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Abstract

Collaborative �ltering (CF) techniques have shown great success in

music recommendation applications. However, traditional collaborative-

�ltering music recommendation algorithms work in a greedy way, invariably

recommending songs with the highest predicted user ratings. Such a purely

exploitative strategy may result in suboptimal performance over the long

term. Using a reinforcement learning approach, we introduce exploration

into CF and try to strike a balance between exploration and exploitation.

In order to learn users' musical tastes, we use a Bayesian graphical model

that takes account of both CF latent factors and recommendation nov-

elty. Moreover, we designed a Bayesian inference algorithm to e�ciently

estimate the posterior rating distributions. To the best of our knowledge,

this is the �rst attempt to remedy the greedy nature of CF approaches

in music recommendation. Results from both simulation experiments and

user study show that our proposed approach signi�cantly improves music

recommendation performance.
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Chapter 1

Introduction

1.1 Motivation

Internet has dramatically changed the way people consume music. Nowa-

days, we can easily access a large amount of music collections via the In-

ternet. However, given such huge music data, how to quickly �nd musi-

cal pieces that we like becomes a critical problem. Using music retrieval

systems, we have to think about appropriate queries and execute queries

repeatedly by ourselves [49]. These poor user experiences have created

needs for music recommendation services. In order to save user's time and

e�ort in music discovery and to satisfy user's di�erent musical preferences,

numerous music recommender systems (e.g., Pandora1, Last.fm2, Allmu-

sic3 and Songza4) have emerged and shown increasing importance in our

daily lives. These music recommender systems are trying their best to au-

tomatically identify user's musical preferences and accordingly recommend

1http://www.pandora.com/
2http://www.last.fm/
3http://www.allmusic.com/
4http://daily.songza.com/
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probably-preferred songs from large scale music databases.

Various music recommendation algorithms can be classi�ed into �ve

categories: metadata-based [32, 40], content-based [9, 28, 29], collabora-

tive �ltering (CF) [21, 26], context-based [25, 34, 45] and hybrid meth-

ods [41, 43, 48, 49]. Among all these categories, content-based approaches

and collaborative �ltering (CF) approaches have been the most traditional

and prevailing recommendation strategies.

Content-based music recommendation algorithms analyze acoustic fea-

tures of the songs that target user has rated highly in the past. They then

recommend only the songs that have a high degree of acoustic similar-

ity to the user's favorites. On the other hand, collaborative �ltering (CF)

music recommendation algorithms assume that people tend to get good rec-

ommendations from someone with similar preferences. People who share

similar preferences are called �near neighbors�. The target user's ratings

are predicted according to his neighbors' ratings, and then songs rated

highly by the neighbors but not yet considered by the target user will be

recommended to him.

These two traditional music recommendation approaches, however, share

a common weakness. They always generate �safe� recommendations by se-

lecting songs with the highest predicted user ratings, and such a purely

exploitative strategy may result in suboptimal performance over the long

term due to the lack of exploration. Selecting a song with the highest pre-

dicted user rating is called a greedy recommendation, and the recommender

system is exploiting its current knowledge about the target user's prefer-

ence. If instead the recommender system selects one of the non-greedy

recommendations, we say that it is exploring because this can enable the

2



recommender system to improve its prediction about the target user's true

preference for the recommended non-greedy song.

To understand why greedy recommendation strategy is not good enough

and may result in suboptimal performance over the long term, we will �rst

o�er an intuitive explanation here then give more details in Chapter 2.2.

In a music recommendation algorithm, the user preference is only es-

timated based on the current rating information available in the recom-

mender system. As the predicted user ratings are estimators of the true

user ratings, they are intrinsically inaccurate. As a result, uncertainty al-

ways exists in the predicted user ratings and may give rise to a situation

where some of the non-greedy recommendations deemed almost as good

as the greedy ones are actually better than them. Without exploration,

however, we will never know which ones are better. With the appropriate

amount of exploration, the recommender system could gather more rating

data and gain more knowledge about the user's true preferences before us-

ing them for recommendation. Therefore, rather than merely exploiting

the rating data available, a smarter recommender system prefers to explore

user preferences actively. At the same time, the key to achieving better

recommendation performance is to balance exploration and exploitation.

