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Abstract

As the World Wide Web becomes the major source of digital music, music

recommendation systems have become prevalent. By analyzing related infor-

mation, e.g., user listening history, music audio content, music recommenders

make accurate predictions and thus greatly ease the process of music selec-

tion for users and also boost the revenue of online music merchants. However,

results produced by existing music recommenders are still not satisfactory be-

cause of their ignorance of important relevant information or the drawbacks of

the underlying modeling techniques. To better satisfy users’ music needs, this

thesis strives to improve recommendation performance from three aspects.

First, traditional music recommendation systems rely on collaborative fil-

tering or content-based technologies to satisfy users’ long-term music playing

needs. To satisfy users’ short-term music information needs better, we devel-

oped the first context-aware music recommendation system that recommends

songs to match the target user’s daily activities including sleeping, running,

studying, working, walking and shopping.

Second, existing content-based music recommendation systems typically

employ a two-stage approach. They first extract traditional audio content

features such as Mel-frequency cepstral coefficients and then predict user pref-

erences. However, these traditional features, originally not created for music

recommendation, cannot capture all relevant information in the audio and thus

put a cap on recommendation performance. By using a novel deep-learning

based model, we unify the two stages into an automated process that simul-

taneously learns features from audio content and makes personalized recom-

mendations. The features are then incorporated into collaborative filtering to

1



form an effective hybrid recommendation method.

Third, current music recommender systems typically act in a greedy man-

ner by recommending songs with the highest user ratings. Greedy recommen-

dation, however, is suboptimal over the long term: it does not actively gather

information on user preferences and fails to recommend novel songs that are

potentially interesting. A successful recommender system must balance the

needs to explore user preferences and to exploit this information for recom-

mendation. We then present a new approach to music recommendation by

formulating this exploration-exploitation trade-off as an interactive reinforce-

ment learning task. Moreover, our approach is a single unified model for both

music recommendation and playlist generation, which are usually separated

by traditional systems.

Extensive evaluation results have demonstrated the effectiveness of the

developed methods, and future directions are then discussed.

2
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Chapter 1

Introduction

Music recommendation systems help users find music from large music databases,

and an effective system is one that consistently recommends songs that match

a user’s preference. By analyzing information about users (e.g. music listen-

ing history, demographic, contextual information) or songs (e.g. metadata,

audio content), music recommenders can predict users’ favorite songs very ac-

curately, and thus, they greatly ease the music selection process for the users

and boost the revenue of online music merchants. Currently, music recom-

mender systems can be classified according to their methodologies into four

categories: collaborative filtering (CF), content-based methods, context-based

methods, and hybrid methods [Song et al., 2012].

Collaborative filtering [Resnick et al., 1994] considers every user’s lis-

tening history; it recommends songs by considering those preferred by other

like-minded users. For instance, if user A and user B have similar music

preferences, then songs liked by A but not yet considered by B will be recom-

mended to B. The state-of-the-art method for performing CF is non-negative

matrix factorization (MF). Although CF is the most widely used and accurate

1



Chapter 1. Introduction

method, it suffers from the notorious cold-start problem [Schein et al., 2002].

The cold-start problem is the issue that the system cannot accurately rec-

ommend songs to new users whose preference are unknown (the new-user prob-

lem) or recommend new songs to users (the new-song problem). It could cause

a new user to immediately leave a recommender because of a few inaccurate

recommendations. It could even become a vicious circle for new recommenders

that have little user data: scarce data results in poor recommendation quality,

which further limit the chance of attracting users and gathering more data.

Solving the cold-start problem is thus crucial for recommenders.

Content-based methods [Casey et al., 2008] recommend songs that have

similar audio content to the user’s preferred songs. For instance, if user A

likes song S, then songs having content (i.e., musical features e.g. genre,

mood, and instrument) similar to S will be recommended to A. Content-

based systems mitigate the new-song problem, but they still suffer from the

new-user problem, and their recommendation quality is largely determined by

audio content features.

Context-based (a.k.a context-aware) recommendation systems [Wang et

al., 2012a] recommend songs to match various aspects of the user’s context,

e.g., activities, environment, or physiological states. They have become in-

creasingly popular in recent years with the advent of sensor-rich and compu-

tationally powerful smartphones. Real time user contextual information helps

better satisfy users’ short-term music needs and also mitigates the new-user

problem. However, they are limited by the richness of the available sensor

information.

Hybrid methods [Yoshii et al., 2006] combine two or more of the above

methods. By taking advantages of content information, hybrid CF and content-

based methods improve the recommendation performance and mitigates the

2



Chapter 1. Introduction

new-song problem. However, they still suffer from the new-user problem, and

similar to the content-based method, their performance depends on the audio

content features.

Theoretically, the cold-start problem is caused by the lack of information

about the users or songs that is required for making good predictions, i.e. the

uncertainty about the users or songs. Content-based method and the hybrid

method mitigate the cold-start problem because the additional audio content

or user context information decreases the uncertainty of the songs or users.

Utilizing additional information is one approach for decreasing the un-

certainty; another one is to optimize the interactive music recommendation

process in a holistic way. Indeed, music recommendation is an interactive

process between the target user and the recommendation system: the system

recommends a song to the target user, and then the user either explicitly in-

forms the system that he likes/dislikes the song, or gives implicit feedback

such as skipping the song or listening repeatedly. As the number of interac-

tions increases, the system knows more about the target user and thus the

uncertainty is reduced. The key to optimizing this interactive process holisti-

cally is to first recommend informative songs to quickly reduce the uncertainty

about the target user’s preference - this is termed as “exploration”. Then the

system gradually switches to songs that match the user’s preference, which is

termed as “exploitation”. Either too much exploration or too much exploitation

results in suboptimal performance, and thus balancing the two is important.

1.1 Contributions

Motivated by the above observations, this thesis contributes from the following

aspects:

3



Chapter 1. Introduction

• We present the first context-aware recommender system we are aware of

that recommends songs explicitly for everyday user activities including

sleeping, running, studying, working, walking and shopping [Wang et al.,

2012a; Wang et al., 2012b]. It not only satisfies users’ short-term needs

better but also mitigates the new-user problem.

• We develop a novel content-based recommendation model based on prob-

abilistic graphical model and the deep belief network [Wang and Wang,

2014]. It significantly improves the accuracy of content-based music rec-

ommendation. To mitigate the new-song problem of collaborative filter-

ing and improve its accuracy, the learnt features are then incorporated

into collaborative filtering to form an accurate hybrid method.

• We present the first approach to balance exploration and exploitation

based on reinforcement learning and particularly multi-armed bandit in

order to improve music recommendation performance over the long term

and mitigate the new-user problem [Wang et al., 2014; Xing et al., 2014].

Moreover, while most existing systems separate music recommendation

and playlist generation, this work provides a more principled approach

by jointly optimizing them in a unified model.

1.2 Chapter Plan

The chapter structure of the rest of this thesis is organized as follows:

• Chapter 2 surveys various other works in the field of music recommen-

dation.

• Chapter 3 presents our context-aware mobile music recommender system.

4



Chapter 1. Introduction

• Chapter 4 shows our content-based and hybrid recommendation models

based on deep learning.

• Chapter 5 describes our multi-armed bandit approach to interactive mu-

sic recommendation.

• Chapter 6 concludes this thesis and shows a few future study directions.
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Chapter 2

Related Work

2.1 Recommendation

Recommendation systems have been developed for a variety of online applica-

tions. The most popular ones are for movies [Bell et al., 2009], music [Song et

al., 2012], news [Das et al., 2007], books [Herlocker et al., 1999], and products

in general. Most of these systems use a common approach i.e. collabora-

tive filtering (CF), which is by far the most accurate compared with other

approaches such as content-based ones. The main idea behind collaborative

filtering is that if user A and B have similar interest, items liked by A yet

not considered by B will be recommended to B. Collaborative filtering can be

classified into two categories: memory-based and model-based. Currently the

most CF method is matrix factorization (Sec 2.2.1), a model-based approach.

One notorious drawback of CF is the cold-start problem i.e. it cannot

handle new users/items. The reason is that CF recommends based on history

data about the user/item, which new users/items lack. To mitigate this prob-

lem, many methods were proposed, e.g., content-based methods [Mooney and

6
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Roy, 2000], which try to extract useful information from items’ content such

as news text, music audio content.

Music recommendation, one of the most popular recommendation applica-

tions, shares some major characteristics with other recommendation systems.

For example, it has to predict user preference based on history data such as

ratings or listening history. However, it also has its own specialties.

First, people in different context prefer different music, so music recom-

mendation needs to be contextualized. For example, many users prefer sooth-

ing music when they are going to sleep but energetic music when running.

This requirement provides a very unique chance for integrating the prevailing

context-aware and mobile computing technologies into music recommendation.

However, for book/movie/news recommendation, contextual information ei-

ther has little impact on user preference or is too difficult to be used.

Second, music recommendation should repeat songs. People do not listen

to completely new songs all the time; instead, they usually repeat songs they

already know. For book recommendation in Amazon, however, it makes little

sense to recommend the same book to the same user twice.

Third, people usually listen to a list of songs one after another in a short

while, which makes the sequential and interactive properties of music rec-

ommendation very prominent compared with book/movie recommendations.

How to effectively and efficiently take advantage of user feedbacks immedi-

ately after he/she listens to a song and how to plan in real time a sequence of

songs to achieve the maximum effectiveness are all interesting and important

research problems that are unique to music recommendation.

Forth, compared with other recommendation systems, content-based music

recommendation provides the unique chance for testing feature-learning tech-

niques. Feature learning for textual media like books or news is relatively easy

7
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while it may be overwhelming for movies. Learning features from music audio

data is challenging but possible.

2.2 Music Recommendation

Currently music recommender systems can be classified into four categories:

collaborative filtering (CF), content-based methods, context-based methods

and hybrid methods.

2.2.1 Collaborative Filtering

The main idea behind collaborative filtering is that if user A and user B have

similar music preferences, then songs liked by A but not yet considered by

B will be recommended to B. This approach has been proved to be fairly

effective and widely adopted in many practical web-shopping services such as

iTunes music store1 and Amazon2 [Adomavicius and Tuzhilin, 2005]. The

state-of-the-art method for performing CF is matrix factorization, which is

well summarized in [Koren et al., 2009].

In matrix factorization models, every user i and song j are represented as

two vectors p
i

and q

j

respectively in a joint latent factor space, and the rating

that user i gives to item j can then be approximated by the dot product of p
i

and q

j

:

r
ij

⇡ p

0
i

q

j

(2.1)

This can also be written as the following matrix format:

R ⇡ P

0
Q (2.2)

1
http://www.apple.com/itunes/

2
http://www.amazon.com/
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where R, usually called the user-item ratings matrix, is the collected ratings

from all users for all songs. Matrices P and Q are the latent factors for all

users and all songs, respectively. This method essentially factorizes the user-

item matrix into two matrices with lower ranks. One possible simple approach

for the factorization is the singular value decomposition (SVD). However, di-

rectly applying the SVD algorithm to R can cause a severe overfitting problem

because R is usually very sparse for real-world recommendation systems. To

address it, regularization can be applied:

min

P,Q

X

i,j

kR�P

0
Qk2 + �

�
kPk2 + kQk2

�
(2.3)

where �, balancing bias and variance, needs to be tuned. The optimization

procedure is usually implemented as a stochastic gradient decent algorithm

or an alternative least square algorithm. To make the latent factors more

interpretable, Zhang et al. further restrict the elements in P and Q to be

non-negative [Zhang et al., 2006].

Although CF is one of the most widely adopted methods, it suffers from

two problems. The first problem is the cold-start problem. When a new user

joins the system, no data of this user can be used to predict his/her preferences,

i.e. the new user problem; similarly, the system cannot recommend a newly

added song to users accurately, i.e. the new song problem [Adomavicius and

Tuzhilin, 2005]. The second problem is that the recommended songs tend

to come from a small number of artists, who are often very familiar to the

user. This indicates that much room is still remaining for better utilizing the

Long-Tail effect [Anderson, 2006].
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Chapter 2. Related Work

2.2.2 Content-Based Music Recommendation

Content-based methods recommend a user songs whose audio content are sim-

ilar to that of the user’s favorites [Adomavicius and Tuzhilin, 2005]. Usu-

ally, the audio content similarity of two songs is calculated based on their

audio feature vectors, the most effective ones of which are timbre and rhythm

features [Song et al., 2012]. Content-based methods solve the the new song

problem to some extent and also result in better artists diversity than CF.

However, the accuracy of content-based methods is usually limited for the

following reasons.

First, traditional audio content features were not created for music recom-

mendation or music related tasks. For example, MFCC was originally used

for speech recognition [Mermelstein, 1976]. They only became attached to

music recommendation after the discovery that they can describe high-level

music concepts like genre, timbre, and melody. However, these features are

by no means optimal for music recommendation. The gap between these fea-

tures and high level meaning is usually called the semantic gap. To address

the gap, feature learning methods (e.g. [Lee et al., 2009]) could developed to

learn a better representation of songs, but little work has tried so in music

recommendation.

Second, the distance function between two audio feature vectors is usually

designed in an ad hoc way and not optimized with respect to the recom-

mendation objective. They are usually chosen from a very restrictive set of

distance functions such as Euclidean distance [Chen and Chen, 2001; Zhang

et al., 2009], Earth Mover’s distance [Logan and Salomon, 2001], or Pearson

correlation distance [Bogdanov et al., 2010; Bogdanov et al., 2013]. While

two recent works tried to employ machine learning techniques to automat-
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ically learn a similarity metric [McFee et al., 2012a; Liu, 2013], they still

relied on traditional features. Attempts have been made to perform fea-

ture selection or transformation on traditional features [Zhang et al., 2009;

Bogdanov et al., 2010], but they remain suboptimal as the traditional features

may fail to take into account essential information.

2.2.3 Context-Aware Music Recommendation

2.2.3.1 Context-Aware Recommendation Systems

Context information, which could improve recommendation accuracy signif-

icantly, has been utilized in many recommendation systems. As shown in

Figure 2.1, context-aware recommender systems can be classified into three

categories according to the paradigms that context information is incorpo-

rated in: contextual pre-filtering, contextual post-filtering, and contextual

modelling [Adomavicius and Tuzhilin, 2008].

Context-Aware Recommender Systems 17

mender system on the entire data. Then, the resulting set of recommendations is
adjusted (contextualized) for each user using the contextual information.

• Contextual modeling (or contextualization of recommendation function). In this
recommendation paradigm (presented in Figure 4c), contextual information is
used directly in the modeling technique as part of rating estimation.

Fig. 4 Paradigms for incorporating context in recommender systems.

In the remainder of this section we will discuss these three approaches in detail.

3.1 Contextual Pre-Filtering

As shown in Figure 4a, the contextual pre-filtering approach uses contextual infor-
mation to select or construct the most relevant 2D (User ⇥ Item) data for generating
recommendations. One major advantage of this approach is that it allows deploy-
ment of any of the numerous traditional recommendation techniques previously
proposed in the literature [5]. In particular, in one possible use of this approach,
context c essentially serves as a query for selecting (filtering) relevant ratings data.
An example of a contextual data filter for a movie recommender system would be:
if a person wants to see a movie on Saturday, only the Saturday rating data is used
to recommend movies. Note that this example represents an exact pre-filter. In other
words, the data filtering query has been constructed using exactly the specified con-
text.

For example, following the contextual pre-filtering paradigm, Adomavicius et al.
[3] proposed a reduction-based approach, which reduces the problem of multidi-

Figure 2.1: Three paradigms for incorporating context information into traditional
recommender systems [Adomavicius and Tuzhilin, 2008]
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As shown in Figure 2.1, contextual pre-filtering uses the target user’s con-

text to pre-filter the user-item rating matrix so that the remaining users have

similar context to the target user’s. Then it recommends using collaborative fil-

tering based on the pre-filtered rating matrix. The advantage of this paradigm

is that most traditional recommendation methods can be immediately applied

after the pre-filtering phase. In context post-filtering (Figure 2.1), the context

information is used to filter the recommendations generated by CF so that the

remaining items suit the target user’s context. Post-filtering and pre-filtering

share the same advantage, i.e. simplicity. In practice, which of them should

be used depends on the application. Contextual modelling tries to integrate

context information directly into CF. For example, the context information

can be integrated as an additional dimension into the user-item rating ma-

trix, and matrix factorization for three dimensional matrices can then be used

for recommendation. Contextual modelling ((Figure 2.1) can better capture

the correlation between context, users and items, but new models need to be

developped.

This classification provides some insight on designing new approaches to

incorporate context information in CF-based recommendation systems, but it

is not exhaustive. For example, context-aware recommendation systems which

do not rely on collaborative filtering belong to none of the three classes.

2.2.3.2 Context-Aware Music Recommendation Systems

In music recommendation, increasingly many context-aware systems are pro-

posed in order to utilize user context information to better satisfy their short-

term needs.

XPod is a mobile music player that selects songs matching a users’ emo-

tional and activity states [Dornbush et al., 2007]. The player uses an external

12
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physiological data collection device called BodyMedia SensorWear. Compared

to the activities we consider, the activities considered in XPod are very coarse-

grained, namely resting, passive and active. User ratings and metadata are

used to associate songs with these activities, but recommendation quality is

not evaluated.

In addition to XPod, many other context-aware music recommenders (CAMRs)

exploit user emotional states as a context factor. Park et al. were probably

the first to propose the concept of context-aware music recommendation [Park

et al., 2006]. They used a fuzzy Bayesian network to infer a user’s mood

(depressed, content, exuberant, or anxious/frantic) from context information

including weather, noise, time, gender and age. Music is then recommended

to match the inferred mood using mood labels manually annotated on each

available song. In the work of Cunningham et al., user emotional states are

deduced from user movements, temperature, weather and lighting of the sur-

roundings based on reasoning with a manually built knowledge base [Cun-

ningham et al., 2008]. Rho et al. built an ontology to infer a user’s mood

from context information including time, location, event, and demographic

information, and then the inferred mood is matched with the mood of songs

predicted from music content [Rho et al., 2009; Han et al., 2010]. However,

we believe that with current mobile phones, it is too difficult to infer a user’s

mood automatically.

Some work tries to incorporate context information into CF. Lee et al.

proposed a context-aware music recommendation system based on case-based

reasoning [Lee and Lee, 2008]. In this work, in order to recommend music

to a target user, other users who have similar context as the target user are

selected, and then CF is performed among the selected users and the target

user. This work considers time, region and weather as the context information.

13
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Similarly, Su et al. use context information that includes physiological signal,

weather, noise, light condition, motion, time and location to pre-filter users

and items [Su et al., 2010]. Both context and content information are used to

calculate similarities and are incorporated into CF.

SuperMusic [Lehtiniemi, 2008], developed at Nokia, is a streaming context-

aware mobile service. Location (GPS and cell ID) and time are considered as

the context information. Since that application cannot show a user’s current

context categories explicitly, many users get confused about the application’s

“situation” concept: “If I’m being honest, I didn’t understand the concept of sit-

uation. . . . I don’t know if there is music for my situation at all?” [Lehtiniemi,

2008]. This inspired us to design our system recommending music explicitly

for understandable context categories such as working, sleeping, etc.

Resa et al. studied the relationship between temporal information (e.g.,

day of week, hour of day) and music listening preferences such as genre and

artist [Resa, 2010]. Baltrunas et al. described similar work that aims to

predict a user’s music preference based on the current time [Baltrunas and

Amatriain, 2009]. Several other works exploit physiological signals to generate

music playlists automatically for exercising [Wijnalda et al., 2005; Elliott and

Tomlinson, 2006; Oliveira and Oliver, 2008]. Only the tempo attribute of

music was considered in those works, whereas in our work, several music audio

features including timbre, pitch and tempo are considered. Kaminskas et al.

recommend music for places of interest by matching tags of places with tags

on songs [Kaminskas and Ricci, 2011]. In other work by Baltrunas et al.,

a song’s most suitable context is predicted from user ratings [Baltrunas et

al., 2010], and a CAMRS was built specifically for the context of riding in a

car [Baltrunas et al., 2011].

