreasing from 

about 20.0 percent in 1995 to 3.29 percent in 2020 and to 2.62 percent in 2030. Its LPI, 

AREA_MN, and NP showed a strong downward trend. The NP was reduced but still 

higher than the rest classes except for the UL. Meanwhile, the IJI increased, and LSI 

decreased. This showed that AA was increasingly decreasing in area, and at the same 

time, the degree of fragmentation was high. The shape of patches of AA was the most 

irregular compared to other classes, but it tended to become more regular over time. 

Urban: The PLAND of urban grew rapidly from 0.19 percent in 1995 to 12.36 

percent in 2020 and is forecasted to be 21.79 percent in 2030. The LPI, NP, and 

AREA_MN increased. This revealed two parallel processes in this class including (1) A 

gradual expansion from the edge of existing cities and interconnection between urban 

regions, which increased clumping and aggregation (LPI and AREA_MN increased and 
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IJI decreased) and (2) The formation of new discrete urban areas (NP increased). Thus, 

the dispersion here was due to the second process, not division from existing urban 

patches. In addition, these two processes also caused the shape of patches to fluctuate 

(LSI fluctuated). 

Mining site (MS) and Recreation and Green space (RG): These were two rare 

classes in the landscape accounting for a small proportion (< 0.5%). However, they also 

showed an increasing trend over the years in terms of PLAND and LPI. For the RG 

class, NP increased, AREA_MN decreased, IJI changed slightly, and LSI increased. 

They revealed that RG areas were formed more, and they were more discrete and less 

connected. Furthermore, the shape of its patches more complicated. Similar to the urban 

class, the fragmentation here was mainly due to new formations, not division from 

existing patches. Meanwhile, for the MS class, NP fluctuated, AREA_MN increased, 

IJI increased, and LSI decreases slightly. This showed that the area of quarries was 

gradually expanding and was more dispersed with a more regular shape. 

Water surface: The PLAND slightly increased, NP increased, AREA_MN 

decreased, IJI increased, LSI increased, and LPI was relatively stable over the years. 

This revealed that the new water surface areas were formed separately and more 

irregularly. 

Unused land: This class had special characteristics. It was an intermediary for 

conversion between other classes, so the indices of this class often fluctuated strongly 

over the years. 

In general, from 1995 to 2020, the study area experienced an intense change in 

the direction of increasing the fragmentation and dispersion of natural and semi-natural 

landscapes. These changes might be largely influenced by two parallel processes of 

urban landscape including aggregation and dispersion. These changing trends are 

forecast to continue. Clearly, changes in land use, and consequent changes in landscape 

pattern, are often aimed at serving the needs of socio-economic development. However, 

the fragmentation and dispersion of natural and semi-natural landscapes can have 

negative impacts on the ecological environment, ecosystem services, and benefits 

humans derive from them (Estoque and Murayama 2016; Tolessa et al. 2017), and, thus, 

may influence the sustainable development goals. Some of the major environmental 

conflicts that will arise in the next decade in the study area may include (1) a decline in 

provisioning services (food, raw material) due to the decline in agricultural land, (2) a 

decline of the regulating services (climate, water/water flow, erosion and fertility, 

purification and detoxification of water, air, and soil) due to an increase in impervious 

surfaces, and (3) a decline in supporting services (ecosystem process maintenance) due 

to fragmentation of natural and semi-natural habitats. Due to the limitation of the 

objective of this study, we did not quantify these aspects. For a more definitive 

assessment, further studies are needed. 
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5.4. Conclusions 

Based on land-use maps of previous periods, this study used the LCM application of 

IDRISI software to forecast land use in Binh Duong province, Vietnam to 2030, mainly 

the transition from agricultural-land types to urban-land types. The Markov chain and 

the Decision Forest algorithm were used to predict future land-use allocation in terms 

of quantity and location, respectively. Various drivers were assessed. The research 

results revealed that the drivers of distances to province centre, district centres, existing 

residential areas, and main road and mean population density had an impact on the 

conversion from agricultural land to residential land, while the transition from 

agricultural land to industrial and commercial areas was driven by the factors of 

distances to water sources, district centers, existing industrial areas, planned industrial 

zones, and transportation ports. The selected model has been validated with the accuracy 

of the hard prediction being Kappa = 0.71, Kappa location = 0.72, Kappa histogram = 