Currently, the literature of music recommendation research has rarely

addressed the weakness of purely exploitative strategies. Wang et al. [46],

only recently tried to mitigate the greedy problem in content-based music

recommendation algorithms. However, no work has tackled this problem

in the collaborative �ltering (CF) context.

We are thus motivated to remedy the greedy nature of collaborative

�ltering (CF) approaches in the music recommendation context. We aim

3



to develop a CF-based music recommendation algorithm that can strike a

balance between exploration and exploitation in order to enhance long-term

recommendation performance.

To do so, we introduce exploration into collaborative �ltering by formu-

lating the music recommendation problem as a reinforcement learning task

called n-armed bandit problem [39]. A Bayesian graphical model taking

account of both collaborative �ltering latent factors and recommendation

novelty is proposed to learn the user preferences. The lack of e�ciency be-

comes a major challenge, however, when we adopt an o�-the-shelf Markov

Chain Monte Carlo (MCMC) sampling algorithm5 for the Bayesian poste-

rior estimation. We are thus prompted to design a much faster sampling

algorithm for Bayesian inference. We carried out both simulation exper-

iments and a user study to show the e�ciency and e�ectiveness of our

proposed approach.

1.2 Contributions

The main contributions of this thesis are summarized as follows6:

• To the best of our knowledge, this is the �rst work in music recommen-

dation to temper CF's greedy nature by investigating the exploration-

exploitation trade-o� using a reinforcement learning approach.

• Compared to an o�-the-shelf MCMC algorithm, a much more e�-

cient sampling algorithm is proposed to speed up Bayesian posterior

estimation.

5http://mcmc-jags.sourceforge.net/
6Preliminary results of our work have been published in Proceedings of ISMIR 2014

[47].
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• Experimental results from both simulation experiments and user study

show that our proposed approach enhances the performance of CF-

based music recommendation signi�cantly.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 reviews related

work and introduces necessary background knowledge. Chapter 3 describes

our proposed algorithm in detail. Chapter 4 presents evaluation results.

We summarize this work and discuss some of the limitations in Chapter 5.

Potential future research directions are suggested in Chapter 6.
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Chapter 2

Related Work

In this chapter, we will give a literature survey on existing work that is

relevant to our proposed approach. Necessary background knowledge will

also be introduced.

2.1 Music Recommendation

In the past decade, online music recommendation services have been

gaining popularity and signi�cance. Music recommender systems try to

identify a user's musical taste and automatically recommend songs from a

huge database in order to satisfy the user's preference. The key to user

satisfaction and loyalty is matching users with their most preferred songs.

Problem Formulation: Most commonly, a music recommendation

problem can be formulated as follows. In a music recommender system,

there are m users and n songs. Let R = {rij}m×n denote the user-song

interaction matrix. There are two types of interaction data. One type is

high-quality explicit feedback data, which directly indicates user's interest

in songs, including ratings of songs given by users, or like/dislike opinions

6



Angel Believe Cherish Friday My Love
Amy 5 2 4
Sam 4 2 5 3 3
Helen 3 3 2 1
Tom 3 4

Table 2.1: A fragment of the user-song rating matrix for a music recom-
mender system.

about songs given by users. The other type is implicit feedback data, which

indirectly re�ects user preferences for songs, including listening history or

search patterns. Apart from interaction data, we may also have additional

song metadata (e.g., song title, artist name and genre tag) or user demo-

graphic data (e.g., user's age, gender and occupation). Table 2.1 shows

an example of a user-song rating matrix (explicit feedback data), where

each rating is on a scale of 1 (weakest preference) to 5 (strongest prefer-

ence). The empty cells in the table mean that the users have not rated the

corresponding songs.

The major task of a music recommender system is to predict the rat-

ings of the non-rated user/song pairs based on all the information available

in the system and then generate appropriate recommendations according

to the predicted ratings. Therefore, the most important two components

of a recommender system are the prediction component and the recom-

mendation component. Di�erent algorithms and strategies used in these

two components will make a huge di�erence in the overall recommendation

quality of the system.

In the following sections, we will summarize some state-of-the-art ap-

proaches used in music recommender systems and discuss their strengths

and weaknesses.
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2.1.1 Metadata-based Approaches

In di�erent music data collections [5, 14], various types of metadata

information are associated with the music audio �les, including title of

the song, album name, band or artist's name, music genre, lyrics, year of

release, and much more. They are described using textual information and

are supplied by experts or the creators [13]. The main idea of metadata-

based music recommendation approaches [32, 40] is very intuitive: analyze

the metadata of the songs that have been given high ratings by the target

user, and then apply fundamental information retrieval techniques to search

for musical pieces that belong to similar albums, artists or genres.