Reddy et al. proposed a context-aware mobile music player but did not de-
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scribe how they infer context categories from sensor data or how they combine

context information with music recommendation [Reddy and Mascia, 2006].

In addition, they provide no evaluation of their system. Seppänen et al. ar-

gue that mobile music experiences in the future should be both personalized

and situationalized (i.e., context-aware) [Seppänen and Huopaniemi, 2008].

Bostrom et al. also tried to build a context-aware mobile music recommender

system, but the recommendation part was not implemented, and no evaluation

is presented [Boström, 2008].

While we use context to refer to mood, activities or physiology states of

the user or the physical/social environment around him/her, some other work

use context to refer to web context like tags or text surrounding the song on

the web [Turnbull et al., 2009], which is beyond the scope of our discussion.

2.2.3.3 Music Content Analysis in CAMRSs

Only a relatively small number of CAMRSs described in the literature use

music content information. To associate songs with context categories such

as emotional states, most of them use manually supplied metadata or anno-

tation labels or ratings [Park et al., 2006; Dornbush et al., 2007; Oliveira and

Oliver, 2008; Lee and Lee, 2008; Cunningham et al., 2008; Lehtiniemi, 2008;

Kaminskas and Ricci, 2011; Baltrunas et al., 2010], or implicit feedback [Dorn-

bush et al., 2007]. In other cases, content is not directly associated with con-

text, but is used instead to measure the similarity between two songs in order

to support content-based recommendation [Lehtiniemi, 2008; Su et al., 2010].

There are mainly two types of methods to automatically associate music

audio content with high level categories: multi-class classification and tagging.

The multi-class classification method is used by Rho, Han et al.: Emotion clas-

sifiers are first trained, and then every song is classified into a single emotional
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state [Rho et al., 2009; Han et al., 2010]. The method that we use to associate

music content with daily activities is based on a tagging method called Auto-

tagger [Bertin-Mahieux et al., 2008; Zhao et al., 2010b]. Similar methods have

been proposed by others [Turnbull et al., 2007], but Autotagger is the only

one evaluated on a large dataset. All these methods were used originally to

annotate songs with multiple semantic tags, including genre, mood and usage.

Although their tags include some of our context categories such as sleeping,

the training dataset used in these studies (the CAL500 dataset discussed in

Section 3.4.1.1) is too small (500 songs with around 3 annotations per song),

and evaluations were done together with other tags. From their reported re-

sults, it is difficult to know whether or not the trained models capture the

relationship between daily activities and music content.

2.2.3.4 Context Inference in CAMRSs

None of the existing CAMRSs tries to infer user activities using a mobile

phone. XPod uses an external device for classification—the classified activities

are very low-level, and classification is performed on a laptop [Dornbush et al.,

2007]. While activity recognition using mobile phones is itself not a new idea,

none of the systems that have been studied can be updated incrementally to

adapt to a particular user [Saponas et al., ; Brezmes et al., 2009; Berchtold

et al., 2010; Khan et al., 2011; Kwapisz et al., 2011; Lee and Cho, 2011]. In

one remarkable work, Berchtold et al. proposed an activity recognition service

supporting online personalized optimization [Berchtold et al., 2010]. However,

their model needs to search in a large space using a genetic algorithm, which

requires significant computation. And to update the model to adapt to a

particular user, all of that user’s sensor data history is needed, thus requiring

significant storage.
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2.2.4 Hybrid Music Recommendation

Hybrid methods combine two or more of the above methods. In subsequent

part of this thesis, we will use “hybrid method” to refer to “hybrid collabo-

rative filtering and content-based method” as it is the most popular hybrid

form and also the focus of this thesis. Hybrid CF and content-based methods

have been explored extensively in recommenders for other products such as

movies [Porteous et al., ; de Campos et al., 2010; Shan and Banerjee, 2010;

Park et al., 2013]. Although such approaches can potentially generalize to

music recommendation, they have efficiency issues: (1) they use full Bayesian

inference [Porteous et al., ; Shan and Banerjee, 2010; Park et al., 2013] or

Monte Carlo simulation [Agarwal and Chen, 2009] and are thus slow; (2) they

have been applied to a dataset with only thousands of users and items and

about 1 million ratings.

To our knowledge, Yoshii et al. [Yoshii et al., 2006] are the first to com-

bine CF and content-based methods in music recommendation. In this work,

MFCC features were quantized into codewords and used together with rating

data in the three-way aspect model, a probabilistic model, originally proposed

in [Popescul and Ungar, 2001] for bibliographic recommendation. The model

is shown in Figure 2.2, where users, songs, and audio content are assumed to

be independent given the latent variable Z. Every time the song with the high-

est probability p(m|u) is recommended. Parameters of the model are learnt

by the Expectation-Maximization (EM) algorithm. Almost concurrently, Li

et al. [Li et al., 2007] built a probabilistic hybrid approach to unify CF and

traditional features.

While Yoshii and Li’s works were promising starting points for model-

based hybrid methods, subsequent studies all focused on content similarity
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2 HYBRID MUSIC RECOMMENDER SYSTEM
We will first define a recommendation task and then ex-
plain the original version of our recommender system [6].

2.1 Task Statement
The objective of music recommendation is to rank musi-
cal pieces that have not been rated by a target user. We
let U = {u|1, · · · , NU} be the indices of users and M =
{m|1, · · · , NM} be those of pieces, where NU is the num-
ber of users and NM is that of pieces. We assumed that U

and M were registered in the system in advance.
Collaborative data are rating scores, which are also reg-

istered in the system. In this paper, we focus on scores on
a 0-to-4 scale as rating data. We let ru,m be a rating score
given to piece m by user u, where ru,m is an integer be-
tween 0 and 4 (4 being the best). By collecting all the
rating scores, rating matrix R is obtained by

R = {ru,m|1  u  NU , 1  m  NM}. (1)

When user u has not rated piece m, � is substituted for
ru.m as a symbol, representing an “empty” score for con-
venience. Note that most scores in R are empty in actual
data because all users have rated a few pieces in M .

Content-based data are acoustic features automatically
extracted from the polyphonic audio signals of all musical
pieces, M . We assumed that each piece would be repre-
sented as a single vector of musical features. Let T =
{t|1, · · · , NT } be the indices of these features, where NT

is the total number (a dimension of the vector). Here, cm,t

is defined as the t-th element value of piece m. By collect-
ing all the feature vectors, content matrix C is obtained by

C = {cm,t|1  m  NM , 1  t  NT }. (2)

The method of extracting features we use is based on the
bag-of-timbres model [6]. Note that we can incorporate
mannual annotations into calculating maxtix C .

2.2 Recommendation Method
To integrate the collaborative and content-based data, we
used a probabilistic generative model, called a three-way
aspect model [7]. It explains the generative process for
the observed data by introducing a set of latent variables.
These variables correspond to conceptual genres, which
are not given in advance. As part of the generative pro-
cess, the model directly represents user preferences (how
much each genre is preferred by a target user), which are
statistically estimated with a theoretical proof.

The observed data are associated with latent variables,
Z = {z|1, · · · , Nz}, where Nz is the total number of
these, as outlined in Fig. 1. Each latent variable corre-
sponds to a conceptual genre. Given user u, the set of con-
ditional probabilities {p(z|u)|z 2 Z} reflects the musical
taste of user u. One possible interpretation is that user u

stochastically selects genre z according to his or her pref-
erence p(z|u), and genre z then stochastically generates
piece m and acoustic feature t according to their proba-
bilities, p(m|z) and p(t|z). We assumed the conditional
independence of users, pieces, and features through the
latent genres. This is the key point of our model.
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Figure 1. Asymmetric representation of aspect model.

2.2.1 Formulation of Three-way Aspect Model

We will now explain the mathematical formulation for the
three-way aspect model. The assumption of conditional
independence over U , M , and T through Z leads to an
asymmetric specification for the joint probability distribu-
tion p(u, m, t, z), which is given by

p(u, m, t, z) = p(u)p(z|u)p(m|z)p(t|z), (3)

where p(u) is the prior probability of user u. p(u, m, t, z)
is the probability that user u will select genre z and simul-
taneously listen to timbre t in piece m.

Marginalizing out z, we obtain joint probability distri-
bution p(u, m, t) over U , M , and T :

p(u, m, t) =
X

z

p(u)p(z|u)p(m|z)p(t|z), (4)

where the unknown model parameters are {p(z|u)|z 2
Z, u 2 U}, {p(m|z)|m 2 M, z 2 Z}, and {p(t|z)|t 2
T, z 2 Z}, which are estimated by using rating matrix R

and content matrix C. After these are estimated, musical
pieces are ranked for given user u

� according to p(m|u�) /P
t p(u�

, m, t) /
P

t,z p(z|u�)p(m|z)p(t|z).

2.2.2 Estimation of Model Parameters

We will next explain how the model parameters are es-
timated. Let a tuple (u, m, t) be an event where user u

listens to timbre t in piece m. Here, we assumed that each
event would occur independently. The likelihood of the
parameters for the observed data is given by

L

� =
Y

u,m,t

p(u, m, t)n(u,m,t)
, (5)

where n(u, m, t) is the number of events (u, m, t). In this
study, we assumed that n(u, m, t) was proportional to the
product of ru,m and cm,t. That is, n(u, m, t) / ru,m ⇥
cm,t. This is based on the general observation that event
(u, m, t) occurs more frequently if user u prefers piece m

more or the weight of timbre t in piece m is higher.
Given the observed data (rating matrix R and content

matrix C), the log-likelihood, L, is obtained by

L =
X

u,m,t

n(u, m, t) log p(u, m, t). (6)

To estimate the parameters that maximize Eq. (6), we use
the deterministic annealing EM (DAEM) algorithm [8],
which can avoid the local maximum problem.

Figure 2.2: Probabilistic model for combining CF and music audio content [Yoshii
et al., 2006]

based methods. Castillo [Del Castillo, 2007] proposed a hybrid recommender

by linearly combining the results of a content similarity based recommender

and a collaborative filtering based one. Tiemann et al. [Tiemann and Pauws,

2007] and Shruthi et al. [Shruthi et al., ] developed approaches that success-

fully fused CF and content similarities but revealed little information about

the fusion process. Bu et al. [Bu et al., 2010] and Shao et al. [Shao et al., 2009]

used hyper-graphs to combine usage data and content similarity information.

Domingues et al. [Domingues et al., 2012] first obtained song similarities based

on CF and content features separately before integrating the two kinds of sim-

ilarities into a hybrid similarity metric. Similarly, Bogdanov et al. [Bogdanov

et al., 2013] also combined content similarity and Last.fm’s similarity, which

is likely based on CF. Combining the similarities of different modalities is

relatively easy and may work to some extent in practice, but the similarity

metrics are usually selected in an ad hoc way, which results in suboptimal

recommendation performance.

Hybrid methods integrate both user rating data and the music content data
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and thus mitigate the new song problem and lead to better recommendation

accuracy while maintaining good recommendation diversity. However, they

still suffer from the new user problem similar to content-based methods.

Collaborative filtering, content-based methods and hybrid methods satisfy

users long-term preferences well. However, since they do not take into account

the short-term variations of users’ preferences, which are usually influenced by

users’ context such as activities, they cannot satisfy users’ short-term needs

well.

2.3 Deep Learning in Music Recommendation

2.3.1 Deep Learning

Deep learning methods mimic the architecture of mammalian brains. They

can automatically learn features at multiple levels directly from low-level data

without resorting to manually crafted features. We give a very brief introduc-

tion to deep belief networks (DBN), which will be used in this thesis, and refer

the readers to Bengio et al. [Bengio, 2009] for a more comprehensive review of

deep learning techniques.

A deep belief network is a generative probabilistic graphical model with

many layers of hidden nodes at the top and one layer of observations at the

bottom. Connections are allowed between two adjacent layers but not be-

tween the same layer. Connections of the top two layers are undirected while

the rest are directed. Jointly training all layers is computationally intractable,

so Hinton et al. [Hinton et al., 2006] developed an efficient algorithm to train

the model layer by layer from bottom to top in a greedy manner. This unsu-

pervised training process is usually called pre-training. Afterward, the DBN
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can be converted to a multi-layer perceptron (MLP) for supervised learning.

This stage is called finetune and is usually implemented as back-propagation.

It is also possible to directly train a MLP using back-propagation without the

pre-training step, but this is prone to overfitting, especially when the MLP is

deep (has more than two hidden layers). Pre-training may help by implicitly

effecting a form of regularization [Erhan et al., 2010].

2.3.2 Deep Learning in Music Recommendation and Re-

lated Tasks

The field of music information retrieval (MIR) has only recently begun to

embrace the power of deep learning. Lee et al. [Lee et al., 2009] used a convo-

lutional deep belief network to extract features in an unsupervised fashion for

tasks such as music genre classification. Results show that the automatically

learnt features significantly outperforms MFCC. In Hamel et al. [Hamel and

Eck, 2010], a deep belief network was used for music genre classification and

autotagging, with performance surpassing that based on MFCC and MIM fea-

ture sets. In [Humphrey et al., 2012; Humphrey et al., 2013], Humphrey et al.

proposed that the traditional two-stage machine learning process — feature ex-

traction and classification/regression — should be conducted simultaneously.

To classify the rhythm style of a piece of music, Pikrakis applied DBN to en-

gineered features representing rhythmic signatures [Pikrakis, 2013]. Schmidt

et al. [Schmidt and Kim, 2013] found that DBN easily outperforms traditional

features in understanding rhythm and melody based on music audio content.

To the best of our knowledge, the first deep learning based approach for mu-

sic recommendation was almost concurrently proposed by Oord et al. [van den

Oord et al., 2013] recently. They first conducted matrix factorization to obtain
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latent features for all songs, and then used deep learning to map audio content

to those latent features.

2.4 Reinforcement learning in Music Recom-

mendation

The music recommendation process is inherently interactive, in which we need

to explore users’ preference and at the same time exploit the learnt knowledge

to give good recommendations. Balancing the amount of exploration against

exploitation is important for achieving optimal recommendation performance.

Reinforcement learning techniques provide a principled solution to this prob-

lem. In this section, we survey some of these techniques and their applications

in recommender systems.

2.4.1 Reinforcement Learning

Unlike supervised learning (e.g., classification, regression), which considers

only prescribed training data, a reinforcement learning (RL) algorithm ac-

tively explores its environment to gather information and exploits the acquired

knowledge to make decisions or predictions.

The multi-armed bandit is a thoroughly studied reinforcement learning

problem. For a bandit (slot machine) with M arms, pulling arm i will result

in a random payoff r, sampled from an unknown and arm-specific distribution

p
i

. The objective is to maximize the total payoff given a number of trials.

The set of arms is A = {1 . . .M}, known to the player; each arm i 2 A has

a probability distribution p
i

, unknown to the player. The player also knows

he has n rounds of pulls. At the l-th round, he can pull an arm I
l

2 A, and
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receive a random payoff r
Il
, sampled from the distribution p

Il
. The objective

is to wisely choose the n pulls ((I1, I2, . . . In) 2 An) in order to maximize

total payoff =

P
n

l=1 rIl .

A naive solution to the problem would be to first randomly pull arms to

gather information to learn p
i

(exploration) and then always pull the arm

that yields the maximum predicted payoff (exploitation). However, either

too much exploration (the learnt information is not used much) or too much

exploitation (the player lacks information to make accurate predictions) results

in a suboptimal total payoff. Thus, balancing exploration and exploitation is

the key issue.

The multi-armed bandit approach provides a principled solution to this

problem. The simplest multi-armed bandit approach, namely ✏-greedy, chooses

the arm with the highest predicted payoff with probability 1 � ✏ or chooses

arms uniformly at random with probability ✏. An approach better than ✏-

greedy is based on a simple and elegant idea called upper confidence bound

(UCB) [Auer and Long, 2002]. Let U
i

be the true expected payoff for arm i, i.e.,

the expectation of p
i

; UCB-based algorithms estimate both its expected payoff
ˆU
i

and a confidence bound c
i

from past payoffs, so that U
i

lies in (

ˆU
i

�c
i

, ˆU
i

+c
i

)

with high probability. Intuitively, selecting an arm with large ˆU
i

corresponds

to exploitation, while selecting one with large c
i

corresponds to exploration.

To balance exploration and exploitation, UCB-based algorithms follow the

principle of “optimism in the face of uncertainty” and always select the arm

that maximizes ˆU
i

+ c
i

.

Bayes-UCB [Kaufmann et al., 2012] is a state-of-the-art Bayesian counter-

part of the UCB approach. In Bayes-UCB, the expected payoff U
i

is regarded

as a random variable, and the posterior distribution of U
i

given the history

payoffs D, denoted as p(U
i

|D), is maintained, and the fixed-level quantile of
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p(U
i

|D) is used to mimic the upper confidence bound. Similar to UCB, every

time Bayes-UCB selects the arm with the maximum quantile. UCB-based al-

gorithms require an explicit form of the confidence bound, which is difficult to

derive in our case, but in Bayes-UCB, the quantiles of the posterior distribu-

tions of U
i

can be easily obtained using Bayesian inference. We therefore use

Bayes-UCB in our work.

There are more sophisticated RL methods such as Markov Decision Process

(MDP) [Szepesvári, 2010], which generalizes the bandit problem by assuming

that the states of the system can change following a Markov process. Although

MDP can model a broader range of problems than the multi-armed bandit, it

requires much more data to train and is often more expensive computationally.

2.4.2 Reinforcement Learning in Recommender Systems

Previous work has used reinforcement learning to recommend web pages, travel

information, books, news, etc. For example, [Joachims et al., 1997] use Q-

learning to guide users through web pages. In [Golovin and Rahm, 2004], a

general framework is proposed for web recommendation, where user implicit

feedback is used to update the system. [Zhang and Seo, 2001] propose a per-

sonalized web-document recommender where each user profile is represented

as vector of terms whose weights of the terms are updated based on the tem-

poral difference method using both implicit and explicit feedback. In [Srivihok

and Sukonmanee, 2005], a Q-learning-based travel recommender is proposed,

where trips are ranked using a linear function of several attributes including

trip duration, price and country, and the weights are updated according to user

feedback. [Shani et al., 2005] use a MDP to model the dynamics of user prefer-

ence in book recommendation, where purchase history is used as the states and
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the generated profit the payoffs. Similarly, in a web recommender [Taghipour

and Kardan, 2008], browsing history are used as the states, and web content

similarity and user behavior are combined as the payoffs. [Chen et al., 2013]

consider the exploration/exploitation tradeoff in the rank aggregation problem

— aggregating partial rankings given by many users into a global ranking list.

This global ranking list can be used for unpersonalized recommenders but is

of very limited use for personalized ones.

In the seminal work done by [Li et al., 2010], news articles are represented

as feature vectors; the click-through rates of articles are treated as the payoffs

and assumed to be a linear function of news feature vectors. A multi-armed

bandit model called LinUCB is proposed to learn the weights of the linear

function. Our work differs from this work in two aspects. Fundamentally,

music recommendation is different from news recommendation due to the se-

quential relationship between songs. Technically, the additional novelty factor

of our rating model makes the reward function nonlinear and the confidence

bound difficult to obtain. Therefore we need the Bayes-UCB approach and the

more sophisticated Bayesian inference algorithms (Section 5.3). Moreover, we

cannot apply the offline evaluation techniques developed in [Li et al., 2011],

because we assume that ratings change dynamically over time. As a result, we

must conduct online evaluation with real human subjects.

Although we believe reinforcement learning has great potential in improv-

ing music recommendation, it has received relatively little attention and found

only limited application. [Liu et al., 2009] use MDP to recommend music

based on a user’s heart rate to help the user maintain it within the normal

range. States are defined as different levels of heart rate, and biofeedback is

used as payoffs. However, (1) parameters of the model are not learnt from

exploration, and thus exploration/exploitation tradeoff is not needed; (2) the
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work does not disclose much information about the evaluation of the approach.