0.99, fuzzy Kappa = 0.77, and FoM = 30.77 percent and the accuracy of the soft 

prediction being AUC = 0.96. This result indicated that the model was suitable to predict 

the future land use in the study area. The simulation results showed that, in the period 

from 2020 to 2030, there will be 253.8 km2 of agricultural land urbanized. The 

residential areas and the industrial-commercial zones are expected to expand to 395.9 

km2 and 190.8 km2 , respectively. These areas will expand in the direction of gradually 

expanding from the edge of the existing zones and filling the newly planned areas from 

south to north and northeast. 

This study also measured landscape pattern change caused by land-use change 

using landscape metrics calculated on FRAGSTATS software. At the landscape level, 

the results revealed that the studied landscape was increasingly decreasing in dominance 

and increasing diversity and heterogeneity. In addition, the processes of dispersion and 

aggregation are taking place at the same time. At the class level, the classes of 

agriculture, mining, and greenspace were increasingly dispersed, but the shape of 

patches was becoming more regular. Meanwhile, the urban class had similar 

characteristics to the entire landscape in terms of two parallel processes including 

dispersion and aggregation. The water class increased the dispersion and the irregularity 

of the patch shape. Finally, the landscape metrics of the unused land fluctuated over 

time. 

This study provides insight into the causes and consequences of land-use change, 

especially in emerging urban areas in developing countries where sustainable 

development often has to trade-off with economic development goals. Changes in land 

use and landscape can affect the ecological environment, ecosystem services, and the 

benefits humans derive from them. Further studies on these issues are needed. 
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6. Conclusions 

6.1 Summary of key findings 

By addressing the research hypotheses to achieve the research objective, my study has 

achieved the following key findings: 

• Thesis 1. I proved that land cover and land use in Binh Duong province were not 

only connected by spatial distribution and spectral properties but also by temporal 

characteristics. On the one hand, each land use type has its own spatial pattern and 

structure characterized by the properties of the land cover classes within it, such 

as composition, spatial distribution, spectral signature, and dominant class as well 

as the shape and size of objects. On the other hand, the change or non-change of 

land cover at a given site over different times of the year may also demonstrate the 

manner in which humans interact with the land, thereby showing the type of land 

use. This connection can easily be measured and analyzed based on RS and GIS 

techniques. Once the connection is clearly defined and suitable classification 

schemes are established, it is possible to convert a land cover map to a land use 

map based on their relationship. This thesis point comes from the first publication. 

• Thesis 2. I supported that data sources, data structure, image processing, and 

fusion technique have diverse effects on land use land cover classification 

efficiency. Within the scope of this study, I demonstrated that: 

a. Using multi-temporal images in a pixel-based classification improved the 

accuracy of the generated land cover map (OA = 93.86%) compared to those 

using single-date images (OA = 89.59–90.78%). 

b. By capturing both spectral and spatial information, the segmentation 

technique and object-based classification could create boundaries between 

regions with different land use types and then relatively precisely formed 

land use function regions, which paved the way for producing the final land 

use map (OA = 93.45%).  

c. The fusion of SAR and optical data based on D-S theory at the decision level 

yielded better mapping results compared to using single-time single-sensor 

images or stacked optical-SAR images. The datasets fused at the decision 

level increased the OA by a range of 0.75% to 2.07% compared to the optical 

datasets. The fusion of SAR and optical data with their derived textures and 

indices at the decision level using D-S theory brought the best results.  

d. The integration of SAR and optical products using the layer-stacking 

technique at the pixel level did not give more power to the classification 

process. It reduced the accuracy of the mapping result by 4.88% to 6.58% 

compared to that of the optical datasets. 

e. The inclusion of GLCM textures and spectral indices in the datasets helped 

improve the mapping results in this study. However, while the effectiveness 
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of the textures is clear, the contribution of the spectral indices is still 

controversial.  

