2,511 research outputs found

    Neural Interactive Collaborative Filtering

    Full text link
    In this paper, we study collaborative filtering in an interactive setting, in which the recommender agents iterate between making recommendations and updating the user profile based on the interactive feedback. The most challenging problem in this scenario is how to suggest items when the user profile has not been well established, i.e., recommend for cold-start users or warm-start users with taste drifting. Existing approaches either rely on overly pessimistic linear exploration strategy or adopt meta-learning based algorithms in a full exploitation way. In this work, to quickly catch up with the user's interests, we propose to represent the exploration policy with a neural network and directly learn it from the feedback data. Specifically, the exploration policy is encoded in the weights of multi-channel stacked self-attention neural networks and trained with efficient Q-learning by maximizing users' overall satisfaction in the recommender systems. The key insight is that the satisfied recommendations triggered by the exploration recommendation can be viewed as the exploration bonus (delayed reward) for its contribution on improving the quality of the user profile. Therefore, the proposed exploration policy, to balance between learning the user profile and making accurate recommendations, can be directly optimized by maximizing users' long-term satisfaction with reinforcement learning. Extensive experiments and analysis conducted on three benchmark collaborative filtering datasets have demonstrated the advantage of our method over state-of-the-art methods

    Enhangcing Collaborative Filtering Music recommendation by Balancing Exploration and Exploitation

    Get PDF
    Master'sMASTER OF SCIENC

    Collaborative Filtering as a Multi-Armed Bandit

    Get PDF
    International audienceRecommender Systems (RS) aim at suggesting to users one or several items in which they might have interest. Following the feedback they receive from the user, these systems have to adapt their model in order to improve future recommendations. The repetition of these steps defines the RS as a sequential process. This sequential aspect raises an exploration-exploitation dilemma, which is surprisingly rarely taken into account for RS without contextual information. In this paper we present an explore-exploit collaborative filtering RS, based on Matrix Factor-ization and Bandits algorithms. Using experiments on artificial and real datasets, we show the importance and practicability of using sequential approaches to perform recommendation. We also study the impact of the model update on both the quality and the computation time of the recommendation procedure

    A reinforcement learning recommender system using bi-clustering and Markov Decision Process

    Get PDF
    Collaborative filtering (CF) recommender systems are static in nature and does not adapt well with changing user preferences. User preferences may change after interaction with a system or after buying a product. Conventional CF clustering algorithms only identifies the distribution of patterns and hidden correlations globally. However, the impossibility of discovering local patterns by these algorithms, headed to the popularization of bi-clustering algorithms. Bi-clustering algorithms can analyze all dataset dimensions simultaneously and consequently, discover local patterns that deliver a better understanding of the underlying hidden correlations. In this paper, we modelled the recommendation problem as a sequential decision-making problem using Markov Decision Processes (MDP). To perform state representation for MDP, we first converted user-item votings matrix to a binary matrix. Then we performed bi-clustering on this binary matrix to determine a subset of similar rows and columns. A bi-cluster merging algorithm is designed to merge similar and overlapping bi-clusters. These bi-clusters are then mapped to a squared grid (SG). RL is applied on this SG to determine best policy to give recommendation to users. Start state is determined using Improved Triangle Similarity (ITR similarity measure. Reward function is computed as grid state overlapping in terms of users and items in current and prospective next state. A thorough comparative analysis was conducted, encompassing a diverse array of methodologies, including RL-based, pure Collaborative Filtering (CF), and clustering methods. The results demonstrate that our proposed method outperforms its competitors in terms of precision, recall, and optimal policy learning

    Interactive Music Recommendation: Context,Content and Collaborative Filtering

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Sequential decision making in artificial musical intelligence

    Get PDF
    Over the past 60 years, artificial intelligence has grown from a largely academic field of research to a ubiquitous array of tools and approaches used in everyday technology. Despite its many recent successes and growing prevalence, certain meaningful facets of computational intelligence have not been as thoroughly explored. Such additional facets cover a wide array of complex mental tasks which humans carry out easily, yet are difficult for computers to mimic. A prime example of a domain in which human intelligence thrives, but machine understanding is still fairly limited, is music. Over the last decade, many researchers have applied computational tools to carry out tasks such as genre identification, music summarization, music database querying, and melodic segmentation. While these are all useful algorithmic solutions, we are still a long way from constructing complete music agents, able to mimic (at least partially) the complexity with which humans approach music. One key aspect which hasn't been sufficiently studied is that of sequential decision making in musical intelligence. This thesis strives to answer the following question: Can a sequential decision making perspective guide us in the creation of better music agents, and social agents in general? And if so, how? More specifically, this thesis focuses on two aspects of musical intelligence: music recommendation and human-agent (and more generally agent-agent) interaction in the context of music. The key contributions of this thesis are the design of better music playlist recommendation algorithms; the design of algorithms for tracking user preferences over time; new approaches for modeling people's behavior in situations that involve music; and the design of agents capable of meaningful interaction with humans and other agents in a setting where music plays a roll (either directly or indirectly). Though motivated primarily by music-related tasks, and focusing largely on people's musical preferences, this thesis also establishes that insights from music-specific case studies can also be applicable in other concrete social domains, such as different types of content recommendation. Showing the generality of insights from musical data in other contexts serves as evidence for the utility of music domains as testbeds for the development of general artificial intelligence techniques. Ultimately, this thesis demonstrates the overall usefulness of taking a sequential decision making approach in settings previously unexplored from this perspectiveComputer Science

    Design Preference Elicitation, Identification and Estimation.

    Full text link
    Understanding user preference has long been a challenging topic in the design research community. Econometric methods have been adopted to link design and market, achieving design solutions sound from both engineering and business perspectives. This approach, however, only refines existing designs from revealed or stated preference data. What is needed for generating new designs is an environment for concept exploration and a channel to collect and analyze preferences on newly-explored concepts. This dissertation focuses on the development of querying techniques that learn and extract individual preferences efficiently. Throughout the dissertation, we work in the context of a human-computer interaction where in each iteration the subject is asked to choose preferred designs out of a set. The computer learns from the subject and creates the next query set so that the responses from the subject will yield the most information on the subject's preferences. The challenges of this research are: (1) To learn subject preferences within short interactions with enormous candidate designs; (2) To facilitate real-time interactions with efficient computation. Three problems are discussed surrounding how information-rich queries can be made. The major effort is devoted to preference elicitation, where we discuss how to locate the most preferred design of a subject. Using efficient global optimization, we develop search algorithms that combine exploration of new concepts and exploitation of existing knowledge, achieving near-optimal solutions with a small number of queries. For design demonstration, the elicitation algorithm is incorporated with an online 3D car modeler. The effectiveness of the algorithm is confirmed by real user tests on finding car models close to the users' targets. In preference identification, we consider designs as binary labeled, and the objective is to classify preferred designs from not-preferred ones. We show that this classification problem can be formulated and solved by the same active learning technique used for preference estimation, where the objective is to estimate a preference function. Conceptually, this dissertation discusses how to extract preference information effectively by asking relevant but not redundant questions during an interaction.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91578/1/yiren_1.pd
    corecore