[Chi et al., 2010] uses MDP to automatically generate playlist. Both SARSA

and Q-learning are used to learn user preference, and, states are defined as

mood categories of the recent listening history similar to [Shani et al., 2005].

However, in this work, (1) exploration/exploitation tradeoff is not considered;

(2) mood or emotion, while useful, can only contribute so much to effective

music recommendation; and (3) the MDP model cannot handle long listen-

ing history, as the state space grows exponentially with history length; as a

result, too much exploration and computation will be required to learn the

model. Independent of and concurrent with our work, [Liebman and Stone,

2014] build a DJ agent to recommend playlists based on reinforcement learn-

ing. Their work differs from ours in that: (1) exploration/exploitation tradeoff

is not considered; (2) the reward function does not consider the novelty of rec-

ommendations; (3) their approach is based on a simple tree-search heuristic,

while ours the thoroughly studied muti-armed bandit; (4) not much informa-

tion about the simulation study is disclosed, and no user study is conducted.

The active learning approach [Huang et al., 2008; Karimi et al., 2011]

only explores songs in order to optimize the predictive performance on a pre-

determined test dataset. Our approach, on the other hand, requires no test

dataset and balances both exploration and exploitation to optimize the entire

interactive recommendation process between the system and users. Since many

recommender systems in reality do not have test data or at least have no data

for new users, the bandit approach is more realistic compared with the active

learning approach.
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Chapter 3

Context-Aware Music

Recommendation for Daily

Activities

3.1 Introduction

Most of the existing music recommendation systems that model users’ long-

term preferences provide an elegant solution to satisfying long-term music

information needs [Adomavicius and Tuzhilin, 2005]. However, according to

some studies of the psychology and sociology of music, users’ short-term needs

are usually influenced by the users’ context, such as their emotional states,

activities, or external environment [North et al., 2004; Levitin and McGill,

2007; Reynolds et al., 2008]. For instance, a user who is running generally will

prefer loud, energizing music. Existing commercial music recommendation

systems such as Last.fm and Pandora cannot satisfy these short-term needs

very well. However, the advent of smart mobile phones with rich sensing

26



Chapter 3. Context-Aware Music Recommendation for Daily Activities

capabilities makes real-time context information collection and exploitation

a possibility [Saponas et al., ; Brezmes et al., 2009; Berchtold et al., 2010;

Khan et al., 2011; Kwapisz et al., 2011; Lee and Cho, 2011]. Considerable

attention has focused recently on context-aware music recommender systems

(CAMRSs) in order to utilize contextual information and better satisfy users’

short-term needs [Camurri et al., 2010; Su et al., 2010; Resa, 2010; Han et al.,

2010; Kaminskas and Ricci, 2011].

Existing CAMRSs have explored many kinds of context information, such

as location [Kim et al., 2006; Lee and Lee, 2008; Lehtiniemi, 2008; Camurri

et al., 2010; Kaminskas and Ricci, 2011], time [Park et al., 2006; Leake et

al., 2006; Lehtiniemi, 2008; Baltrunas and Amatriain, 2009; Resa, 2010; Su et

al., 2010], emotional state [Park et al., 2006; Dornbush et al., 2007; Reynolds

et al., 2008; Cunningham et al., 2008; Rho et al., 2009; Han et al., 2010],

physiological state [Kim et al., 2006; Oliveira and Oliver, 2008; Liu et al.,

2009; Su et al., 2010; Zhao et al., 2010a], running pace [Wijnalda et al., 2005;

Elliott and Tomlinson, 2006; Oliveira and Oliver, 2008], weather [Park et al.,

2006; Su et al., 2010], and low-level activities [Dornbush et al., 2007]. To the

best of our knowledge, none of the existing systems can recommend suitable

music explicitly for daily activities such as working, sleeping, running, and

studying. It is known that people prefer different music for different daily

activities [North et al., 2004; Levitin and McGill, 2007]. But with current

technology, people must create playlists manually for different activities and

then switch to an appropriate playlist upon changing activities, which is time-

consuming and inconvenient. A music system that can detect users’ daily

activities in real-time and play suitable music automatically thus could save

time and effort.

Most existing collaborative filtering-based systems, content-based systems
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and CAMRSs require explicit user ratings or other manual annotations [Ado-

mavicius and Tuzhilin, 2005]. These systems cannot handle new users or new

songs, because without annotations and ratings, these systems are not aware

of anything about the particular user or song. This is the so-called cold-start

problem [Schein et al., 2002]. However, as we demonstrate in this chapter, with

automated music audio content analysis (or, simply, music content analysis),

it is possible to judge computationally whether or not a song is suitable for

some daily activity. Moreover, with data from sensors on mobile phones such

as acceleration, ambient noise, time of day, and so on, it is possible to infer

automatically a user’s current activity. Therefore, we expect that a system

that combines activity inference with music content analysis can outperform

existing systems when no rating or annotation exists, thus providing a solution

to the cold-start problem.

Motivated by these observations, this chapter presents a ubiquitous system

built using off-the-shelf mobile phones that infers automatically a user’s activ-

ity from low-level, real-time sensor data and then recommends songs matching

the inferred activity based on music content analysis. More specifically, we

make the following contributions:

• Automated activity classification: We present the first system we are

aware of that recommends songs explicitly for everyday user activities

including working, studying, running, sleeping, walking and shopping.

We present algorithms for classifying these contexts in real time from

low-level data gathered from the sensors of users’ mobile phones.

• Automated music content analysis: We present the results of a feasibility

study demonstrating strong agreement among different people regarding

songs that are suitable for particular daily activities. We then describe
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how we use music content analysis to train a statistical model for predict-

ing the activities for which a song is suitable. This analysis can operate

offline since the predictions they produce are independent of individual

user activities or listening behaviors.

• Solution to the cold-start problem: We present an efficient probabilis-

tic model for Adaptive Context-Aware Content Filtering (ACACF) that

seamlessly unifies the activity classification and music content analysis

results. This model can be updated on-the-fly for each user to adapt to

their ongoing listening behavior.

• Implementation and evaluation: We present a prototype mobile applica-

tion that implements all parts of the ACACF model except music content

analysis entirely on a mobile phone, and we present evaluation results

demonstrating its accuracy and usability.

This chapter is organized as follows. Section 3.2 formulates the probabilis-

tic model used to do context-aware recommendation based on context infer-

ence and music content analysis. Section 3.3 describes the system design and

implementation. Section 3.4 describes evaluations of our model and system.

Section 3.5 concludes this chapter.

3.2 Unified Probabilistic Model

In this section we present our Adaptive Context-Aware Content Filtering

model, ACACF. The model uses a Bayesian framework to seamlessly inte-

grate context-aware activity classification and music content analysis.
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3.2.1 Problem Formulation

Let S be a set of songs and C a set of context categories.1 For our model, the

contexts are daily activities, with C ={running, walking, sleeping, studying,

working, shopping}. These activities are chosen because they may have impact

on users’ music preference and they can possibly be detected using sensor

data collected from current mobile phones. We can extend the model to other

activities with the access to richer sensors in the future. A user is assumed

to be in exactly one context category c 2 C at any time. We also assume

the user always carries his/her mobile phone, and that a sensor data stream

can be recorded continuously from the phone. For our model, the sensor data

includes time of day, accelerometer data, and audio from a microphone. The

sensor data stream is divided into a sequence of frames, possibly with overlap

between adjacent frames. For each frame, a vector f of features of the sensed

data is extracted. The recommendation problem is then formulated as a two-

step process: (1) infer the user’s current context category c 2 C from f , and

(2) find a song s 2 S matching c the best. We call the first step context

inference and the second step music content analysis.

3.2.2 Probability Models

Inferring a user’s current context category c from the feature vector f is not

an easy task. In our early experience we found it difficult sometimes to dif-

ferentiate working and studying by a mobile phone; as sensed activities they

appear to be similar, but they need to be differentiated because people have

different music preferences when working versus studying. In order to capture
1
In the notation we present, bold letters represent vectors, calligraphic upper case letters

represent sets, and random variables and their values are indicated by italicized upper-case

and lower-case letters respectively.
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such uncertainty, instead of obtaining exactly one context category from f ,

we obtain a probability distribution p(c
i

|f) over all categories. For instance,

if there is complete uncertainty about whether a user is working or studying,

then we can assign the probability 0.5 to both working and studying. Using

Bayes’s rule, p(c|f) can be as in Equation (3.1):2

p(c|f) = p(f |c)p(c)
p(f)

/ p(f |c)p(c) (3.1)

We call this part of our model the sensor-context model, and we elaborate it

further in Section 3.2.5.

To model whether a song s is suitable for a context category c, we intro-

duce a random variable R 2 {0, 1}. R = 1 means s is suitable for c, and R = 0

otherwise. Then we use the probability p(R = 1|c, s) to indicate the user sat-

isfaction degree of song s when he/she is in context c. We call this part of our

model the music-context model, and we elaborate it further in Section 3.2.3.

Combining p(f |c)p(c) with p(R = 1|c, s), we obtain the joint probability

shown in Equation (3.2):

p(c, f , R, s) / p(f |c)p(R|c, s)p(c) (3.2)

We assume that all songs share the same prior probability, so p(s) can be

omitted. The combined model can be represented by the graph depicted in

Figure 3.1. The combined model is our ACACF model. Random variable

⇥ is a probability prior and will be explained in Section 3.2.3.1. The model

is adaptive in that the component probabilities are updated dynamically as a

result of evolving user behavior; the adaptive features of ACACF are presented
2
In this and subsequent formulas, we indicate proportional equivalents where normalizing

constants can be omitted, thereby improving computation efficiency.
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SΘC

F R

Figure 3.1: Graphical representation of the ACACF Model. Shaded and unshaded
nodes represent observed and unobserved variables, respectively.

in Sections 3.2.3.1 and 3.2.5.

With this model, the recommendation task is defined as follows: Given the

feature vector f calculated from sensor data, find a song s that maximizes the

user satisfaction p(R = 1|s, f), which is calculated in Equation (3.3) as the

sum of the joint probabilities for all possible context categories:

p(R = 1|s, f) / p(R = 1, s, f)

=

|C|X

i=1

p(R = 1, s, f , c
i

) (3.3)

To calculate the joint probabilities of Equation (3.2), we compute estimates

for the probabilities of the music-context model and the sensor-context model,

as explained in Sections 3.2.3 and 3.2.5, respectively.

3.2.3 Music-Context Model

3.2.3.1 Modeling and Adaptation

As described later in Section 3.4.3, we have found that users agree on the fea-

tures of music they prefer when they are doing a particular activity. However,

in general, different users like different songs. Thus, to provide a more per-

sonalized recommendation, ACACF incorporates implicit user feedback. For
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example, if a user listened to a song completely, the user probably likes the

song; we call this positive feedback. If the user skipped a song after listening for

only a few seconds, then the user probably dislikes the song; we call this neg-

ative feedback. Implicit feedback has been exploited by some researchers [Hu

and Ogihara, 2011], and we integrate it seamlessly and efficiently in our own

ACACF model.

To model implicit feedback, for each user we assign a probability prior

(or simply a prior) ⇥

c,s

⇠ beta(✓
c,s

; a
c,s

, b
c,s

) to p(R|c, s) for every pair (c, s).

beta(✓, a, b) indicates the beta distribution with shape parameters a, b. Here

a, b can be interpreted as the total number of occurrences of negative and pos-

itive feedback, respectively, when the user is in context c and is recommended

song s. Therefore, the prior captures the personal history of preferences of the

user. The probability p(R = 1|c, s) can be expressed as in Equation (3.4):

p(R = 1|c, s) = b

a+ b
(3.4)

User feedback can be described as a triple x = (f , s, r), where f is a feature

vector extracted from mobile phone sensors during the play of a recommended

song, s is the recommended song, and r is the observed value of R, which is

the user feedback. The value r = 0 indicates negative feedback, while r = 1

indicates positive feedback.

The user’s true context category is unknown, and thus c is a latent variable

during adaptation. In this situation, updating the beta prior by exact Bayesian

learning is computation-intensive, and thus not suitable for mobile phones.

Here approximate inference is used to reduce the computation. First the MAP
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estimation ĉ of c is given by Equation (3.5):

ĉ = argmax

c

p(c|f) (3.5)

Then the corresponding beta prior ˆ✓ for pair (ĉ, s) is updated as in Equa-

tion (3.6):

p(ˆ✓|x) ⇡

8
><

>:

beta(ˆ✓; a+ 1, b) if r = 0

beta(ˆ✓; a, b+ 1) if r = 1

(3.6)

Finally, the corresponding p(R = 1|ĉ, s,x) representing the user’s preference

is updated as in Equation (3.7):

p(R = 1|ĉ,x) ⇡

8
><

>:

b

a+b+1 if r = 0

b+1
a+b+1 if r = 1

(3.7)

Comparing Equation (3.7) with Equation (3.4), we can see that when a user

skips song s in context ĉ, r = 0 and the probability of that song p(R = 1|ĉ, s)

decreases. Thus, s will have a smaller chance of being recommended next

time. Otherwise, if the user listened completely (r = 1), then the probability

p(R = 1|ĉ, s) increases, and thus s will be more likely to be recommended next

time.

The whole updating process is very efficient: We first obtain the MAP

estimation ĉ, and then the counters a,b and p(R = 1|ĉ, s) are updated. The

adaptation can be done directly on a mobile phone without the use of backend

servers.

We next describe the use of music content analysis results to initialize the

beta priors.
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3.2.4 Initialization

We model the relationship between music and context by examining the music

audio content. There are many existing works on music content classifica-

tion, such as genre classification, mood classification, and so on. Classification

usually assumes that the classes are mutually exclusive. The problem here is

different, since one song can be suitable for many context categories. Thus,

our problem is similar to the tagging problem: Given a song, we want to

know the probability that a tag is suitable for the song. Therefore, we use a

state-of-the-art music tagging method called Autotagger [Bertin-Mahieux et

al., 2008].

Autotagger estimates the probability ⇡
c,s

that a song s is suitable for con-

text c for all users. We use ⇡
c,s

in our model to initialize the prior beta(✓; a, b)

described in Section 3.2.3.1. First, the ratio of a and b is determined by Equa-

tion (3.8):

p(R = 1|c, s) = b

a+ b
= ⇡

c,s

(3.8)

To further determine a and b, the equivalent sample size � is needed:

a+ b = �

� is a free parameter of the system, balancing user feedback against music

content analysis results. A large � indicates a belief that music content analysis

results are good enough to provide a good recommendation, and that the

adaptation (Equation (3.7)) will change p(R = 1|c, s) very slowly. On the other

hand, a small � indicates that music content analysis is relatively inaccurate,

requiring more reliance on user feedback to perform recommendation. From

our subjects’ experiences, � = 5 is a reasonable setting.
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Prediction Incremental training

AdaBoost Fast Slow and Non-trivial

C4.5 Fast Slow and Non-trivial

LR Fast Not supported

NB Fast Fast

SVM Fast Slow and Non-trivial

KNN Slow Fast

Table 3.1: Comparison of Classifiers

After initialization, p(R = 1|c, s) is adapted dynamically to the particular

user according to Equation (3.7).

3.2.5 Sensor-Context Model

There are many ways to infer context categories from sensor data. Choosing a

proper model is very important and requires careful consideration. First, since

much of the computation is to be done on a mobile phone, energy consumption

is critically important. Second, the model needs be accurate. Third, in order

to adapt the model to a user on the fly as he/she is using the system, the

model should support efficient incremental training.

We considered six popular methods used in activity recognition—AdaBoost,

C4.5 decision trees, logistic regression (LR), Naive Bayes (NB), support vec-

tor machine (SVM) and K-nearest neighbors (KNN). We compared them from

three perspectives: prediction accuracy, overhead of prediction computation,

and incremental training. Table 3.1 compares the methods qualitatively in

terms of prediction overhead and incremental training, and we present results

on prediction accuracy in Section 3.4.4.3. We chose Naive Bayes because it

offers very good incremental training and prediction overhead with just a small

relative loss in accuracy.

Feature vectors extracted from sensor data are usually real-valued vectors.
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Since Naive Bayes cannot handle real-valued feature attributes directly, we

first discretize the attributes using the well known equal frequency discretiza-

tion method. As a result, every feature vector f becomes a vector of integers:

(f1, f2, . . . , fv), and 1  f
l

 d
l

, where d
l

is the number of bins of the l-th

attribute. Using the Naive Bayes assumption (that the features are condition-

ally independent), the sensor-context model p(f |c)p(c) can be decomposed as

follows:

p(f |c)p(c) =
vY

l=1

p(f
l

|c)p(c) (3.9)

To estimate the parameters p(c) and p(f
l

|c) in Equation (3.9), training

samples need to be collected, which are tuples of the form (f

k, ck), where

f

k is the k-th observed feature vector, and ck is the corresponding context

category. Then, based on Maximum Likelihood Estimation, parameters are

learned using Equations (3.10) and (3.11), where n(c) indicates the number of

times that category c occurs in the training samples, and n(F
l

= f, c) indicates

the number of times that the l-th attribute of f is f and the context category

is c:

p(c) =

n(c)
P|C|

i=1 n(ci)
(3.10)

p(f
l

|c) =

n(F
l

= f
l

, c)
P

dl
f=1 n(Fl

= f, c)
(3.11)

An alternative to incremental training for adaptation is to store all old

training data in the mobile phone, and then newly arriving training data is

combined with the old data and a new model trained again on the combined

dataset. We argue that this is not suitable for a mobile application. First,

storing all the training data in the mobile phone is too expensive due to the

limited storage space. Second, re-training the model on the complete data
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after each update would be too expensive computationally.

For these reasons we opt for incremental training. First, it trains a model

on some training data and then discards that training data. When new data

arrives, instead of training a completely new model, it uses the new training

data to update the model incrementally and then again discards the new

training data. In this way, no training data needs to be stored, and the model

can be updated efficiently.

Incremental training in Naive Bayes is straightforward. According to Equa-

tion (3.10) and (3.11), the parameters are estimated using counters n(c) and

n(F
l

= f, c), which are the sufficient statistics of the sensor-context model.

When new training data arrives, these counters are updated, and then param-

eters p(c), p(F
l

= f |c) are updated via Equations (3.10) and (3.11). In this

way, the sensor-context model can be efficiently updated to adapt to the user.

3.3 System Implementation

We have implemented the ACACF model in a prototype system, which com-

prises two components: (1) music audio content analysis on a remote server,

and (2) a context-aware music recommender application on a mobile phone.

Music content analysis is done on a server since it is compute-intensive and

needs to be performed just once per song. Doing it on a mobile phone would

quickly drain the battery.

The mobile application is implemented on the Android SDK, and its in-

terface is depicted in Figure 3.2. To stream music, the application connects

to the server via a wireless connection (3G or WiFi). The application also

can run without connecting to the server, but then songs and music content

analysis results must be cached beforehand.
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(a) auto mode (b) manual mode

Figure 3.2: Context-aware mobile music recommender.

At the top of the user interface is a list of activities. Users can let the system

infer his/her current activity automatically, which is called the auto mode and

is shown as Figure 3.2a. The background intensity of the activity labels is

adjusted according to the inferred probabilities. The whiter the background is,

the higher the activity’s probability is. Users also can select a single category

manually, which is called manual mode and is shown as Figure 3.2b. When an

activity is selected manually, its background becomes yellow. To switch back

to auto mode from manual model, the user just needs to tap the yellow label

once.

When the application is in manual mode, the selected activity and sensor

data are used to update the sensor-context model described in Section 3.2.5,

which makes context inference increasingly accurate. Ideally, manual mode

will not be needed after several days since auto mode should be accurate
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enough by then.

The list in the middle of the user interface contains the recommended songs

ranked by the probabilities described in Equation (3.3); logarithms of these

probabilities are shown on the left side of the songs. At the bottom of the user

interface are play/pause and skip buttons.

The adaptation described in Section 3.2.3.1 is performed whenever the user

finishes listening to a song or skips a song. After adaptation, the probability

of the song just listened to or skipped will be updated, and all songs will be

re-ranked. This makes the list of recommended songs increasingly accurate,

thereby adapting to the user’s personal preferences.