I also developed a novel approach that is a combination of pixel-based and object-

based classifications using a random forest classifier, GIS techniques, and 

decision rules on multi-temporal RS data. This is the optimal mapping approach 

given the data availability in the study area and the objective of the study. It 

provides the ability to effectively extract and translate a land cover map into a 

land use map. Also, with the long-term availability of Landsat data, it is suitable 

for the generation of time-series maps, which can be used for land change 

analysis. In this study, the land use maps generated based on this approach have 

high accuracy. The extracted maps for the years 1995, 2001, 2005, 2010, 2015, 

and 2020 gained OA ranging from 88.9% to 93.0%, where the PA and UA of the 

classes ranged from 70.8% to 100%. This thesis point comes from the first, 

second, and the third publications. 

• Thesis 3. I analyzed and confirmed that there were different trends in the area 

variation of land use types, and there was a large transition from agricultural and 

unused land to other types of land use in the study area from 1995 to 2020. Mixed 

residential areas, industrial and commercial zones, recreational regions and green 

spaces, and mining sites have seen a continuous increase in area, corresponding to 

217.9, 109.7, 11.7, and 5.6 km2, respectively. By contrast, the area of annual 

croplands continuously decreased, with the total decline being about 455.3 km2. 

Meanwhile, the agricultural land for perennial plants increased about 177.7 km2 in 

1995–2010 and decreased about 151.0 km2 in 2010–2020. The unused land had a 

strong fluctuation in their area and spatial distribution, whereas the water surface 

area fluctuated slightly but still increased overall. This thesis point comes from the 

third publication. 

• Thesis 4. I measured that the urban area of the province expanded rapidly in the 

25 years at an increasing rate. The developed area increased 65 folds, from 5.1 km2 

in 1995 to 332.8 km2 in 2020. I also proved that the expansion rates were uneven 

between subregions, and there was a gradual expansion and shift from south to 

north of the province and spreading to rural districts at an increasingly rapid rate 

during the study period. It led to a gradual transition from a compact urban form 

to a dispersed urban form. The factors affecting land use change and urban 

expansion in Binh Duong province comprised the natural conditions, development 

history, policies and practices for urbanization, industrialization, and agricultural 

development, and fluctuation in the prices of products in the market. This thesis 

point comes from the third publication. 

• Thesis 5. I confirmed that it is possible to identify variables driving land use 

change and simulate future land use in terms of quantity and location based on the 

Markov chain and decision forest algorithm with acceptable reliability. I 
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discovered that the change was driven by many variables. In which, the drivers of 

distances to the province centre, district centres, existing residential areas, and 

main road and mean population density has an impact on the conversion from 

agricultural land to residential land. Meanwhile, the transition from agricultural 

land to industrial and commercial areas is driven by the variables of distances to 

water sources, district centres, existing industrial areas, planned industrial zones, 

and transportation ports. The selected model was validated with an acceptable 

accuracy of the hard and soft predictions. The former gained a Kappa of 0.71, a 

Kappa location of 0.72, a Kappa histogram of 0.99, a fuzzy Kappa of 0.77, and an 

FoM of 30.77 percent. Meanwhile, the latter achieved an AUC of 0.96. According 

to the prediction model, in the period from 2020 to 2030, there will be 253.8 km2 

of agricultural land urbanized. The residential areas and the industrial-commercial 

zones are expected to expand to 395.9 km2 and 190.8 km2, respectively. The 

residential development will be still concentrated in the South of the province and 

around the centre of the districts. Meanwhile, the new factories are going to fill the 

existing industrial parks and expand to the new industrial zones in the North and 

Northeast. This thesis point comes from the fourth publication. 

• Thesis 6. I measured that by the impacts of land use change and urban expansion, 

the studied landscape was increasingly decreasing in dominance and increasing 

diversity and heterogeneity at the landscape level. In addition, the processes of 

dispersion and aggregation are taking place at the same time. For the class level, 

the classes of agriculture, mining, and greenspace were increasingly dispersed, but 

the shape of their patches was becoming more regular. Meanwhile, the urban class 

has aggregation and dispersion processes occurring parallel similar to those of the 

entire landscape. The water class had an increase in the dispersion and the 

irregularity of their patch shape. Finally, the landscape metrics of the unused land 

fluctuated over time. In general, from 1995 to 2020, the study area experienced an 

intense change in the direction of increasing the fragmentation and dispersion of 

natural and semi-natural landscapes. These changes might be largely influenced 

by the two parallel processes of the urban landscape. In addition, these changing 

trends are forecast to continue in the next decade. This thesis point comes from the 

fourth publication. 