3.4 Experiments

In this section we describe results from our evaluation of the ACACF model

and its prototype implementation. We have conducted preliminary experimen-

tal evaluations of both model accuracy and system usability, and the results

demonstrate significant promise from both perspectives.

3.4.1 Datasets

3.4.1.1 Playlists Crawled from the Web

To build and evaluate the music-context model, we require a large number of

songs with context labels, which we use as ground truth for activity prediction.

One dataset we considered is the publicly available CAL500 dataset, which in-

corporates some usage annotations such as driving and sleeping [Turnbull et

al., 2007]. However, those annotations only partially cover our six categories.

Furthermore, although the annotations were made by a large number of sub-
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Context Playlists Distinct Songs Observations
Running 393 3430 7810
Walking 197 3601 4123
Sleeping 195 3941 5318
Working 194 4533 4988
Studying 195 3405 4363
Shopping 77 3786 3847

Total 1251 22108 30449

Table 3.2: Summary of the Grooveshark Dataset. Distinct Songs indicates the
number of distinct songs from the playlists for the specified context, while Obser-
vations indicates the total number of songs including duplicates.

jects (66 undergraduates), each subject annotated only a small portion of the

dataset, and each song was annotated only by around three subjects, which is

too few to obtain reliable results.

For these reasons, we constructed a new, larger dataset of 24224 songs

crawled from Grooveshark3 and YouTube4. Grooveshark has numerous playlists

created by users , titled with context information such as Studying, running

songs, etc. From Grooveshark we therefore collected playlists that match our

context categories. The audio tracks for the songs were then crawled from

YouTube through YouTube’s open data API. Details of the dataset are pre-

sented in Table 3.2; the total number of 22108 distinct songs shown in the table

is less than 24224, since latter number includes songs not associated with any

of our six context categories.

3.4.1.2 Context Annotation of 1200 Songs

From the 22108 distinct songs shown in Table 3.2, we selected 1200 for anno-

tation. It was necessary to consider fewer songs for two reasons. First, data
3
http://grooveshark.com

4
http://www.youtube.com
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crawled from the Web is inevitably noisy, since some users may be careless

in their creation of playlists. Second, in order to verify agreement between

different users, we require songs labeled by multiple users. In the Grooveshark

dataset, most songs exist in only a single playlist. For these reasons, it was

necessary to carry out an additional phase of annotation in which all songs

were annotated by multiple subjects to produce the ground truth classification

for our study. 1200 songs provides a large sample size but not so large as to

make the annotation effort unreasonable for our subjects. We randomly chose

the 1200 songs so that there would be roughly an equal number of songs from

each context category (as classified by the Grooveshark playlist titles).

We recruited 10 undergraduate students to annotate all 1200 songs through

the school’s mailing list. There were equal numbers of males and females. All

of them listen to music at least one hour a day, and exercise regularly (at

least 3 hour-long sessions per week). They have different culture background

and are from India, Malaysia, Singapore, Indonesia, China, and Vietnam.

Every participant was rewarded with a small token payment for their time and

effort. Participants were chosen with the requirement that they listen to music

regularly for at least one hour per day. Annotation was performed through a

Web site we set up that simply required clicking checkboxes. Because different

parts of the same song can have very different styles, we required the subjects

to listen to each song for at least 45 seconds. Subjects were allowed to advance

or rewind the music playback. For each song, each subject selected one or more

suitable context categories.

The resulting dataset thus contains 1200 songs, with each song annotated

by all 10 subjects, and with each subject having selected one or more context

categories per song.
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3.4.2 Sensor Data Collection

To build and evaluate the sensor-context model, we had the same 10 subjects

collect data from onboard sensors on their mobile phones. The sensors we

used were gyroscopes, accelerometers, GPS receivers, microphones and ambi-

ent light sensors.

Sensor data was collected by a mobile application we designed, which will

be offered to other interested researchers in the future. All the mobile phones

used are based on Android OS. To make the trained model robust to different

phone models, we provided our subjects with five different phone models we

purchased from Samsung and HTC. The quality of these phones is also differ-

ent. Some are expensive and have all the sensors mentioned above, while some

are cheaper models having only accelerometer, a GPS receiver and a micro-

phone. We imposed no restrictions on how the subjects held or carried or used

their phones. To record a data session, a subject first selected their current

context category from the application interface and then recorded 30 minutes

of data. Each subject was required to record one session for every context

category. The recorded sensor data and selected context category were stored

together in a SQLite database on the mobile phone’s SD card. The resulting

30-hour dataset contains 6 context categories, and every category has 0.5 hour

sensor data collected by every of the 10 subjects.

3.4.3 Music-Context Model Evaluation

Demonstrating agreement on suitable songs for an activity is a very important

foundation for music content analysis, because if there is no agreement among

people, then a trained music-context model will work only for the users in

the training set but will not reliably generalize to other users. Therefore,
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Activity Kappa Agreement Percent Agreement

Running 0.27 0.35

Working 0.03 0.02

Sleeping 0.29 0.28

Walking 0.03 0.03

Shopping 0.07 0.17

Studying 0.09 0.11

Table 3.3: Inter-Subject Agreement on Music Preferences for Different Activities

we first studied inter-subject agreement. Fleiss’s Kappa [Landis and Koch,

1977] and percent agreement were calculated among the 10 subjects for every

context category, and the results are presented as Table 3.3. We observe

that all Kappa values are significantly higher than 0 (p-value < 0.0001) and

are especially high for running and sleeping. The results therefore indicate

that subjects have statistically significant agreement on context categories,

indicating the feasibility of training generalizable statistical models.

Next, the music-context model was trained. The videos we crawled from

YouTube were first converted by ffmpeg5 into mono channel WAV files with a

16KHz sampling rate. Then feature vectors were extracted using a program

we developed based on the MARSYAS library6, in which a window size of 512

was used without overlapping. The features we used and their dimensionalities

are ZeroCrossing (1), Centroid (1), Rolloff (1), Flux (1), MFCC (13), Chroma

(14), SCF (24) and SFM (24). To reduce the training set size, we used the

mean and standard deviation of feature vectors computed from every 30-second

period. Finally, we added the 1-dimensional feature tempo to the summarized

feature vectors. So the resulting combined feature vector is 79⇥ 2 + 1 = 159-

dimensional.
5
http://ffmpeg.org

6
http://marsyas.sourceforge.net
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We split the Grooveshark dataset into three disjoint subsets: a training set

of 16281 songs, a large test set of 6943 songs, and our annotated dataset of

1200 songs, which we also used as a test set. We used the Autotagger method

for the training: Using the training set, one binary AdaBoost classifier was

trained for every context category. The classifier for context c
i

estimates the

probability that a song s
j

is suitable for context c
i

, which is p(R = 1|c
i

, s
j

).

To measure the accuracy of these classifiers, we simulated the following

retrieval process: Given context c as the query, we use its corresponding clas-

sifier to compute the probability p(R = 1|c, s
j

) for every song s
j

and then rank

all songs in descending order according to the estimated probabilities. Then

the top-K songs are returned. Suppose there are only L songs of the top-K

are labeled with context c in our dataset. Then L/K is the Precision@K for

context c. The final Precision@K is the average of all Precision@K for the six

categories.

We tested the classifiers on the three datasets. For our dataset of 1200

annotated songs, we used majority voting to determine the context for every

song. For instance, if at least six of the 10 subjects annotated a song as

being suitable for context c, then the song was labeled with c. The retrieval

performance measured by Precision@K depends on the test set size, because

the more songs we have, the more likely that we can find good songs for

a context category, and thus the Precision@K will be higher. Therefore, in

order to produce results that are comparable between our annotated song set

and the large test set of 6943 songs, a set of 1200 songs was randomly sampled

from the large test set; we refer to this as the small test set below.

We used a random estimator as our baseline, which ranks all songs ran-

domly. The random estimator was also tested on the annotated dataset (base-

line 1), the large test set (baseline 2) and the small test set (baseline 3). All
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Figure 3.3: Retrieval performance of the music-context model.

results are presented in Figure 3.3. We observe that our trained models sig-

nificantly outperformed the random estimator. Therefore, the models are able

to associate a song accurately with daily activities by examining the song’s

audio content.

3.4.4 Sensor-Context Model Evaluation

3.4.4.1 Sensor Selection

Time data were used with data from accelerometers and microphones in our

sensor-context model. Although GPS data are used by much of the previous

work in human activity recognition, we did not use it for our own work be-

cause our activity set is different from other work, plus GPS appears not to

increase classification accuracy even though it consumes a great deal of power.
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Additionally, we did not use the ambient light sensors and gyroscopes, for

two reasons: First, gyroscopes do not improve accuracy very much since ac-

celerometers already provide good motion data. Second, both kinds of sensors

reside only in a small number of relatively expensive phones, while our aim is

to build a model suitable for most available Android phones.

3.4.4.2 Feature Extraction from Sensor Data

Performing feature extraction from sensor data involves computing feature

vectors from the sensor data stream.

Human daily activities have very strong time regularity. Most of us sleep

at night and work during the day. Therefore, time is a very important feature

for daily activity recognition, and we use the hour of the day in our feature

set.

Window size in feature extraction is important. Generally, a larger window

size can make inference more accurate because it captures more information.

However, a larger window size also reduces system responsiveness, thus degrad-

ing the user experience. From our experience, a window size of five seconds

appears to be a reasonable setting.

Each accelerometer data sample has three axes, x, y and z. From this data

we use the magnitude m =

p
x2

+ y2 + z2, which is robust to the direction of

the phone. Then the mean, standard deviation, minimum and maximum of

all five-second samples of m are used in the final feature vectors.

For audio data from a microphone, we calculate the average amplitude of

all samples as a measure of how noisy the environment of the phone is. The

final feature vector therefore has 1 + 4 + 1 = 6 dimensions.

47



Chapter 3. Context-Aware Music Recommendation for Daily Activities

AdaBoost C4.5 LR NB SVM KNN

Running 0.974 0.976 0.975 0.841 0.974 0.97

Working 0.933 0.932 0.921 0.876 0.929 0.922

Sleeping 0.999 0.999 0.999 0.994 0.999 0.993

Walking 0.961 0.960 0.955 0.909 0.960 0.953

Shopping 0.972 0.972 0.948 0.953 0.965 0.955

Studying 0.854 0.867 0.835 0.694 0.860 0.855

overall 0.951 0.952 0.941 0.893 0.950 0.943

Table 3.4: Activity Classification Accuracy

3.4.4.3 Context Classification Accuracy

We evaluated AdaBoost, C4.5, LR, NB, SVM and KNN for context classifi-

cation, and we used 10-fold cross-validation to compare their accuracy. The

results are presented in Table 3.4, with a value of 1.0 representing perfect

accuracy. We observe that while NB is not as accurate as other methods, it

still produces very good results. The categories studying and working are not

distinguished well by any of the methods, because the context information

sensed during those two activities is very similar. In fact, sometimes even

human beings cannot distinguish the two.

3.4.5 User Study

3.4.5.1 User Needs Study

To understand user needs for music recommendation, we conducted a sur-

vey (Questionnaire 1) with our 10 subjects. The questionnaire and survey

results are presented in Table 3.5. All questions were answered on a 5-point

Likert scale from “strongly disagree” (1) to “strongly agree” (5). Q1 helps

in understanding user needs for a context-aware music experience; the results

demonstrate that subjects generally prefer different music in different contexts.
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Questions Mean Stdev
Q1 I prefer different music (different genre, tempo,

pitch, dynamics etc.) when I’m in different

context (In different contexts means doing

different things e.g. running, sleeping, or at

different places e.g. school, home).

3.7 0.95

Q2 I usually listen to different sets of music when

I’m in different context .

3.5 1.18

Q3 It is time consuming to create different lists of

songs for different contexts with existing

technologies.

4.4 0.97

Q4 It is not convenient to change music when I’m

doing other things with existing technologies.

4.0 0.94

Q5 I want to have a mobile application that can

accurately play suitable music to me according

to my context automatically.

4.4 0.52

Table 3.5: Questionnaire 1

The results for Q2, Q3 and Q4 demonstrate that their requirements cannot be

satisfied very well with the existing technologies. Finally, the results for Q5

demonstrate that a context-aware mobile music recommender potentially can

satisfy their needs better.

3.4.5.2 Evaluation of Recommendation Quality

Most existing music recommender systems, including context-aware ones, re-

quire user ratings or annotations. During the cold-start stage, these sys-

tems are able only to recommend songs randomly. Comparison with existing

CAMRSs is impossible, for three reasons: First, we focus on daily activities,

and none of the reported literature has used these before. Second, most exist-

ing CAMRSs do not infer context categories from mobile phone sensor data.

Third, most existing CAMRSs do not use music content analysis. Therefore,

for our evaluation we undertook a comparison between the following three
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kinds of recommendations:

(R1) recommending songs completely randomly. This simulates traditional

recommender systems during the cold-start stage.

(R2) recommending songs with context category inferred by the system auto-

matically. This is the auto mode of our application.

(R3) recommending songs with context category selected by subjects manu-

ally. This is the manual mode of our application.

The same 10 subjects participated in this evaluation. The subjects were di-

vided into an experimental group and a control group of five subjects each. The

experimental group tested R2 and R3, and the control group tested R1. The

subjects did not know which group they were in. All phones were supplied with

the music content analysis results and with an identical set of 800 songs cho-

sen randomly from the large test set of 6943 songs described in Section 3.4.3.

During evaluation, each subject did each of the six activities for about 20

minutes while listening to the activity’s top recommended songs. Each song

was played for about a minute and then rated with the above 5-point Likert

scale. Thus, the higher the rating for a song, the more the subject liked the

song. Adaptation of both the music-context model and sensor-context model

was turned off during this evaluation.

The average and standard deviation of the resulting ratings are presented in

Figure 3.4. We observe that R2 performs significantly better than R1 (p-value

= 0.0478), and R3 is much better than R1 (p-value = 0.0001). These results

indicate that context-awareness combined with music content analysis can

produce significantly better results than random recommendation. Therefore,

our system provides a promising solution to the cold-start problem. R3 is
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Figure 3.4: Average recommendation ratings. The error bars show the standard
deviation of the ratings.

better than R2 but not significantly better (p-value=0.1374), demonstrating

that auto mode is almost as good as manual mode, and further demonstrating

the accuracy of automated context inference.

3.4.5.3 Adaptation Evaluation

Two of our 10 subjects participated in a one-week adaptation evaluation. The

subjects used the application continuously every day for a week. Most of

the time the application was used in auto mode. If a subject found that

the recommended songs did not match his/her activity, he/she could switch

the application to manual mode or skip the recommended song. The whole

system was updated continuously and became more and more accurate over the

one-week period with respect to the subject’s preferences. We compared the

accuracy of both context inference and recommendation quality, both before

the one-week adaptation period and after the one-week adaptation period.

Finer-grained investigation of the performance improvement w.r.t. the amount
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Before Adaptation After Adaptation

Context Inference 0.87 0.96
Recommendation 0.68 0.93

Table 3.6: Context Inference and Recommendation Accuracy Before and After
Adaptation

of adaptation data is possible but requires more times of user evaluations. To

reduce the cost, we chose to leave that as future work.

Context inference: The trained Naive Bayes model described in Sec-

tion 3.4.4.3 was used as the initial sensor-context model. Before and after

adaptation, each subject’s sensor-context model was evaluated on sensor data

collected by that subject. The average classification accuracy for the two sub-

jects is presented in Table 3.6.

Recommendation: Each subject rated the top-20 recommended songs

with “like”, and “dislike” for every context category, both before and after

adaptation. Recommendation accuracy is defined as the proportion of liked

songs. The results are presented as Table 3.6.

We observe that the accuracy of both context inference and recommen-

dation increased after one week of adaptation although the results could be

further confirmed by adding more subjects.

3.4.5.4 User Experience

All 10 subjects completed a second survey at the end of the study (Ques-

tionnaire 2). Two of the questions and the survey results are presented in

Table 3.7. All questions were answered with a 5-point Likert scale as before.

We observe that most of the subjects agree that the application is easy to use

and are willing to use it. One subject commented, “I really like the idea, hope

you can improve on it and sell it”. However, some of the subjects thought
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Questions Mean Stdev
Q6 I can fully understand the functionalities of the

mobile application and it’s easy to use.

4.6 0.51

Q7 I’m willing to use the application if I have a

copy.

4.4 0.84

Table 3.7: Questionnaire 2

that more context categories should be added, such as: entertaining (playing

games, surfing the Web), cooking, traveling (bicycle/bus/subway), partying

and just relaxing and enjoying music (no work, no study). Two of the subjects

thought the interface could be made more appealing.

3.5 Conclusion

We have proposed a context-aware music recommendation system that com-

bines automated activity classification with automated music content analysis,

with support for a rich set of activities and music content features. We col-

lected three datasets—a set of playlists from the Web, a set of 1200 cleanly

annotated songs, and a set of sensor data recorded from daily activities. These

datasets will be offered eventually to researchers who want to carry out related

research on context-aware music recommendation. Based on the set of 1200

annotated songs, we found that although context annotation can be subjective,

people nevertheless often do agree on their annotations. Using the datasets,

both the sensor-context model and the music-context model were evaluated,

and the results are very promising. Based on the probabilistic model, we im-

plemented a CAMRS for off-the-shelf mobile phones. The results from our

user study demonstrate that the system is easy to use and can provide good

recommendations even in the absence of pre-existing user ratings or annota-
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tions, a situation in which traditional systems only can recommend songs ran-

domly. Therefore, our system satisfies users’ short-term needs better because

of context-awareness, and also provides a solution to the cold-start problem.

Evaluation results demonstrate that our system can update itself in real-time

to adapt to a particular user.
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Chapter 4

Content-Based and Hybrid

Music Recommendation Using

Deep Learning

4.1 Introduction

A music recommendation system automatically recommends songs that match

a user’s music preference from a large database. The quality of a match is

influenced by many factors concerning the user (e.g., personality, emotional

states, activities, social environment) and the song (e.g., music audio content,

novelty, diversity).

Among song-related factors, music audio content is of great importance.

In most cases, we like/dislike a song as a result of characteristics from its audio

content, such as vocal, melody, rhythm, timbre, genre, instrument, or lyrics.

Without listening to the content, we know almost nothing about the song’s

quality, let alone whether we would like it. Because music content largely
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determines our preferences, it should be able to provide good predictive power

for recommendation.

However, existing music recommenders relying on music audio content usu-

ally produce unsatisfactory recommendation performance. They all follow a

two-stage approach: extracting traditional audio content features such as Mel-

frequency cepstral coefficients (MFCC), then using these features to predict

user preferences [Cano et al., 2005; Yoshii et al., 2006; Wang et al., 2012a].

Traditional audio content features, however, were not created for music recom-

mendation or music related tasks (For example, MFCC was originally used for

speech recognition [Mermelstein, 1976]). They only became attached to music

recommendation after the discovery that they can also describe high-level mu-

sic concepts like genre, timbre, and melody. Using such features can result in

poor recommendation performance in two ways. First, the high-level concepts

cannot be described accurately due to the so-called semantic gap [Casey et

al., 2008]. Second, even if the feature descriptions are accurate, the high-level

concepts may not be essential to the user’s music preferences. Therefore, tra-

ditional features could fail to take into account information relevant to music

recommendation.

We believe that the key to an effective content-based music recommenda-

tion method is a set of good content features. Manually crafting such features

is possible but time consuming and painstaking. A better approach is to

combine the existing two-stage approach into a unified and automated pro-

cess: features are learnt automatically and directly from audio content to

maximize recommendation performance. Recent development in deep learning

techniques [Bengio et al., 2012] has made such a unified approach possible.

In fact, people have already started using deep learning to learn features for

other music tasks such as music genre classification [Hamel and Eck, 2010] and
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music emotion prediction [Schmidt and Kim, 2011] with promising results.

Content methods also frequently combines collaborative filtering (CF), which

recommends songs based on the interests of like-minded users. Most existing

recommenders are based on CF because of its superior accuracy [McFee et al.,

2012b]. However, as it depends solely on usage data, CF is powerless when

confronted with the new-song problem — it cannot recommend songs without

prior usage history. Content-based methods do not suffer from this problem

because they can predict based on a song’s audio content, which is usually

available for online merchants. Therefore, content-based methods can rescue

CF in the new-song scenario. Because CF and content-based methods take ad-

vantage of different dimensions of information, it is possible to combine them

into a hybrid method for better predictions.

Thus motivated, we first develop a content-based model that automatically

and simultaneously extracts features from audio content and makes person-

alized recommendations. We then develop a hybrid method to combine both

CF and content features. Specifically, this work seeks to make the following

contributions:

• Content-based method : We develop a novel content-based recommenda-

tion model based on probabilistic graphical model and the deep belief

network (DBN) proposed by the deep learning community [Hinton et

al., 2006]. It unifies feature learning and recommendation. While it

does not rely on collaborative filtering, it outperforms baseline content-

based models relying on CF in both the cold-start stage and warm-start

stage.

• Hybrid method: To combine CF and music content, we apply the auto-

matically learnt audio features to an efficient hybrid model. Experimen-
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Symbol Description
u User u
v Song v
r
uv

The rating that user u gives to song v
�
u

The latent features for u estimated by MF
y
v

The latent features for v estimated by MF
�
u

User u’s preference of content features
µ All users’ common preference
x
v

The learnt content features for song v
⌦ The parameters of DBN

U , V User and song sets, respectively
U , V The number of users and songs, respectively
I All user, song pairs in the training dataset

Table 4.1: Frequently used symbols

tal results show that our method outperforms CF and the traditional

feature based hybrid method.

The remainder of this chapter is organized as follows. Section 2 describes our

content-based and hybrid recommendation model and discusses the baseline

content-based model used in our experiments. Section 3 describes our extensive

experimental evaluations. Section 4 concludes this work and discusses future

research directions.

4.2 Recommendation Models

In this section, we will introduce our content-based model and hybrid model,

as well as the two baseline content-based models with which to compare our

models.
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Figure 4.1: Probabilistic matrix factorization

4.2.1 Collaborative Filtering via Probabilistic Matrix Fac-

torization

Collaborative filtering is a popular recommendation method. The state-of-the-

art CF methods are based on matrix factorization (MF). A MF method named

probabilistic matrix factorization (PMF) [Salakhutdinov and Mnih, 2008b] is

used in this work for its simplicity, accuracy, and efficiency. In addition, PMF’s

principled probabilistic interpretation enables it to be extended to incorporate

content information more easily.

PMF assumes that each user u 2 U and song v 2 V can be represented

as latent feature vectors �
u

and y
v

, respectively. The rating that user u gives

to song v is the inner product of �
u

and y
v

. The training data is usually very

sparse, and without regularization the model is crippled by severe overfitting.

Therefore, Gaussian priors are used for both �
u

and y
v

as regularization. For-

mally, the model is specified as the following1 (see graphical representation in
1N (a, b) is the normal distribution with mean a and variance b. x ⇠ p indicates that x

satisfies the distribution p or x is drawn/generated from p.
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The negative log-likelihood of the model can be simplified as Equation (4.1),

where I is the user-song pairs in the training set. �
u

and �
v

are usually tuned

using a validation data set [Salakhutdinov and Mnih, 2008b].

LMF =

X

u,v2I

(r
uv

� �0
u

y
v

)

2
+ �

u

X

u

k�
u

k2 + �
v

X

v

ky
v

k2 (4.1)

Since a new user/song without rating data has no vector representation

in the model, their ratings cannot be predicted. This cold-start problem is

endemic to all CF methods. In the following sections, we will introduce our

solution to the new-song problem.

4.2.2 Content-Based Music Recommendation

4.2.2.1 Hierarchical Linear Model with Deep Belief Network (HLDBN)

We assume that the audio content of song v is f
v

, and its automatically learnt

feature vector is x
v

. User u’s music preference is represented as a vector �
u

.

The rating that u gives to song v, denoted as r
uv

, is the inner product of x
v

and �
u

. We use µ to represent all users’ common music preference, which is

the mean of all users’ �
u

-s. The model (Figure 4.2) is formulated as:
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Figure 4.2: Hierarchical linear model with deep belief network
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�
u

indicates the variance of user preferences. The smaller the �
u

, the more

similar the user preferences are to the common preference µ and the more

strongly �
u

is regularized. The Gaussian prior for �
u

models user common

interests as one cluster. However, users of different genders, ages and different

culture backgrounds could form different groups. To capture this grouping

effect, we could change the single Gaussian prior to a mixture of Gaussians.

We tried such a prior and used Monte Carlo Expectation Maximization to

estimate the parameters, but it resulted in overfitting. Therefore, we chose a

single Gaussian as the prior.

Automatic learning of features x
v

from music content f
v

is achieved by deep

belief network (DBN), which is briefly introduced in Section 2.3.1 and 2.3.2.

DBN can be treated as a very flexible deterministic function that maps f
v
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to x
v

. It has hundreds of thousands, perhaps even millions, of parameters

(denoted as ⌦) to be learnt from training data. We assume that r
uv

follows a

normal distribution to account for the noise in user ratings.2

Learning - Maximum Likelihood Estimation (MLE) is used to train the

model. The negative log-likelihood of the model is shown in Equation (4.2),

where irrelevant constants are omitted. The hyperparameter � is the ratio

�2
u

/�2
R

, with a larger � indicating stronger regularization.

LHLDBN =

X

u,v2I

(r
uv

� �0
u

DBN (f
v

,⌦))
2
+ �

X

u

k�
u

� µk2 (4.2)

Since ⌦ consists of a large amount of parameters, directly optimizing

LHLDBN using gradient descent could easily overfit. Following the DBN train-

ing procedure established in [Hinton et al., 2006], we first pre-train the DBN

as stacked layers of Restricted Boltzmann Machines in an unsupervised fash-

ion and then optimize LHLDBN using mini-batch stochastic gradient descent,

where the gradient descent part of DBN is implemented as back-propagation.3

Unlike the traditional two-stage methods, our model automatically and

simultaneously optimizes audio features (x
v

) and user preference parameters

(�
u

-s). This provides a unified and more principled method to content-based

recommendation.

Prediction - After the learning phase, the rating that user u gives to song

v can be estimated as r̂
uv

= �0
u

DBN(f
v

,⌦). As the predictions are based on

audio content, new songs can be recommended accurately as well.
2
The normal distribution may be replaced with a softmax or probit model. In this work,

we follow PMF and use the normal distribution to keep the model clean.

3
For the following DBN-based models, the same training approach is used.
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4.2.2.2 Baseline Models

We now turn our attention to the two content-based approaches proposed in

Oord et al. and hereby used as our baseline methods [van den Oord et al.,

2013]. The models are based on convolutional neural network (CNN), another

popular deep learning method. To make their approach directly comparable

with ours, we replace CNN with DBN while keeping the other parts unchanged.

Content-based baseline model 1 (CB1) - This model first uses PMF

to learn latent features �
u

and y
v

for all users and songs and then trains a DBN

to map from audio content to the latent features y
v

. Formally, the objective

can be formulated as:

min

⌦

X

v

(y
v

�DBN (f
v

,⌦))2 (4.3)

Let x
v

= DBN (f
v

,⌦); the rating that user u gives to song v can be predicted

as r̂
uv

= �0
u

x
v

. This model, however, fails because of a fundamental flaw shown

in Theorem 1.

Theorem 1. Model CB1 does not minimize the sum of squared errors of pre-

dicted ratings.

Proof. Let ✏
v

= y
v

� x
v

. The optimization objective Equation (4.3) is equiva-

lent to

min

⌦

X

v

k✏
v

k2 (4.4)

Instead of predicting the latent features, our true objective is to predict ratings,

so we actually need to minimize the sum of squared errors of predicted ratings:

min

⌦

X

u,v2I

(r
uv

� �0
u

x
v

)

2 (4.5)
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which can be transformed as:

min

⌦

X

u,v2I

(r
uv

� �0
u

x
v

)

2

=min

⌦

X

u,v2I

(r
uv

� �0
u

(y
v

� ✏
v

))

2

=min

⌦

X

v

✏
v

 
X

u:u,v2I

�
u

�0
u

!
✏0
v

+ 2

X

u:u,v2I

�0
u

(r
uv

� �0
u

y
v

) ✏
v

(4.6)

Since ✏
v

is not constrained because MLPs are universal approximators [Hornik

et al., 1989], we can see that Equation (4.6) and (4.4) have different optimal

solutions.

The original model in Oord et al. [van den Oord et al., 2013] uses weighted

sum of squared errors. Following the same approach, we can prove that CB1

does not minimize the weighted version, either.

Content-based baseline model 2 (CB2) - This is the other model

proposed by Oord et al. [van den Oord et al., 2013]. It is presented as the

following,

min

⌦

X

u,v2I

(r
uv

� �0
u

DBN (f
v

,⌦))
2 (4.7)

where �
u

is obtained from MF beforehand. Rating r
uv

is predicted as �0
u

x
v

,

where x
v

= DBN (f
v

,⌦).

This model uses the correct objective and thus does not have the issue

of CB1 discussed in Theorem 1. However, it lacks regularization on the pa-

rameters, which may cause overfitting. We will show this empirically in Sec-

tion 4.3.5.

Another issue of both CB1 and CB2 is that they are directly based on the
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results of MF and thus their prediction results are strongly correlated with the

collaborative filtering (CF) results. As we will show in Section 4.3.5 and 4.3.6,

this hinders us from combining CB1 or CB2 with CF to form an effective

hybrid approach.

4.2.3 Hybrid CF and Content-Based Music Recommen-

dation

Collaborative filtering and content-based methods use different information.

To fuse all the information available for more accurate predictions, we can

combine the two in a hybrid method.

Information fusion has been studied extensively in other domains such

as sensor fusion and multimedia information fusion. There are mainly two

approaches for our problem. Decision fusion combines the prediction results

from existing CF and content-based methods. On the other hand, data fusion

develops a new unified model to incorporate both CF and audio content. Our

hybrid method is based on the latter, but it also uses the features learnt by

HLDBN.

In our hybrid model (Figure 4.3), we assume that the audio features x
v

for

every song is already known. �
u

, y
v

and �
u

are not directly adopted from the

results of PMF and HLDBN but need to be jointly learnt from data. Rating

r
uv

is predicted by the sum of the CF part �0
u

y
v

and the content part �0
u

x
v

.

The priors for �
u

and y
v

are set following the PMF model, and �
u

the HLDBN

model.
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Figure 4.3: Hybrid recommendation
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The negative log-likelihood can be simplified as the following, where �
�

=

�2
R

/�2
�

, �
�

= �2
R

/�2
�

, and �
y

= �2
R

/�2
y

.

LHybrid =

X

u,v2I

(r
uv

� �0
u

x
v

� �0
u

y
v

)

2
+ �

�

k� � µk2
F

+ �
�

k�k2
F

+ �
y

kyk2
F

LHybrid is not a convex function, but if we fix any three of �
u

, µ, �
u

, and

y
v

, it is convex and the optimal solution can be obtained in closed form. We

thus optimize LHybrid using the alternative least square (ALS) algorithm: we

first set the derivatives of LHybrid with respect to each of the four parameters

to zero and solve the equations, which results in the following four updating

formulas. We then iterate them until LHybrid converges or until the prediction
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performance on a validation set reaches the highest point.
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To achieve faster convergence, �
u

, y
v

are first initialized using PMF.

We could create a pure data fusion model by adding x
v

= DBN(f
v

,⌦) after

Equation 4.8, and optimizing ⌦ jointly with other parameters. However, we

found its performance inferior to the one above.

4.3 Experiments

4.3.1 Dataset

Deep belief network has a large number of parameters, and a large amount

of data is required to adequately train such a model. We chose The Echo

Nest Taste Profile Subset [McFee et al., 2012b] because it is the largest pub-

licly available music recommendation dataset as far as we know. The original

dataset has 1, 019, 318 users, 384, 546 songs, and 48, 373, 586 listening histo-

ries. We were able to crawl preview audio clips with length of about half a

minute from 7digital4 for 282, 508 of the songs. We selected the top 100, 000

users mainly to reduce the training time.

Implicit feedback - From the Taste Profile Subset, we know the songs
4
http://7digital.com
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that a user has listened to, so the dataset can be presented as a set of (user,

song) pairs. We assign a rating of 1 to each pair and use them as the posi-

tive samples. To generate negative samples, we use the well-established User-

Oriented Sampling method built in [Pan et al., 2008]: for user u who listened

to songs V
u

, we randomly sampled |V
u

| songs from V\V
u

and assign a rating

0 to each generated (user, song) pair. We now have equal number of positive

and negative samples for every user.

Instead of using the sample method described above, HLDBN could the-

oretically use the weighted matrix factorization method proposed in Hu et

al. [Hu et al., 2008] to directly handle the implicit feedback. While the method

may be more accurate, the computational overhead is prohibitive: there will

be about 2.83⇥ 10

10 rating data points, which can make all algorithms about

1000 times slower and take years to finish.

Table 4.2 gives the statistics of the final dataset. The density of the rating

matrix is only 0.1%.

Splitting the dataset - The dataset was then split into 5 disjoint sets:

the training set, warm-start validation/test sets, and cold-start validation/test

sets. All users and songs in the warm-start sets need to be in the training set.

To simulate the new-song problem, songs in the cold-start validation/test sets

cannot exist in the training set, while all users in the cold-start sets still need

to be in the training set because the new user problem is not our focus. The

statistics of the five datasets are shown in Table 4.2, where WS and CS stand

for warm-start and cold-start, respectively.

Audio content preprocessing - We first converted all audio clips to

WAV files with mono channel, 8kHz sampling rate, and 16 bit depth. We

then randomly sampled a 5-second continuous segment from each audio clip,

because directly using the half-minute clips requires too much memory and

68



Chapter 4. Content-Based and Hybrid Music Recommendation Using Deep
Learning

# of users # of songs # of ratings
Total 100, 000 282, 508 28, 258, 926
Train 100, 000 262, 508 18, 382, 954

WS Valid 100, 000 262, 454 3, 939, 204
WS Test 100, 000 262, 457 3, 939, 206
CS Valid 99, 963 10, 000 1, 025, 654
CS Test 99, 933 10, 000 971, 908

Table 4.2: Dataset statistics

computation while segments shorter than 5 seconds may lose too much infor-

mation. We next converted each 5-second segment into a 166⇥120 spectrogram

(30ms window, no overlap). PCA was then used to transform the spectrograms

into vectors whose dimensions were ranked according to their significance. The

top-K dimensions were finally normalized to have zero mean and unit vari-

ance and fed into DBN. The normalization step is required because we use

Gaussian-Bernoulli RBM for the DBN’s input layer [Hinton, 2012]. K, the

dimensionality of f
v

and the number of nodes of the DBN’s input layer, is

determined by a validation step.

4.3.2 Implementation and Training of deep belief net-

work

We implemented our DBN using Theano5, because it supports convenient GPU

programming and automatic symbolic differentiation. Since our input for DBN

is continuous, we used the Gaussian-Bernoulli RBM for the input layer and

binary RBMs for the rest [Hinton, 2012].

Training DBN on CPUs is extremely slow. GPUs with large memory are

thus indispensable in the deep learning experiments. Training and testing of
5
http://deeplearning.net/software/theano/
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every model takes three to four days using a single GPU with 6GB GPU mem-

ory. Since DBN has many hyperparameters that could have great impact on

the prediction performance, tuning seems unavoidable at this stage. Sequen-

tially trying each configuration of the hyperparameters on a single GPU is too

time consuming. We thus utilized a GPU cluster with 15 computing nodes,

each of which containing two Tesla M2090 GPU cards.

Mini-batch stochastic gradient descent was used as the training algorithm.

We cannot transfer all data into one GPU because of its memory limit. Se-

quentially transferring one batch after computing the previous batch is slow

because of the low bandwidth of the bus between the GPU memory and main

memory. Our solution is to use multithreading to enable computing and trans-

ferring next batch at the same time.

4.3.3 Evaluation Metrics

The Root Mean Square Error (RMSE) metric was used to evaluate most mod-

els in this work. It is defined as:

RMSE =

sP
N

i=1(r̂i � r
i

)

2

N

where r
i

, r̂
i

are the true and predicted ratings, respectively. We prefer RMSE

to the truncated mAP used in the million song dataset challenge [McFee et

al., 2012b] because our models are regression models, for which RMSE is a

more accurate and sensible metric [McFee et al., 2012b]. Moreover, RMSE

is feasible in our case because the sampling step in the preprocessing of the

dataset described in Section 4.3.1 have converted all implicit feedback into

explicit ratings.

70



Chapter 4. Content-Based and Hybrid Music Recommendation Using Deep
Learning

For models which rank songs instead of predicting ratings, we still resort

to truncated mAP. mAP was originally widely used in information retrieval to

measure the ranking quality of search results. Suppose the system recommends

user u a list of songs l
u,1,lu,2 . . . lu,M , we first define the precision-at-k (P

k

)

metric as:

P
k

(u, l
u

) =

1

k

kX

i=1

r
u,lu,i

Then we define the average precision as the following,

AP(u, l
u

) =

1

n
u

MX

k=1

r
u,lu,k

P
k

(u, l
u

)

where n
u

is the number of songs preferred by user u, i.e. n
u

=

P
V

v=1 ru,v.

Finally, mAP is defined as:

mAP =

1

U

UX

u=1

AP(u, l
u

)

4.3.4 Probabilistic Matrix Factorization

Because CB1, CB2 and the hybrid method all depend on the results of PMF,

we trained several PMF models with different configurations using the Alter-

native Least Square algorithm. The training procedure was stopped when the

performance on the warm-start validation set converged. We found that the

best performance on the validation set was achieved when the dimensional-

ity of the latent features was 100 and �
u

= �
v

= 4. Further increasing the

dimensionality of the latent features brought little improvement.

The results for CF are shown in Table 4.4. We should note that a rating
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predictor which randomly generates 0s or 1s have RMSE = 0.707, and a mean

predictor which constantly gives 0.5s has RMSE = 0.5.

There is no result for PMF on the cold-start validation/test sets, as PMF

cannot recommend during the cold-start stage (see Section 4.2.1).

4.3.5 Content-Based Music Recommendation

Comparisons between deep learning based methods and traditional features

(e.g. MFCC) based methods have been conducted in [van den Oord et al.,

2013]. We avoid repeating those comparisons and only compare HLDBN with

CB1 and CB2.

Because the objectives for the warm-start and cold-start scenarios are dif-

ferent, we discuss them separately in the following two sections.

4.3.5.1 Warm-Start

Evaluating the performance of a content-based model in the warm-start stage

is important for two reasons. First, the warm-start stage is a crucial stage

to a recommender. Second, a content-based model performing well in the

warm-start stage would serve as a better building block for a good hybrid

model, whose performance in the warm-start stage is determined by both the

collaborative filtering part and the content part.

In the warm-start stage, all songs in the validation/test sets are in the

training set. Therefore, whether the content-based model generalizes to new

songs or not is not of our focus.

To determine the structure of DBN, we tried different number of layers

as well as different number of nodes for each layer on the validation set. For

HLDBN, we finally used DBN with four layers (the input layer included),
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each containing 500 nodes because this setting performs the best on the val-

idation set. Increasing the number of nodes of each layer does not produce

better results. Unsupervised pre-training was conducted for 200 iterations.

The mini-batch size for both pre-training and finetune is 5000. The learning

rate for the Gaussian-Bernoulli RBM is 5⇥ 10

�5 and binary RBM 10

�2. The

finetune learning rate of the supervised training stage is 0.5, and the regular-

ization parameter � = 0.1. The finetune process was stopped when the model’s

predictive performance on the warm-start validation set started to drop.

For CB1 and CB2, the number of nodes of their output layer is determined

by the dimensionality of the PMF’s latent features, i.e. 100 (see Section 4.3.4).