6.2 Implications 

In scientific terms, my detection of the connection between land cover and land use of 

the study area as well as my evaluations and findings of the mapping performance of the 

different methods in this study contribute to the existing knowledge on land use land 

cover study using RS data and GIS techniques. It gives a valuable reference for further 

studies in the selection of data sources, data structures, image processing techniques, 

and classification and fusion methods to improve mapping performance. In particular, 

my novel approach developed in this study, which helps to generate and translate a land 
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cover map into a land use map from satellite images and GIS techniques, offers many 

advantages. It promotes the reproducibility and proactivity of the research as well as 

cost-efficiency and time savings. The output of this approach, i.e., the land cover map 

and land use map, can be used for different purposes. 

In practical terms, by analyzing and discovering land use change and urban 

expansion, their driving factors, and their effects on the landscape pattern in Binh Duong 

province of Vietnam, this study reveals a pattern of rapid urbanization in developing 

countries under the impact of land policies. Some practical lessons can be drawn from 

them. They can lay the groundwork for further studies on urban planning, land 

management, and policymaking in Binh Duong provice and other localities not only in 

Vietnam but also in other countries. 

6.3 Limitations, recommendations, and future research 

This study still has some limitations due to its research time and resources. They are 

listed below along with some main recommendations and future research. 

• This study mainly used a random forest algorithm for classification. An experiment 

and comparison of its performance with other classification algorithms are needed. 

• The spectral indices extracted from optical bands should be used with caution in 

future studies due to their controversial effectiveness. Furthermore, only the NDVI 

and NDWI extracted from optical data were taken into consideration in this study. 

Therefore, the impact of the other extracted indices should be studied. 

• The workflow of the developed approach is transferable; however, the criteria used 

in this process were formed based on personal experience, visual observations, and 

experiments (trial and error). Although these values are applicable to neighboring 

areas, such as localities in Southern Vietnam with characteristics similar to those 

of the study area, it is suggested that these values need to be re-assessed and revised 

when applying them to other regions where the land cover and land use 

characteristics differ from those of this study area. Furthermore, the integration of 

landscape metrics into classification stages also should be investigated to help the 

forming of land use function regions. 

• The research in this dissertation has not included evaluating the effectiveness of 

using multi-temporal SAR images, which are not affected by clouds, especially in 

the context of tropical regions where cloud cover is a challenge. This study will be 

carried out in the future.  

• Other RS data types such as hyperspectral and LiDAR data as well as other data 

sources should also be considered in further studies. In addition, the classification 

at the sub-pixel level should also be taken into account. 

• Changes in land use and landscape pattern can cause adverse effects on the 

environmental quality, ecosystem services, and the benefits humans derive from 

them. These issues will be pursued in further studies.    
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Summary 

Owing to urbanization and industrialization as well as other human activities, land use 

in Binh Duong province of Vietnam has significantly changed since 1995. This study 

aimed to use and develop GIS and RS techniques for time-series land cover and land 

use monitoring and classification from 1995 to 2020 and prediction to 2030 for Binh 

Duong province. The hypotheses of this study were that: (1) There is a connection 

between the land cover and land use, and this connection can be measured and analyzed 

by geospatial information techniques in Binh Duong province; (2) There are diverse 

effects of data sources, data structure, image processing, and fusion technique on land 

use land cover classification efficiency, and it is possible to select an optimal mapping 

approach given the data availability in the study area and the objective of the study; (3) 

There is a significant change in land use patterns of the study area from 1995 to 2020; 

(4) The urban expansion process in the study area varies both spatially and temporally 

during the study period; (5) It is possible to predict future land use of the study area 

based on various natural and socioeconomic factors; and (6) Land use change and urban 

expansion cause significant changes in landscape patterns of the study area. 

For data, various kinds of data were investigated and collected. They consisted 

of optical (Landsat-5, -7, -8, and Sentinel-2) and SAR (Sentinel-1) images acquired 

during the study period, administrative boundary data, training and validation data for 

the classification process, census data, SRTM DEM, population density raster data, road 

network, land use status map, planning maps, and other ancillary data. A field survey 

trip to the study area was also conducted between 18 January and 18 February 2020 to 

collect data and gain a deeper understanding of land cover and land use in the study area. 