Other layers use the same configuration as HLDBN.

The results of HLDBN, CB1, and CB2 are shown in Table 4.3. Although

HLDBN only slightly outperforms CB2, we should notice that while CB2 is

trained based on the results of PMF, HLDBN is a unified model and does not

rely on PMF, which makes it easier to train and more principled.

The results also show that CB1 has RMSE larger than 0.5, which is worse

than the trivial mean predictor. In fact, the RMSE of CB1 on the training

set is also as large as 0.7, and increasing the size of DBN does not lead to

improvement. These observations support our assertion in Section 4.2.2.2 that

CB1 used the incorrect objective.

4.3.5.2 Cold-Start

The major practical advantage of content-based methods over CF is that

content-based methods work even in the new-song scenario. Thus an effec-

tive content-based model should generalize well to new songs.

Most experimental settings are the same as those in the warm-start eval-

uation except the configuration of DBN. Even with pre-training, large DBN
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WS
Valid

WS Test CS Valid CS Test

PMF 0.270 0.270 - -
HLDBN 0.323 0.323 0.477 0.478

CB1 0.679 0.679 0.688 0.669
CB2 0.325 0.325 0.495 0.495
Mean 0.500 0.500 0.500 0.500

Table 4.3: Predictive performance of CF and content-based methods using DBN
(Root Mean Squared Error). WS and CS stand for warm-start and cold-start,
respectively.

WS Valid WS Test
Hybrid w/ HLDBN 0.255 0.255
Hybrid w/ CB2 0.270 0.270

Table 4.4: Predictive performance of our hybrid method with the features learnt
by our HLDBN model and the baseline CB2 model (Root Mean Squared Error)

is prone to overfitting. We tried many configurations and decided on using

four layers, each of which contains 300 nodes. Increasing the number of input

nodes makes the model overfit.

The results are shown in Table 4.3. We can see that HLDBN outperforms

CB1 and CB2 significantly. CB1 has very poor results due to its incorrect ob-

jective function. CB2 performs only slightly better than the mean predictor.

We tried to reduce the size of its DBN and also applied the deep convolu-

tional neural network directly on the spectrogram following the same settings

as [van den Oord et al., 2013], but there were no significant changes, which

suggests that CB2 does not generalize well. This could be due to the lack

of proper regularization. Therefore, among the three models, only HLDBN

generalizes to new songs.
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4.3.6 Hybrid Music Recommendation

The focus of our hybrid method is to boost the recommendation performance

in the warm-start stage instead of solving the new-song problem, for which we

can simply fall back to HLDBN. It is also possible to build a model to handle

both scenarios seamlessly, and we leave it as future work.

As CB1 performs worse than the trivial mean predictor, it makes little

sense to train a hybrid model based on its learnt features. We thus only

consider the hybrid methods based on the features learnt by HLDBN and

CB2. Table 4.4 shows that the hybrid approach based on CB2’s features does

not bring any improvement over PMF’s results shown in Table 4.3. This is

because the content features learnt by CB2 are highly correlated with the

latent features from PMF and do not provide much new information. On

the other hand, HLDBN does not rely on PMF, and its learnt features have

incorporated audio content information that PMF fails to take into account.

The results show that HLDBN performs significantly better than PMF.

To show that the learnt features are better than traditional features in mu-

sic recommendation, the aspect model (AM, introduced in Section 2.2.4), one

of the two existing model-based hybrid music recommenders (Section 2.2.4),

was chosen as the baseline. Because AM ranks songs instead of predicting

ratings, we switched our evaluation metric from RMSE to truncated mAP, for

which the top-500 recommended songs were considered.

For AM, we first extracted a rich set of traditional features. Marsyas [Tzane-

takis and Cook, 1999] was used on the 30-second WAV files described in Sec-

tion 4.3.1. A window size of 512 was used without overlapping. Descriptions

about the features are shown in Table 4.6. Because AM cannot handle contin-

uous features directly, we built a codebook using k-means based on 8 million
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WS Valid WS Test
PMF 0.0109 0.0110

Hybrid w/ HLDBN 0.0132 0.0131
AM w/ traditional features 0.0108 0.0108

AM w/ features from HLDBN 0.0123 0.0120

Table 4.5: Comparison between hybrid methods using features learnt from HLDBN
and traditional features (mean Average Precision)

feature vectors from 10, 000 randomly sampled songs. K-means was used in-

stead of GMM in [Yoshii et al., 2006] mainly for better efficiency. Hadoop6

was used to handle the large amount of data and computation. Finally, fea-

ture vectors of each song were quantized as codewords, which were further

aggregated into a vector with each element representing occurrences of the

corresponding codeword. Other parts remain the same as [Yoshii et al., 2006].

To use HLDBN’s learnt features in AM, we also quantized the learnt features

and aggregated each song’s codewords into one vector.

The results of our hybrid method and AM are shown in Table 4.5. We

can see that AM with traditional features performs slightly worse than PMF.

However, AM performs significantly better with the features learnt by HLDBN.

This suggests that the automatically learnt features are more effective than

the traditional features in hybrid music recommendation.

In addition, our hybrid method performs significantly better than AM.

The possible reasons could be: (1) our model has regularization terms but

AM does not; (2) our method can directly use the features, but AM has to

quantize feature vectors, which results in information loss.
6
http://hadoop.apache.org/
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Feature

name

Description

MFCC

Mel-Frequency Cepstral Coefficients. It models the

auditory perception system and is widely used in speech

and music domain.

Zero

Crossings

The rate of sign-changes along a signal.

Spectral

Centroid

The “center of mass” of the spectrum. Measures the

brightness of the sound.

Spectral

Flux

The squared change in normalized amplitude between two

consecutive time frames. It measures how much the sound

changes between frames.

Spectral

Rolloff

Measures the amount of the right-skewness of the power

spectrum.

Spectral

Flatness

Measure

Measures how much the audio signal sounds like a tone

instead of noise.

Spectral

Crest Factor

Another measure of noisiness. Similar to Spectral Flatness

Measure.

Chroma

Pitch based feature. It projects the spectrum into 12 bins,

representing the 12 distinct pitches of the chromatic

musical scale.

Tempo Beats per minute

Table 4.6: Traditional audio features used
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4.4 Conclusion

In this chapter, we have described a novel model for content-based music rec-

ommendation based on deep belief network and probabilistic graphical model.

Instead of splitting feature extraction and recommendation into separate steps,

our model unifies them in an automated process. Compared with existing deep

learning based models, our model outperforms them in both the warm-start

and cold-start stages without relying on collaborative filtering. Based on the

automatically learnt features, we created a hybrid collaborative filtering and

content-based recommendation model, which not only significantly improves

the performance of CF but also outperforms the traditional feature based hy-

brid method.

78



Chapter 5

Interactive Music

Recommendation

5.1 Introduction

A music recommendation system recommends songs from a large database

by matching songs with a user’s preferences. An interactive recommender

system adapts to the user’s preferences online by incorporating user feedback

into recommendations. Each recommendation thus serves two objectives: (i)

satisfy the user’s current musical need, and (ii) elicit user feedback in order to

improve future recommendations.

Current recommender systems typically focus on the first objective, while

completely ignoring the other. They recommend songs with the highest user

ratings. Such a greedy strategy, which does not actively seek user feedback,

often results in suboptimal recommendations over the long term. Consider the

simple example in Figure 5.1. The table contains the ratings for three songs

by four users (Figure 5.1a), with 3 being the highest and 1 being the lowest.
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Figure 5.1: Uncertainty in recommendation

80



Chapter 5. Interactive Music Recommendation

For simplicity, let us assume that the recommender chooses between two songs

B and C only. The target user is 4, whose true ratings for B and C are 1.3

and 1.6, respectively. The true rating is the expected rating of a song by

the user. It is a real number, because a user may give the same song different

ratings as a result of external factors. In this case, a good recommender should

choose C. Since the true user ratings are unknown to the recommender, it may

approximate the rating distributions for B and C as Gaussians, P
B

and P
C

(Figure 5.1b), respectively, using the data in Figure 5.1a. The distribution

P
B

has mean 1.2. The distribution P
C

has mean 1. P
B

has much lower

variance than P
C

, because B has more rating data. A greedy recommender

(including the highly successful collaborative filtering (CF) approach) would

recommend B, the song with the highest mean rating. In response to this

recommendation, user 4 gives a rating, whose expected value is 1.3. The

net effect is that the mean of P
B

likely shifts towards 1.3 and its variance

further reduces (Figure 5.1c). Consequently the greedy recommender is even

more convinced that user 4 favors B and will always choose B for all future

recommendations. It will never choose C and find out its true rating, resulting

in clearly suboptimal performance.

To overcome this difficulty, the recommender must take into account un-

certainty in the mean ratings. If it considers both the mean and the variance

of the rating distribution, the recommendation will change. Consider again

Figure 5.1b. Although P
C

has slightly lower mean than P
B

, it has very high

variance. It may be worthwhile to recommend C and gather additional user

feedback in order to reduce the variance. User 4’s rating on C has expected

value 1.6. Therefore, after one recommendation, the mean of P
C

will likely

shift towards 1.6 (Figure 5.1d). By recommending C several times and gath-

ering user feedback, we will then find out user 4’s true preference C.
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This example illustrates that a good interactive music recommender system

must explore user preferences actively rather than merely exploit the rating

information available. Balancing exploration and exploitation is critical, espe-

cially when the system is faced with a cold start, i.e., when a new user or a

new song appears.

Another crucial issue for music recommendation is playlist generation. Peo-

ple often listen to a group of related songs together and may repeat the same

song multiple times. This is unique to music recommendation and rarely oc-

curs in other recommendation domains such as newspaper articles or movies.

A playlist is a group of songs arranged in a suitable order. The songs in

a playlist have strong interdependencies. For example, they share the same

genre [Chen et al., 2012] or have a consistent mood [Logan, 2002], but are

diversified at the same time [Zhang et al., 2012]. They may repeat, but are

not repetitive. Existing recommender systems based on CF or audio content

analysis typically recommend one song at a time and do not consider their

interdependencies during the recommendation process. They divide playlist

generation into two distinct steps [Chen et al., 2012]. First, choose a set of

favored songs through CF or content analysis. Next, arrange the songs into a

suitable order in a process called automatic playlist generation (APG).

In this work, we formulate interactive, personalized music recommendation

as a reinforcement learning task called the multi-armed bandit [Sutton and

Barto, 1998] and address both exploration-exploitation trade-off and playlist

generation with a single unified model:

• Our bandit approach systematically balances exploration and exploita-

tion, a central issue well studied in reinforcement learning. Experimen-

tal results show that our recommender system mitigates the difficulty of
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cold start and improves recommendation performance compared to the

greedy approach.

• We build a single rating model that captures both user preference over

audio content and the novelty of recommendations. It seamlessly inte-

grates music recommendation and playlist generation.

• We also present an approximation to the rating model and new proba-

bilistic inference algorithms in order to achieve real-time recommenda-

tion performance.

• Although our approach is designed specifically for music recommenda-

tion, it is possible to be generalized to other media types as well.

In the following, Section 5.2 formulates the rating model and our multi-

armed bandit approach to music recommendation. Section 5.3 presents the

approximate Bayesian models and inference algorithms. Section 5.4 presents

evaluation of our models and algorithms. Section 5.5 discusses the possible

generalization directions of the approach to other media types. Section 5.6

summarizes the main results and provides directions for future research.

5.2 A Bandit Approach to Music Recommen-

dation

5.2.1 Personalized User Rating Model

Music preference is the combined effect of many factors including music audio

content, novelty, diversity, moods and genres of songs, user emotional states,

and user context information [Wang et al., 2012a]. As it is unrealistic to cover
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Table 5.1: Table of symbols

Symbol Explanation

D Training data set. The first l training samples:
D

l

= {(x
i

, t
i

, r
i

)}l

i=1

S Song set

U
c

, U
n

User preference of music content and novelty,
respectively

U
k

Mean rating for song k

⌦ Parameter set
✓ User preference of different music features
�0t Piecewise linear approximation of novelty U

n

(t)

x Music audio feature vector
s Novelty recovery speed
t Time elapsed since the last listening of the song
�2, 1/⌧ Variance of the residuals in user ratings

µ✓0, �2
D0

Mean and covariance matrix for the prior of ✓ in the
approximate model, respectively

µ�0, �2
E0

Mean and covariance matrix for the prior of � in the
approximate model, respectively

⇤✓N , ⇤�N
Precision matrices for the posterior distributions of ✓
and � in the approximate model, respectively

c0, d0, e0,
f0, g0

Parameters of the prior distributions for the exact
Bayesian model

all the factors in this thesis due to time constraints, we focus on audio content

and novelty.

Music Audio Content - Whether a user likes or dislikes a song is highly

related to the audio content of the song. We assume that the music audio

content of a song can be described as a feature vector x1. Without considering

other factors, a user’s overall preference in this song can be represented as a
1
Please refer to Table 5.1 for a summary of the notations used in this chapter.
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linear function of x as:

U
c

= ✓0x (5.1)

where the parameter vector ✓ represents user preference in different music

features. Different users may have different preference and thus different values

of ✓. To keep the problem simple, we assume that a user’s preference is

invariant, i.e. ✓ remains constant over time, and we will address the case of

changing ✓ in future work.

Although the idea of exploration/exploitation tradeoff can be applied to

collaborative filtering (CF) as long as the rating distribution can be estimated

as shown in Figure 5.1, we choose to work on the content-based approach

instead of CF for a number of reasons. First, we need a posterior distribution

of U
c

in order to use Bayes-UCB as introduced in Section 2.4.1, so non-Bayesian

CF methods cannot be used. Second, existing Bayesian methods for matrix

factorization [Salakhutdinov and Mnih, 2008a; Silva and Carin, 2012] are much

more complicated than our linear model and also require large amounts of

training data. These render the user study costly and cumbersome. Third,

our bandit approach requires the model to be updated once a new rating is

obtained, but existing Bayesian matrix factorization methods are inefficient

for online updating [Salakhutdinov and Mnih, 2008a; Silva and Carin, 2012].

Fourth, CF suffers from the new-song problem while the content-based method

does not. Fifth, CF captures correlation instead of causality and thus does

not explain why a user likes a song. In contrast, the content-based approach

captures one important aspect of the causality, i.e. music content.

Novelty - Inspired by [Gunawardana and Shani, 2009], we seek to measure

novelty by first examining the repetition distributions of 1000 users’ listening
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.2: Proportion of repetitions in users’ listen history. This boxplot shows a
five-number summary: minimum, first quartile, median, third quartile, and maxi-
mum.

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●●●

●

●

●

●

●

●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●● ●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●●●● ●

●●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●● ●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●●

●

●● ●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●●●

●● ●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●●

●

●

●

●

● ●● ●

●

●

● ●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●

●

● ●

●

●

●

● ●

●

●

●● ●

●

●

●

●●●

●

●

●

●
●

●

●

●● ●

●●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●●● ●●

●

●●●

●

●

●●●

●●

●●

●

●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●● ●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●●

●

●

●● ●●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●● ●●●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ● ●●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●●●

●

●

●

●

●

● ●●

●

●●

●●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●

●

●●●● ●●● ●●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●●● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●● ●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●● ●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●●

● ●

●

●

●

●

●●

●

●●

●

● ●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●●

●●●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●●

●

● ●● ●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

● ●

●

● ●●●

●

●

●

●

●

●

●

●●● ●

●

●●

●

●●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●●●●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

● ●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●● ●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●● ●●

●

●

●●●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●● ●●●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

5e+02 5e+03 5e+04 5e+05

1
5

20
10
0

Rank

Fr
eq
ue
nc
y

Figure 5.3: Zipf’s law of song repetition frequency

histories collected from Last.fm2. The box plot in Figure 5.2 shows the pro-

portion of repetitions, which is defined as: 1 � number of of unique songs
listening history length .

Note that since Last.fm does not record the user’s listening histories outside

Last.fm, the actual proportion is expected to be even larger than the median

68.3% shown here. Thus, most of the songs a user listens to are repeats.

We also studied the song repetition frequency distribution of every individual

user’s listening history. The frequencies of songs were first computed for every

user. Then, all users’ frequencies were ranked in decreasing order. Finally, we

plotted frequencies versus ranks on a log-log scale (Figure 5.3). The distribu-

tion approximately follows the Zipf’s law [Newman, 2005]—only a small set
2
http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
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Figure 5.4: Examples of U
n

= 1 � e�t/s. The line marked with circles is a 4-
segment piecewise linear approximation.

of songs are repeated most of the time while all the rest are repeated much

less often. Most other types of recommenders do not follow Zipf’s law. For in-

stance, recommending books that have been bought or movies that have been

watched makes little sense. In music recommendation, however, it is critically

important to repeat songs appropriately.

One problem with existing novelty models is that they do not take the time

elapsed since previous listening into consideration [Gunawardana and Shani,

2009; Lathia et al., 2010; Castells et al., 2011; Zhang et al., 2012]. As a result,

songs listened to a year ago and just now have the same likelihood to be

recommended. Inspired by [Hu and Ogihara, 2011], we address this issue by

assuming that the novelty of a song decays immediately after it is listened to it

and then gradually recovers. Let t be the time elapsed since the last listening

of the song, the novelty recovers according to the function:

U
n

= 1� e�t/s (5.2)

where s is a parameter indicating the recovery speed. The higher the value of
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s, the slower the recovery of novelty. Figure 5.4 shows a few examples of U
n

with different values of s. Note that the second term of Equation (5.2), e�t/s,

is the well-established forgetting curve proposed by [Ebbinghaus et al., 1913],

which measures the user’s memory retention of a song. Novel songs are thus

assumed to be those of which a user has little or no memory.

Different users can have different recovery rates s. As can be seen from

the widespread distribution in Figure 5.2, some users may repeatedly listen

to their favorite songs, while the others may be keen to exploring songs they

have not listened to previously. Therefore, s is an unknown user parameter to

be learnt from user interactions.

Combined Model - A user’s preference of a recommendation can be

represented as a rating; the higher the rating, the more the user likes the

recommendation. Unlike traditional recommenders, which assume a user’s

ratings are static, we assume that a rating is the combined effect of the user’s

preference of the song’s content and the dynamically changing novelty. Thus,

a song rated as 5 last time could be rated as 2 later because the novelty has

decreased. Finally, we define the combined rating model as:

U = U
c

U
n

= ✓0x
�
1� e�t/s

�
. (5.3)

In this model, the more the user likes a particular song, the more likely it

will be repeated due to the larger U
C

value. Also, given that the user’s fa-

vorites comprise a small subset of his/her library, the U model behaves in

accordance with Zipf’s Law and ensures that only a small proportion of songs

will be repeated frequently. This property of the model will be verified in

Section 5.4.3.2.

In Section 5.4.3.1, we will show that the product form of Equation (5.3)
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leads to significantly better performance than the alternative linear combina-

tion U = aU
c

+ bU
n

.

Other factors - We note that, besides novelty, the repetition of songs

can also be affected in other ways. When a user comes to a song of great

excitement, he may listen to it again and again. When his interest changes,

he may discard songs that he has been frequently repeating. Sometimes, the

user finds a song boring initially but repeats it frequently later, while in other

cases he may stop repeating a song because he is bored. Understanding and

modeling all these factors and precisely predicting when to repeat a song for

a particular user would make very interesting follow-up studies.

5.2.2 Interactive Music Recommendation

Under our rating model, each user is represented by a set of parameters ⌦ =

{✓, s}. If we knew the values of ⌦ of a user, we could simply recommend

the songs with the highest rating according to Equation (5.3). However, ⌦ is

hidden and needs to be estimated from historical data, and thus uncertainty

always exists. In this case, the greedy strategy used by traditional systems

is suboptimal, and it is necessary to take the uncertainty into account and

balance exploration and exploitation.

The multi-armed bandit approach introduced in Section 2.4.1 offers a way

to do so for the interactive music recommendation process. As illustrated in

Figure 5.5, we treat songs as arms and user ratings as payoffs3. The music rec-

ommendation problem is then transformed into a multi-armed bandit problem,

and the objective of the music recommender is also changed to maximizing the
3
Although in reality users usually do not give explicit feedback (i.e. ratings) to every

recommended song, implicit feedback (e.g. skipping a song, listening to a song fully) can be

obtained much more easily. In this work, we focus on explicit feedback to keep the problem

simple.
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Figure 5.5: Relationship between the multi-armed bandit problem and music rec-
ommendation

sum of the ratings given by the target user over the long term. We argue that

the cumulative rating is a more realistic objective than the myopic predictive

accuracy used by traditional music recommenders, because users usually listen

to songs for a long time instead of focusing on one individual song.

We adopt the Bayes-UCB algorithm introduced in Section 2.4.1 for our

recommendation task. We denote the rating given by the target user to a

recommendation i as a random variable R
i

, and the expectation of R
i

is U

given the feature vector (x

i

, t
i

):

E[R
i

] = U
i

= ✓0x
i

�
1� e�ti/s

�
(5.4)

Then, we develop Bayesian models to estimate the posterior distribution of

U given the history recommendation and user ratings. We sketch the frame-

work here and explain it in greater detail in Section 5.3. We assume that the

prior distribution of ⌦ is p(⌦) and that, at the (l+ 1)th recommendation, we

have accumulated l history recommendations D
l

= {(x
i

, t
i

, r
i

)}l

i=1 as training
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ALGORITHM 1: Recommendation using Bayes-UCB
for l = 1 to n do

for all song k = 1, . . . , |S| do
compute ql

k

= Q
�
1� 1/(l + 1),�l�1

k

�

end for
recommend song k⇤ = argmax

k=1...|S| q
l

k

and gather rating r
l

; update
p(⌦|D

l

) and �l
k

end for

samples, where r
i

is the rating given by the user to the i-th recommendation.

The posterior distribution of ⌦ can then be obtained based on the Bayes’ rule:

p(⌦|D
l

) / p(⌦)p(D
l

|⌦) (5.5)

Consequently, the expected rating of song k, denoted as U
k

can be predicted

as:

p(U
k

|D
l

) =

Z
p(U

k

|⌦)p(⌦|D
l

)d⌦ (5.6)

Henceforth, we will use �l
k

to denote p(U
k

|D
l

) for simplicity.

Finally, to balance exploration and exploitation, Bayes-UCB recommends

song k⇤, which maximizes the quantile function: k⇤ = arg max

k=1...|S|
Q(↵,�l

k

) where

Q satisfies P
⇥
U
k

 Q(↵,�l
k

)

⇤
= ↵ and S is all the songs in the database. We

set ↵ = 1 � 1
l+1 . The detailed recommendation algorithm is described in

Algorithm 1.

The cold-start problem is caused by the lack of information required for

making good recommendations. There are many ways for mitigating the cold-

start problem, most of which rely on additional information about the users

or songs, e.g., popularity/metadata information about the songs [Hariri et al.,

2012], context/demographic information about the users [Wang et al., 2012a].
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Although music audio content is required by U
c

, it is usually easy to obtain

from industry. Our bandit approach addresses the cold-start problem without

relying on additional information about users and songs. Instead, it seeks

to appropriately explore and exploit information during the whole interactive

process. Thus, the bandit approach presents a fundamentally different solution

to the cold-start problem, yet it can be used in conjunction with the existing

methods.

There are other Bayesian multi-arm bandit algorithms such as Thompson

sampling [Agrawal and Goyal, 2012] and optimistic Bayesian sampling [May

et al., 2012]. Thompson sampling is based on the probability matching idea,

i.e. selecting the song according to its probability of being optimal. Optimistic

Bayesian sampling uses an exploitative function on top of Thompson sampling.

Which of the three is superior? Theoretically, this remains an open question.

However, they have been shown to perform comparably well in practice [May

et al., 2012]. Existing studies provide little guidance on our selection between

them. In this work, we focus on the exploration/exploitation tradeoff principle

and simply choose the most recent Bayes-UCB in our implementation. Nev-

ertheless, our system could easily adapt to the other two algorithms, as they

are also based on the posterior rating distributions.
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5.3 Bayesian Models and Inference

5.3.1 Exact Bayesian model

To compute Equations (5.5) and (5.6), we develop the following Bayesian

model (see Figure 5.6a for graphical representation).

R|x, t,✓, s, �2 ⇠ N
�
✓0x

�
1� e�t/s

�
, �2
�

✓|�2 ⇠ N (0, c0�
2
I)

s ⇠ G(d0,e0)

⌧ = 1/�2 ⇠ G(f0, g0)

Every part of the model defines a probabilistic dependency between the

random variables. N (·, ·) is a (multivariate) Gaussian distribution with the

mean and (co)variance parameters, and G(·, ·) is a Gamma distribution with

the shape and rate parameters. The rating R is assumed to be normally

distributed following the convention of recommender systems. A gamma prior

is put on s because s takes positive values. Following the conventions of

Bayesian regression models, a normal prior is put on ✓ and a Gamma prior on

⌧ . We assume that ✓ depends on �2 because it leads to better convergence in

the simulation study.

Since there is no closed-form solution to Equation (5.5) under this model,

Markov Chain Monte Carlo (MCMC) is used as the approximate inference

procedure. Directly evaluating Equation (5.6) is also infeasible. Thus we use

Monte Carlo simulation to obtain �l
k

: for every sample obtained from the

MCMC procedure, we substitute it into Equation (5.4) to obtain a sample of

U
i

, and then use the histogram of the samples of U
i

to approximate �l
k

.

93



Chapter 5. Interactive Music Recommendation

σθ s

R

N

xt

(a) Exact Bayesian model

σθ β

N

xt R

(b) Approximate Bayesian model

Figure 5.6: Graphical representation of the Bayesian models. Shaded nodes repre-
sent observable random variables, while white nodes represent hidden ones. The
rectangle (plate) indicates that the nodes and arcs inside are replicated for N
times.

This approach is easy to understand and implement. However, it is very

slow, and users could wait for up to a minute until the Markov chain converges.

To make the algorithm more responsive, we develop an approximate Bayesian

model and a highly efficient variational inference algorithm in the following

sections.

5.3.2 Approximate Bayesian Model

5.3.2.1 Piecewise Linear Approximation

It is very difficult to develop better inference algorithms for the exact Bayesian

model because of the irregular form of the function U
n

(t). Fortunately, U
n

can

be well approximated by a piecewise linear function (as shown in Figure 5.4),

which enables us to develop an efficient model.

For simplicity, we discretize time t into K intervals: [0, ⇠1),[⇠1, ⇠2),. . . [⇠K�1,+1),

and only consider the class of piecewise linear functions whose consecutive

line segments intersect at the boundaries of these intervals. This class of

functions can be compactly represented as a linear function [Hastie et al.,

2009]. We first map t into a vector t = [(t � ⇠1)+, . . . (t � ⇠K�1), t, 1], where

(t � ⇠)+ = max(t � ⇠, 0), and then approximate U
n

(t) as U
n

(t) ⇡ �0t, where
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� = [�1, . . . �K+1]
0 is a vector of parameters to be learnt from training data.

Now, we can represent U as the product of two linear functions: U = U
c

U
n

⇡

✓0x�0t.

Based on this approximation, we approximate the distributions of R and

the parameters of the exact Bayesian model as follows:

R|x, t,✓,�, �2 ⇠ N (✓0x�0t, �2
),

✓|�2 ⇠ N (µ✓0, �
2
D0),

�|�2 ⇠ N (µ�0, �
2
E0),

⌧ = 1/�2 ⇠ G(a0, b0)

(5.7)

where ✓,�, ⌧ are parameters. D0,E0,µ✓0,µ�0, a0, b0 are the hyperparameters

of the priors to be specified beforehand; D0 and E0 are positive definite ma-

trices. The graphical representation of the model is shown in Figure 5.6b. We

use conjugate priors for ✓,�, ⌧ , which make the variational inference algorithm

described later very efficient.

5.3.2.2 Variational Inference

Recall that our objective is to compute the posterior distribution of param-

eters ⌦ (now it is {✓,�, ⌧}) given the history data D = {(x
i

, t
i

, r
i

)}N

i=1, i.e.,

p(✓,�, ⌧ |D). Using piecewise linear approximation, we now develop an efficient

variational inference algorithm.

Following the convention of the mean-field approximation [Friedman and

Koller, 2009], we assume that the joint posterior distribution can be approxi-

mated by a restricted distribution q(✓,�, ⌧), which consists of three indepen-
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dent factors [Friedman and Koller, 2009]:

p(⌦|D) = p(✓,�, ⌧ |D) ⇡ q(✓,�, ⌧) = q(✓)q(�)q(⌧).

Because of the choice of the conjugate priors, it is easy to show that the

restricted distributions q(✓), q(�), and q(⌧) take the same parametric forms

as the prior distributions. Specifically,

q(✓) / exp

✓
�1

2

✓0⇤✓N✓ + ⌘0✓N✓

◆

q(�) / exp

✓
�1

2

�0⇤�N� + ⌘0�N�

◆

q(⌧) /⌧aN�1 exp (�b
N

⌧) .

To find the values that minimize the KL-divergence between q(✓,�, ⌧) and

the true posterior p(✓,�, ⌧ |D) for the parameters ⇤✓N , ⌘✓N , ⇤�N , ⌘�N , a
N

,

and b
N

, we use the coordinate descent method. Specifically, we first initialize

the parameters of q(✓), q(�), and q(⌧), and then iteratively update q(✓), q(�),

and q(⌧) until the variational lower bound L (elaborated in the Appendix A.3)

converges. Further explanation about the principle can be found in [Friedman

and Koller, 2009]. The detailed steps are described in Algorithm (2), where p

and K are the dimensionalities of x and t, respectively; the moments of ✓,�, ⌧

are derived in the Appendix A.2.
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ALGORITHM 2: Variational inference
input: D,D0,E0,µ✓0,µ�0, a0, b0
initialize ⇤✓N , ⌘✓N , ⇤�N , ⌘�N , a

N

, b
N

repeat
update q(✓):

⇤✓N  E[⌧ ]
⇣
D

�1
0 +

P
N

i=1 xi

t

0
i

E [��0] t
i

x

0
i

⌘
,

⌘✓N  E[⌧ ]
⇣
D

�1
0 µ✓0 +

P
N

i=1 rixi

t

0
i

E[�]
⌘

update q(�):
⇤�N  E[⌧ ]

⇣
E

�1
0 +

P
N

i=1 tix
0
i

E[✓✓0]x
i

t

0
i

⌘

⌘�N  E[⌧ ]
⇣
E

�1
0 µ�0 +

P
N

i=1 ritix
0
i

E[✓]
⌘

update q(⌧):
a
N

 p+K+N

2 + a0

b
N

 1

2

⇥
tr

⇥
D

�1
0 (E[✓✓0])

⇤
+ (µ0✓0 � 2E[✓]0)D�10 µ✓0

⇤

+

1

2

⇥
tr

⇥
E

�1
0 (E[��0])

⇤
+

�
µ0�0 � 2E[�]0

�
E

�1
0 µ�0

⇤

+

1

2

NX

i=1

�
r2
i

+ x

0
i

E[✓✓T

]x

i

t

0
i

E[��T

]t

i

�
�

NX

i=1

r
i

x

0
i

E[✓]t0
i

E[�] + b0

until L converges
return ⇤✓N , ⌘✓N , ⇤�N , ⌘�N , a

N

, b
N

5.3.2.3 Predict the Posterior Distribution p(U |D)

Because q(✓) and q(�) are normal distributions, ✓0x and �0t are also normally

distributed:

p(✓0x|x, t,D) ⇡ N (x

0
⇤

�1
✓N⌘✓N ,x

0
⇤

�1
✓Nx)

p(�0t|x, t,D) ⇡ N (t

0
⇤

�1
�N⌘�N , t

0
⇤

�1
�Nt)
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and the posterior distribution of U in Equation (5.6) can be computed as:

p(U |x, t,D) = p(✓0x�0t|x, t,D) =

Z
p(✓0x = a|x, t,D)p(�0t =

U

a
|x, t,D)da.

Since there is no closed-form solution to the above integration, we use Monte

Carlo simulation. Namely, we first obtain one set of samples for each of ✓0x

and �0t and then use the element-wise products of the two group of sam-

ples to approximate the distribution of U . Because ✓0x and �0t are normally

distributed univariate random variables, the sampling can be done very effi-

ciently. Moreover, the prediction for different songs is trivially parallelizable

and is thus scalable.

5.3.2.4 Integration of Other Factors

Although the approximate model considers music audio content and novelty

only, it is easy to incorporate other factors as long as they can be approximated

by linear functions. For instance, diversity is another important factor for a

playlist. We could measure the diversity that a song contributes to a playlist as

d and assume user preference of d follows a function that can be approximated

by a piecewise linear function. Following the method in Section 5.3.2.1, we

can map d into a vector d and modify the approximate Bayesian model in

Section (5.3.2.1) by adding an additional term � 0d to Equation (5.7) and

putting a prior on �. As shown in the following,

R|x, t,d, �2,✓,�, � ⇠ N (✓0x�0t� 0d, �2
)

�|�2 ⇠ N (µ�0, �
2
F0).
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Given the symmetry between x, t, and d, we can modify Algorithm 2 without

further derivation.

Similarly, we could incorporate more factors such as coherence of mood

and genre into the model. Moreover, although the model is designed for music

recommendation, it can also be applied to other regression tasks as long as the

regression function can be factorized into the product of a few linear functions.

5.4 Experiments

We compare the results from our evaluations of 6 recommendation algorithms

in this section. Extensive experimental evaluations of both efficiency and ef-

fectiveness of the algorithms and models have been conducted, and the results

show significant promise from both aspects.

5.4.1 Experiment setup

5.4.1.1 Compared Recommendation Algorithms

To study the effectiveness of the exploration/exploitation tradeoff, we intro-

duced two baselines, Random and Greedy. The Random approach represents

pure exploration and recommends songs uniformly at random. The Greedy

approach represents pure exploitation and always recommends the song with

the highest predicted rating. Therefore, the Greedy approach simulates the

strategy used by the traditional recommenders, where the parameters {✓, s}

were estimated by minimizing the mean square error using the L-BFGS-B

algorithm [Byrd et al., 1995].

To study the effectiveness of the rating model, we introduced a baseline

using LinUCB, a bandit algorithm which assumes that the expected rating
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is a linear function of the feature vector [Li et al., 2010]. In LinUCB, ridge

regression served as the regression method, and upper confidence bound is

used to balance exploration and exploitation.

Two combinations of the factors U
c

and U
n

were evaluated: U
c

and U
c

U
n

.

We denote them as C and CN for short, where C and N indicate content

and novelty, respectively. For example, Bayes-UCB-CN contains both content

and novelty. Furthermore, Bayes-UCB-CN corresponds to the exact Bayesian

model with the MCMC inference algorithm (Section 5.3.1), and Bayes-UCB-

CN-V the approximate model with the variational inference algorithm (Sec-

tion 5.3.2).

We evaluated 6 recommendation algorithms, which were combinations of

the four approaches and three factors: Random, LinUCB-C, LinUCB-CN,

Bayes-UCB-CN, Bayes-UCB-CN-V, and Greedy-CN. Because LinUCB-CN can-

not handle nonlinearity and thus cannot directly model U
c

U
n

, we combined the

feature vector x in U
c

and the time variable t in U
n

as one vector and treated

the expected rating as a linear function of the combined vector. Greedy-C

was not included because it was not related to our objective. As discussed

in Section 5.2.2, the bandit approach can also combine with existing methods

to solve the cold-start problem. We plan to study the effectiveness of such

combinations in future works.

5.4.1.2 Songs and Features

Ten thousand songs from different genres were used in the experiments. Videos

of the songs were crawled from YouTube and converted by ffmpeg4 into mono

channel WAV files with a 16kHz sampling rate. For every song, a 30-second

audio clip was used [Wang et al., 2012a]. Feature vectors were then extracted
4
http://ffmpeg.org
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using a program developed based on the MARSYAS library5, in which a win-

dow size of 512 was used without overlapping. The features used (and their

dimensionalities) are Zero Crossing Rate (1), Spectral Centroid (1), Spectral

Rolloff (1), Spectral Flux (1), MFCC (13), Chroma (14), Spectral Crest Fac-

tor (24) and Spectral Flatness Measure (24). Detailed descriptions of these

features are given in Table 5.2. The features have been commonly used in the

music retrieval/recommendation domain [Cano et al., 2005; Yoshii et al., 2006;

Wang et al., 2012a]. To represent a 30-second clip in one feature vector, we

used the mean and standard deviation of all feature vectors from the clip.

Next, we added the 1-dimensional feature tempo to the summarized feature

vectors, and the resulting feature dimensionality is 79⇥ 2 + 1 = 159. Directly

using the 159-dimensional features requires a large amount of data to train the

models and makes user studies very expensive and time-consuming. To reduce

the dimensionality, we conducted Principal Component Analysis (PCA) with

90% of variance reserved. The final feature dimensionality is thus reduced to

91.

The performance of these features in music recommendation was checked

based on a dataset that we built. We did not use existing music recommen-

dation datasets because they lack explicit ratings, and dealing with implicit

feedbacks is not our focus. Fifty-two undergraduate students with various cul-

tural backgrounds contributed to the dataset, with each student annotating

400 songs with a 5-point Likert scale from “very bad” (1) to “very good” (5).

We computed the 10-fold cross-validation RMSE of U
c

for each user and av-

eraged the accuracy over all users. The resulting RMSE is 1.10, significantly

lower than the RMSE (1.61) of the random baseline with the same distribution

as the data. Therefore, these audio features indeed provide useful information
5
http://marsyas.sourceforge.net
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Table 5.2: Music Content Features

Feature
name Description

Zero
Crossings The rate of sign-changes along a signal.

Spectral
Centroid

The “center of mass” of the spectrum. Measures the
brightness of the sound.

Spectral
Flux

The squared change in normalized amplitude between
two consecutive time frames. It measures how much
the sound changes between frames.

Spectral
Rolloff

Measures the amount of the right-skewedness of the
power spectrum.

MFCC
Mel-Frequency Cepstral Coefficients. It models the
auditory perception system and is widely used in
speech and music domain.

Spectral
Flatness
Measure

Measures how much the audio signal sounds like a tone
instead of noise.

Spectral
Crest
Factor

Another measure of noisiness. Similar to Spectral
Flatness Measure.

Chroma
Pitch based feature. It projects the spectrum into 12
bins, representing the 12 distinct pitches of the
chromatic musical scale.
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for recommendation. The accuracy can be further improved by feature engi-

neering [van den Oord et al., 2013], which we reserve for future work.

5.4.1.3 Evaluation Protocol

In [Li et al., 2011], an offline approach is proposed for evaluating contextual-

bandit approaches with the assumption that the context (including the audio

features and the elapsed time of songs) at different iterations is identically

independently distributed. Unfortunately, this is not true in our case because

when a song is not recommended, its elapsed time t keeps increasing and is

thus strongly correlated. Therefore, an online user study is the most reliable

means of evaluation.

To reduce the cost of the user study, we first conducted a comprehensive

simulation study to verify the approaches. We then proceeded to user study

for further verification only if they passed the simulations. The whole process

underwent a few iterations, during which the models and algorithms were

continually refined. The results hereby presented are from the final iteration,

and intermediate results are either referred to as preliminary study whenever

necessary or omitted due to page limitation.

5.4.2 Simulations

5.4.2.1 Effectiveness Study

U = U
c

U
n

was used as the true model because the preliminary user studies

showed that this resulted in better performance, which will be verified in Sec-

tion 5.4.3 again. Because our model considers the impact of time, to make the

simulations close to real situations, songs were rated about 50 seconds after

being recommended. We treated every 20 recommendations as a recommen-
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dation session, and the sessions were separated by 4-minute gaps.