In addition, Google Earth history images and my personal experiences were also used 

to interpret training and validation data. 

In terms of methods, I used and developed a series of RS and GIS techniques to 

solve the research hypotheses and achieve the research objective. They included (1) 

image processing techniques for preprocessing optical and SAR data, extracting spectral 

indices and GLCM textures, and combining data at different levels, (2) land use land 

cover classification using pixel-based and object-based approaches, D-S theory, spatial 

analysis, decision rules, and random forest classifier, (3) accuracy assessment based on 

visual assessment and confusion matrix, (4) change detection based on spatial and 

temporal analysis and statistics such as transition matrices, urban growth rate 

calculation, and district-based, ring-based, and sector-based analysis, (5) simulation of 

future land use based on the Markov chain and decision forest algorithm, and (6) 

evaluation of landscape pattern change using landscape metrics. The ERDAS IMAGINE 

2020, SNAP 8.0, QGIS 3, IDRISI TerrSet 2020, FRAGSTATS 4.2, and R 3.6 software, 

depending on the purpose, were used for these tasks.  
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For the results, I proved that land cover and land use in the study area were not 

only linked by spatial distribution and spectral properties but also by temporal 

characteristics. On the one hand, each land use type has its own spatial pattern and 

structure characterized by the properties of the land cover classes within it, such as 

composition, spatial distribution, spectral signature, and dominant class as well as the 

shape and size of objects. On the other hand, the change or non-change of land cover at 

a given site over different times of the year may also demonstrate the manner in which 

humans interact with the land, thereby showing the type of land use. This connection 

can easily be measured and analyzed based on RS and GIS techniques. Once the 

relationship between land cover and land use is clearly defined and suitable 

classification schemes are established, it is possible to convert a land cover map to a 

land use map based on their relationship. These results have confirmed the research 

hypothesis 1. 

In addition, I supported that data sources, data structure, image processing, and 

fusion technique have diverse effects on land use land cover classification efficiency. 

First, using multi-temporal images in a pixel-based classification improved the accuracy 

of the generated land cover map compared to those using single-date images. Second, 

the segmentation technique and object-based classification could create boundaries 

between regions with different land use types and then relatively precisely formed land 

use function regions, which paved the way for producing the final land use map. Third, 

the fusion of SAR and optical data based on the D-S theory at the decision level yielded 

better land cover mapping results compared to using single-time single-sensor images 

or stacked optical-SAR images. Fourth, the integration of SAR and optical products 

using the layer-stacking technique at the pixel level did not give more power to the land 

cover classification process. Fifth, the inclusion of GLCM textures and spectral indices 

in the datasets helped improve the mapping results in this study. However, while the 

effectiveness of the textures is clear, the contribution of the spectral indices is still 

controversial. Last but not least, I developed a novel approach that is a combination of 

pixel-based and object-based classifications using a random forest classifier, GIS 

techniques, and decision rules on multi-temporal RS data. This is the optimal mapping 

approach given the data availability in the study area and the objective of the study. It 

provides the ability to effectively extract and translate a land cover map into a land use 

map. These results have confirmed the research hypothesis 2. 

By applying the optimal mapping approach developed, land use maps of Binh 

Duong province in 1995, 2001, 2005, 2010, 2015, and 2020 were generated and 

analyzed. I analyzed and confirmed that there was a large transition from agricultural 

and unused lands to other uses. This resulted in an expansion of developed areas, 

recreational regions, mining sites, and water surfaces, a drastic decline of agricultural 

land for annual crops, and a fluctuation of perennial cropland and unused land. These 

results have confirmed the research hypothesis 3. 
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I also measured that the urban area has expanded 65 times within 25 years at an 

increasing rate. The AER and ECR were uneven between subregions, and there was a 

gradual expansion and shift from south to north of the province and spreading to rural 

districts at an increasingly rapid rate during the study period. It led to a gradual transition 

from a compact urban form to a dispersed urban form. The factors affecting the changes 

comprise natural conditions, development histories, policies and practices for 

urbanization, industrialization, and agricultural development, and product price 

fluctuations in the market. These results have confirmed the research hypothesis 4. 