Priors for the Bayesian models were set as uninformative ones or chosen

based on preliminary simulation and user studies. For the exact Bayesian

model, they are: c0 = 10, d0 = 3, e0 = 10

�2, f0 = 10

�3, g0 = 10

�3, where

f0, g0 are uninformative and c0, d0, e0 are based on preliminary studies. For

the approximate Bayesian model, they are: D0 = E0 = 10

�2
I, µ✓0 = µ�0 = 0,

a0 = 2, b0 = 2⇥ 10

�8, where µ✓0,µ�0, a0, b0 are uninformative and D0,E0 are

based on preliminary studies; I is the identity matrix.

U
n

was discretized into the following intervals (in minutes) according to

the exponentially decaying characteristics of human memory [Ebbinghaus et

al., 1913]: [0, 2�3), [2�3, 2�2), . . . , [210, 211), [211,+1). We defined the smallest

interval as [0, 2�3) because people usually do not listen to a song for less

than 2

�3 minutes (7.5 seconds). The largest interval was defined as [211,+1)

because our preliminary user study showed that evaluating one algorithm takes

no more than 1.4 day, i.e., approximately 2

11 minutes. Further discretization

of [211,+1) should be easy. For songs that had not been listened to by the

target user, the elapsed time t was set as one month to ensure that U
n

is close

to 1.

We compared the recommendation performance of the six recommendation

algorithms in terms of regret, which is a widely used metric in RL literatures.

First we define that for the l-th recommendation, the difference between the

maximum expected rating E[ ˆRl

] = max

k=1...|S| Uk

and the expected rating of

the recommended song is �

l

= E[ ˆRl

] � E[Rl

]. Then, the cumulative regret

for the n-th recommendation is: R
n

=

P
l=1...n �l

=

P
l=1...n E[ ˆRl

] � E
⇥
Rl

⇤
,

where a smaller R
n

indicates better performance.

Different values of parameters {✓, s} were tested. Elements of ✓ were

sampled from the standard normal distribution and s was sampled from the
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uniform distribution with the range (100, 1000), where the range was deter-

mined based on the preliminary user study. We conducted 10 runs of the

simulation study. Figure 5.7 shows the means and standard errors of the re-

gret of different algorithms at different number of recommendations n. From

the figure, we see that the algorithm Random (pure exploration) performs the

worst. The two LinUCB-based algorithms are worse than Greedy-CN because

LinUCB-C does not capture the novelty and LinUCB-CN does not capture

the nonlinearity within U
c

and U
n

although both LinUCB-C and LinUCB-CN

balance exploration and exploitation.

Bayes-UCB-based algorithms performed better than Greedy-CN because

Bayes-UCB balances exploration and exploitation. In addition, the difference

between Bayes-UCB and Greedy increases very fast when n is small. This is

because small n means a small number of training samples and results in high

uncertainty, i.e., the cold-start stage. Greedy algorithms, which are used by

most existing recommendation systems, do not handle the uncertainty well,

while Bayes-UCB can reduce the uncertainty quickly and thus improves the

recommendation performance. The good performance of Bayes-UCB-CN-V

also indicates that the piecewise linear approximation and variational inference

is accurate.

5.4.2.2 Efficiency Study

A theoretical efficiency study of MCMC and variational inference algorithms

is difficult to analyze due to their iterative nature and deserve future work.

Instead, we conducted empirical efficiency study of the training algorithms for

Bayes-UCB-CN (MCMC), Bayes-UCB-CN-V (variational inference), Greedy-

CN (L-BFGS-B). In addition, the variational inference algorithm for the 3-

factor model describe in Section 5.3.2.4 was also studied. LinUCB and Random
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Figure 5.7: Regret comparison in simulation
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Figure 5.9: Accuracy versus training time

were not included because the algorithms are much simpler and thus faster

(but also perform much worse). Experiments were conducted on a computer

with an Intel Xeon CPU (L5520 @ 2.27GHz) and 32GB main memory. No

multi-threading or GP-GPU were used in the comparisons. The programming

language R was used to implement all the six algorithms.

From the results in Figure 5.8, we can see that time consumed by both

MCMC and variational inference grows linearly with the training set size.

However, variational inference is more than 100 times faster than the MCMC,

and significantly faster than the L-BFGS-B algorithm. Comparing the vari-

ational inference algorithm with two or three factors, we find that adding

another factor to the approximate Bayesian model only slightly slows down

the variational inference algorithm. Moreover, when the sample size is less

than 1000, the variational inference algorithm can finish in 2 seconds, which
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makes online updating practical and meets the user requirement well. Imple-

menting the algorithms in more efficient languages like C/C++ can result in

even better efficiency.

The training time of all the algorithms is also affected by the accuracy that

we want to achieve. To study this, we generated a training set (350 samples)

and a test set (150 samples). For each algorithm, we ran it on the training

set for multiple times, and every time we used different number of training

iterations and collected both the training time and prediction accuracy on the

test set. The whole process was repeated 10 times. For each algorithm and

each number of iterations, the 10 training times and prediction accuracies were

averaged. From the results shown in Figure 5.9, we can see that variational

inference (VI) converges very fast; L-BFGS-B takes much longer time than VI

to converge; MCMC is more than 100 times slower than VI.

Time consumed in the prediction phase of the Bayesian methods is larger

than that of Greedy and LinUCB-based methods because of the sampling pro-

cess. However, for the two factors model Bayes-UCB-CN-V, prediction can

be accelerated significantly by the PRODCLIN algorithm without sacrificing

the accuracy [MacKinnon et al., 2007]. In addition, since prediction for differ-

ent songs is trivially parallelizable, scaling variational inference to large music

databases should be easy.

We also conducted sample efficiency study of the exact Bayesian model,

the approximate Bayesian model, and the minimum mean squared error based

frequentist model used for Greedy-CN. We first generated a test set (300 sam-

ples), and then tested all the models with different size of training samples.

The whole process was repeated 10 times, and the average accuracies are shown

in Figure 5.10. We can see that the exact Bayesian model and the frequentist

model have almost identical sample efficiency, which confirms that the only
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Figure 5.10: Sample efficiency comparison

difference between Bayes-UCB and Greedy-CN is whether uncertainty is con-

sidered or not. The approximate Bayesian model performs slightly worse than

the others because of the piecewise linear approximation and the variational

inference algorithm.

5.4.3 User Study

Undergraduate students aged 17-25 years were chosen as our study target.

It would be interesting to study the impact of occupations and ages on our

method in the future. Most applicants were females, and we selected 15 from

them with approximately equal number of males (6) and females (9). Their

cultural backgrounds were diversified to include Chinese, Malay, Indian and

Indonesian. They all listen to music regularly (at least 3 hours per week). To

reduce the number of subjects needed, the within-subject experiment design
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Figure 5.11: User evaluation interface

was used, i.e. every subject evaluated all recommendation algorithms. Every

subject was rewarded with a small token payment for their time and effort. For

each of the 6 algorithms, a subject evaluated 200 recommendations, a number

more than sufficient to cover the cold-start stage. Every recommended song

was listened to for at least 30 seconds (except when the subject was very famil-

iar with the song a priori) and rated based on a 5-point Likert-scale as before.

Subjects were required to rest for at least 4 minutes after listening to 20 songs

to ensure the quality of the ratings and simulate recommendation sessions. To

minimize the carryover effect of the within-subject design, subjects were not

allowed to evaluate more than two algorithms within one day, and there must

be a gap of more than 6 hours between two algorithms. The user study lasted

one week. Every subject spent more than 14 hours in total. During the evalu-

ation, the recommendation models were updated immediately whenever a new

rating was obtained. The main interface used for evaluation is in Figure 5.11.

5.4.3.1 The Overall Recommendation Performance

Because the true model is not known in user study, the regret used in simu-

lations cannot be used here. We thus choose average rating as the evaluation

metric, which is also popular in evaluations of RL algorithms. Figure 5.12

shows the average ratings and standard errors of every algorithm from the

beginning to the n-th recommendation.
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Figure 5.12: Performance comparison in user study

T-tests at different iterations show Bayes-UCB-CN outperforms Greedy-

CN since the 45th iteration with p-values < 0.039. Bayes-UCB-CN-V outper-

forms Greedy-CN from the 42th to the 141th iteration with p-values < 0.05,

and afterwards with p-values < 0.1. Bayes-UCB-CN and Greedy-CN share

the same rating model and the only difference between them is that Bayes-

UCB-CN balances exploration/exploitation while Greedy-CN only exploits.

Therefore, the improvement of Bayes-UCB-CN against Greedy-CN is solely

contributed by the exploration/exploitation tradeoff.

More interestingly, when n  100 (cold-start stage) the differences between

Bayes-UCB-CN and Greedy-CN are even more significant. This is because

during the cold-start stage, the uncertainty is very high; Bayes-UCB explores

and thus reduces the uncertainty quickly while Greedy-CN always exploits and

thus cannot reduce the uncertainty as efficiently as Bayes-UCB-CN. To verify

this point, we first define a metric for uncertainty as 1
|S|
P|S|

k=1 SD [p(U
k

|D
n

)],
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Figure 5.13: The uncertainty of Bayes-UCB decreases faster than that of Greedy

which is the mean of the standard deviations of all song’s posterior distribu-

tions p(U
k

|D
n

) estimated using the exact Bayesian model. Larger standard

deviation means larger uncertainty as illustrated in Figure 5.1. Given the

iteration n, we calculate an uncertainty measure based on each user’s recom-

mendation history. The means and standard errors of the uncertainties among

all users at different iterations are shown in Figure 5.13. When the number

of training data points increases, the uncertainty decreases. Also as expected,

the uncertainty of Bayes-UCB-CN decreases faster than Greedy-CN when n

is small, and later the two remain comparable because both have obtained

enough training samples to fully train the models. Therefore, this verifies that

our bandit approach handles uncertainty better during the initial stage, and

thus mitigate the cold-start problem.

Results in Figure 5.12 also show that all algorithms involving CN out-

performs LinUCB-C, indicating that the novelty factor of the rating model

improves recommendation performance. In addition, Bayes-UCB-CN outper-
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Figure 5.14: Distributions of song repetition frequency
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forms LinUCB-CN significantly, suggesting that multiplying U
c

and U
n

to-

gether works better than linearly combining them.

5.4.3.2 Playlist Generation

As discussed in Section 5.2.1, repeating songs following the Zipf’s law is impor-

tant for playlist generation. Therefore, we evaluated the playlists generated

during the recommendation process by examining the distribution of songs

repetition frequencies for every user. We generated the plots of the distribu-

tions in the same way we generated Figure 5.3 for the six algorithms. Ideal

algorithms should reproduce repetition distributions of Figure 5.3.

The results of the six algorithms are shown in Figure 5.14. As we can

see all algorithms with U
c

and U
n

multiplied together (i.e. Bayes-UCB-CN,

Greedy-CN, BayesUCB-CN-V) reproduce the Zipf’s law pattern well, while

the algorithms without U
c

(Random, LinUCB-C) or with U
c

and U
n

added

together (LinUCB-CN) do not. This confirms that our model U = U
c

U
n

can effectively reproduce the Zipf’s law distribution. Thus, we successfully

modeled an important part for combining music recommendation and playlist

generation.

5.4.3.3 Piecewise Linear Approximation

In addition to the studies detailed above, the piecewise linear approximation of

the novelty model is tested again by randomly selecting four users and showing

in Figure 5.15 their novelty models learnt by Bayes-UCB-CN-V. Specifically,

the posterior distributions of �0t for t 2 (0, 211) are presented. The lines

represent the mean values of �0t and the regions around the lines the confidence

bands of one standard deviation. The scale of �0t is not important because
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Figure 5.15: Four users’ diversity factors learnt from the approximate Bayesian
model

�0t is multiplied together with the content factor, and any constant scaling of

one factor can be compensated by the scaling of the other one. Comparing

Figure 5.15 and Figure 5.4, we can see that the learnt piecewise linear novelty

factors match our analytic form U
n

well. This again confirms the accuracy of

the piecewise linear approximation.

5.5 Discussion

Exploring user preferences is a central issue for recommendation systems, re-

gardless of the specific media types. Under uncertainty, the greedy approach
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usually produces suboptimal results, and balancing exploration/exploitation

is important. One successful example of exploration/exploitation tradeoff is

the news recommender [Li et al., 2010]. Our work has shown its effective-

ness in music recommendation. Given that uncertainty exists universally in

all kinds of recommenders, it will be interesting to examine its effectiveness in

recommenders for other media types e.g., video and image.

Our models and algorithms could be generalized to other recommenders.

First, the mathematical form of the approximate Bayesian model is general

enough to cover a family of rating functions that can be factorized as the

product of a few linear functions (Section 5.3.2.4). Moreover, we can often

approximate nonlinear functions with linear ones. For instance, we can use

a feature mapping function �(x) and make U
c

= ✓0�(x) to capture the non-

linearity in our content model. Therefore, it will be interesting to explore our

approximate Bayesian model and the variational inference algorithm in other

recommendation systems. Second, the proposed novelty model may not be

suitable for movie recommendation due to different consumption patterns in

music and movie—users may listen to their favorites songs for many times, but

repetitions are relatively rare for movies. However, the novelty model may suit

recommenders which repeat items (e.g. food or makeup recommenders [Liu et

al., 2013]). If their repetition patterns also follow the Zipf’s law, both the exact

and approximate Bayesian models can be used; otherwise, the approximate

Bayesian model can be used at least.

5.6 Conclusion

In this chapter, we described a multi-armed bandit approach to interactive

music recommendation that balances exploration and exploitation, mitigates
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the cold-start problem, and improves recommendation performance. We de-

scribed a rating model including music audio content and novelty to integrate

music recommendation and playlist generation. To jointly learn the parame-

ters of the rating model, a Bayesian regression model together with a MCMC

inference procedure were developed. To make the Bayesian inference efficient

enough for online updating and generalize the model for more factors such

as diversity, a piecewise linear approximate Bayesian regression model and a

variational inference algorithm were built. The results from simulation demon-

strate that our models and algorithms are accurate and highly efficient. User

study results show that (1) the bandit approach mitigates the cold-start prob-

lem and improves recommendation performance, and (2) the novelty model

together with the content model capture the Zipf’s law of repetitions in rec-

ommendations.
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Conclusion and Future Work

6.1 Conclusion

The ultimate goal of a music recommender is to satisfy users’ music needs.

We pressed on toward this goal by developing methods from different aspects.

First, we demonstrated the first mobile-based context-aware mobile music rec-

ommender that recommends songs to match the target user’s activity. Second,

since existing recommenders based on traditional music audio content features

are not accurate, we then presented a deep learning based method to auto-

matically learn a set of features. Experiment results show that methods with

the learnt features are significantly more accurate than those with traditional

features for both content-based and hybrid music recommendation. Finally,

we consider music recommendation as an interactive process and optimize the

whole process in a holistic way together with playlist generation.

While good performance has been achieved for all these methods, there

is still much room for improvement. In the following section, we list a few

possible directions as future work.
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6.2 Future Work

Context-aware recommendation has become increasingly popular because of

the advent of powerful and sensor-rich smartphones. In the future, more con-

text categories can be added when related sensors are available. The recent

prevailingness of wearable healthcare devices also provides a source of contex-

tual data, which could be integrated into the system. For example, with a

watch that accurately measures users’ heart rates1, we could develop a recom-

mender that controls the tempo and style of the music to better accompany

or even guide the users through their jogging journey. Similarly, with a wear-

able sleep monitor, the system could then plan the music sequence to promote

sleep.

As deep learning strives to provide a model for human cognition, it has

the potential to reveal many secrets behind our preferences for music. Our

study that uses deep learning serves as a mere starting point to tap into that

potential. One practical future direction could be to further improve the rec-

ommendation performance by explicitly modeling the temporal structure of

music content using deep recurrent neural network [Hermans and Schrauwen,

2013]. Another interesting direction could be to interpret the automatically

learnt features to discover interesting characteristics of music.

The exploration/exploitation tradeoff idea can also be adopted to boost

CF’s performance. A simple approach is to use the latent features learnt

by existing matrix factorization methods to replace the audio features in our

methods, and keep other parts of our methods unchanged [Xing et al., 2014].

To generate even better playlists, an interesting direction is to consider more

factors such as diversity, mood, and genres.
1
http://www.polar.com/
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While the methods developed in this thesis can be applied in practice sep-

arately, it is possible to build a unified system to take advantage of all them.

For example, features learnt through the deep belief network can be used in

the content part of the Bayesian model for exploration/exploitation tradeoff.

In context-aware recommendation, uncertainty also exists, and thus balancing

exploration/exploitation can reduce the amount of data required for adapta-

tion and improve performance. The deep learning method can also be used to

improve activity classification accuracy for context-aware recommendation.
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A.1 Conditional distributions for the approxi-

mate Bayesian model

Given N training samples D = {r
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where
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The conditional distribution p(⌧ |D,✓,�) also remains a Gamma distribu-
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tion:
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are the parameters of the Gamma distribution, and they are
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A.2 Variational inference

To calculate the joint posterior distribution p(✓, ⌧,�|D), we can use Gibbs

sampling based on the conditional distributions. However, this is slow too,

and therefore, we resort to variational inference (mean field approximation

specifically). We assume that p(✓, ⌧,�|D) ⇡ q(✓,�, ⌧) = q(✓)q(�)q(⌧). In the

restricted distribution q(✓,�, ⌧), every variable is assumed independent from
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the other variables. Because all the conditional distributions p(✓|D, ⌧,�),

p(⌧ |D,✓,�), and p(�|D,✓,�) are in the exponential families, their restricted

distributions q(✓), q(�),q(⌧) lie in the same exponential families as their con-

ditional distributions. We then obtain the restricted distributions and update

rules as in Section 5.3.2.2.

The expectation of b
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with respect to q(✓) and q(�) might be a bit tricky

to derive. We thus show it as the following:
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Since ✓ and � are assumed independent, we have
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Therefore b
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can be calculated as
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A.3 Variational lower bound

The following is the variational lower bound, where  (·) is the digamma func-

tion.

L = E[ln(D, ⌧,✓,�)]� E[ln q(✓, ⌧,�)]

= E [ln p(⌧)] + E [ln p(✓|⌧)] + E [ln p(�|⌧)] +
NX

i=1

E [ln p(r
i

|x
i

, t
i

,✓,�, ⌧)]

� E [ln q(✓)]� E [ln q(�)]� E [ln q(⌧)]

= a0 ln b0 + (a0 � 1) [ (a
N

)� ln b
N

]� b0
a
N

b
N

� p

2

ln(2⇡)� 1

2

ln |D0| +
p

2

( (a
N

)� ln(b
N

))

� a
N

2b
N

⇥
tr(D0⇤

�1
✓N) + (µ✓0 � E [✓])0D�10 (µ✓0 � E [✓])

⇤
� K

2

ln(2⇡)

� 1

2

ln |E0| +
K

2

( (a
N

)� ln(b
N

))

� a
N

2b
N

⇥
tr(E0⇤

�1
�N) + (µ�0 � E [�])0E�10 (µ�0 � E [�])

⇤
� 1

2

ln(2⇡) +
1

2

( (a
N

)� ln b
N

)

� a
N

2b
N

NX

i=1

�
r2
i

+ x

0
i

E [✓✓0]x
i

t

0
i

E [��0] t
i

�
+

a
N

b
N

NX

i=1

r
i

x

0
i

E [✓] t0
i

E [�]

+

K

2

[1 + ln(2⇡)] +
1

2

ln

��
⇤

�1
�N

��
+

p

2

[1 + ln(2⇡)]

+

1

2

ln

��
⇤

�1
✓N

��� (a
N

� 1) (a
N

)� ln b
N

+ a
N

It might be a bit tricky to derive

E[ln p(✓|⌧)] =
ZZ

p(✓|⌧)q(✓)d✓q(⌧)d⌧

which is part of the lower bound L. We assume that P = p(✓|⌧), and Q = q(✓),

and we have
R
p(✓|⌧)q(✓)d✓ = �H(Q,P ), where H(Q,P ) is the cross entropy

between Q and P . Given Q and P are multivariate normal distributions, the
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KL-divergence between Q and P and the entropy of Q are
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