Furthermore, I confirmed that it is possible to identify variables driving land use 

change and simulate future land use in terms of quantity and location based on the 

Markov chain and decision forest algorithm with acceptable reliability. I discovered that 

the changes were driven by many variables. In which, the drivers of distances to the 

province centre, district centres, existing residential areas, and main road and mean 

population density has an impact on the conversion from agricultural land to residential 

land. Meanwhile, the transition from agricultural land to industrial and commercial areas 

is driven by the variables of distances to water sources, district centres, existing 

industrial areas, planned industrial zones, and transportation ports. Then, the simulation 

results showed that there will be 253.8 km2 of agricultural land urbanized in the period 

from 2020 to 2030. The urban areas will gradually expand from the edge of the existing 

zones and fill the newly planned areas from South to North and Northeast of the 

province. These results have confirmed the research hypothesis 5. 

Finally, by calculating and analyzing landscape metrics from 1995 to 2020, I 

measured that by the impacts of land use change and urban expansion, the studied 

landscape was decreasing in dominance and increasing diversity and heterogeneity at 

the landscape level. The processes of dispersion and aggregation were taking place at 

the same time in the entire landscape and in the urban class. Meanwhile, there was an 

intense change in the direction of increasing the fragmentation and dispersion of natural 

and semi-natural landscapes. These changing trends are forecast to continue in the next 

decade. These results have confirmed the research hypothesis 6. 

In scientific terms, the evaluations and findings of this study contribute to the 

existing knowledge on land use land cover study using RS data and GIS techniques. In 

particular, my novel approach developed in this study, which helps to generate and 

translate a land cover map into a land use map from satellite images and GIS techniques, 

offers many advantages. It promotes the reproducibility and proactivity of the research 

as well as cost-efficiency and time savings. The output of this approach, i.e., the land 

cover map and land use map, can be used for different purposes. In practical terms, by 

analyzing and discovering land use change and urban expansion, their driving factors, 

and their effects on the landscape pattern in Binh Duong province of Vietnam, this study 

reveals a pattern of rapid urbanization in developing countries under the impact of land 

policies. Some practical lessons can be drawn from them. They can lay the groundwork 
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for further studies on urban planning, land management, and policymaking in Binh 

Duong province and other localities not only in Vietnam but also in other countries. 
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Appendix A 

Table A1. Summary of training and validation data for the pre-land cover map. 

No. Class Training 

(Point/Polygon) 

Validation 

(Point/Polygon) 

Total 

(Point/Polygon) 

1 Barren land 1423/56 143/25 1566/81 

2 Barren land to grass/crops 266/11 35/5 301/16 

3 Crops 190/13 13/5 203/18 

4 Grass/crops to barren land 222/9 39/7 261/16 

5 Grass 118/7 23/3 141/10 

6 Impervious surface with high albedo 476/49 82/28 558/77 

7 Impervious surface with low albedo 927/58 113/24 1040/82 

8 Water 358/21 39/9 397/30 

9 Mature woody trees to barren land 84/4 16/3 100/7 

10 Mature woody trees 691/31 67/11 758/42 

11 Young woody trees 154/8 16/3 170/11 

 TOTAL 4909/267 586/123 5495/390 

 

Table A2. Summary of validation data for land cover maps. 

No. Class Final Land Cover Map 

(Point) 

T1 Land Cover Map 

(Point) 

T2 Land Cover Map 

(Point) 

1 Barren land 159 178 198 

2 Annual plants 87 52 36 

3 Grass 23 23 35 

4 Impervious surface 195 195 195 

5 Water 39 39 39 

6 Perennial plants 83 99 83 

 TOTAL 586 586 586 

 

Table A3. Summary of training data for land use function regions. 

No. Class Segment 

I. First round 

1 Recreation area 41 

2 Mining site 81 

3 Industrial area 115 

4 Other 162 

 TOTAL 399 

II. Second round 

1 Industrial area 129 

2 Other 220 

 TOTAL 349 

 

Table A4. Summary of validation data for the land use map. 

No. Class Point 

1 Unused land 159 

2 Industry and commerce 82 

3 Recreation and green space 23 

4 Mixed residence 113 

5 Mining site 25 

6 Agriculture with annual plants 87 

7 Agriculture with perennial plants 83 

8 Water surface 39 

 TOTAL 611 

 

 