Advantages: Metadata-based approaches are based on text process-

ing [35] and information retrieval [3]. These two research directions have

been extensively studied so that many existing techniques can be easily im-

plemented and applied to the recommender system. In addition, a genre-

based music recommendation approach alone can achieve decent recom-

mendation accuracy because most users often like to listen to a limited

number of music genres.

Limitations: Creating and collecting metadata information is time-

consuming and requires expertise knowledge, therefore, metadata is not

always available in the recommender system. With the emergence and

development of Web 2.0, social media websites (e.g., Last.fm1) allow users

to create tags for albums, songs and artists, which has signi�cantly enriched

the metadata information. However, at the same time, user-generated tags

have also introduced a lot of noise into the metadata and brought di�culties

into text analysis. Another limitation of metadata-based approaches is

1http://www.last.fm/
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that they may easily lead to predictable recommendations. For example,

recommending songs by artists that the target user already knows well

does not show the power of recommendation because it fails to give any

interesting surprise to the user.

2.1.2 Content-based Approaches

Content-based music recommendation algorithms [9,28,29] analyze acous-

tic features of music that the target user has rated highly in the past. Then,

only the music that has a high degree of acoustic similarity to the user's

favorites would be recommended. Commonly used audio features include

Mel Frequency Cepstral Coe�cient (MFCC), Zero Crossing Rate, Chroma,

Spectral Centroid, Spectral Flux, and so on.

Advantages: Since music audio �les already exist in the music recom-

mender system, no additional data or information sources are required in

the content-based recommendation approaches. When there is no meta-

data or user-song interaction data available in the recommender system, a

content-based approach becomes an optimal choice.

Limitations: Content-based techniques are limited by the audio fea-

tures selected. It is di�cult to determine which underlying acoustic features

are suitable and e�ective in music recommendation scenarios, because these

features were not originally designed for music recommendation. With the

development of deep learning techniques, this problem will hopefully be

solved in the near future [44]. Another shortcoming is that the music rec-

ommended by content-based methods often lack variety, because they are

all supposed to be acoustically similar to each other. Ideally, the user should

be provided with a range of music from di�erent genres rather than a homo-

9



geneous set [1]. In addition, purely content-based music recommendation

algorithms are typically far from satisfactory due to the serious semantic

gap between low-level audio features and high-level user preferences.

2.1.3 Collaborative Filtering (CF) Algorithms

Collaborative �ltering methods automatically make predictions about

the preferences of the target user by collecting preference information from

many other like-minded users. They are based on the assumption that if

user A has the same interests as user B in an item, then the items liked

by user B are very likely to satisfy user A's preferences. Actually, this

strategy is commonly used by people in daily life because we usually ask

opinions and advice from others who have similar preferences. To some

extent, collaborative �ltering is a method that simulates and automates the

word-of-mouth recommendation process in real life. Various collaborative

�ltering (CF) algorithms are usually classi�ed into two general classes,

namely memory-based (also called neighborhood-based) CF and model-

based CF [7].

Memory-based CF algorithms [16,17,22,36] compute recommendations

directly based on the entire raw rating data in the recommender system.

They rely on some heuristic similarity measures between users or items.

According to the similarity measure used, memory-based CF can be further

divided into two categories: user-oriented and item-oriented. User-oriented

CF methods [16,17,22] rely on the similarity measure between users. They

�rst search for neighbors who have similar rating histories to the target user.

Then the target user's ratings can be estimated as weighted average of his

neighbors' ratings. Finally, songs with the highest predicted ratings will

10



be recommended. In contrast, item-oriented CF methods [36] rely on the

similarity measure between items. They recommend songs that are rated

similarly to the ones for which the target user has shown strong preference.

The item-oriented CF algorithm has been used in the world's largest online

retailer, Amazon2.

In contrast to memory-based CF, model-based CF algorithms [21, 23,

31,52] work in a di�erent fashion as recommendations are not directly com-

puted based on the collection of raw rating data. Using various machine

learning and data mining techniques, a model is �rst learned in order to

discover latent factors that account for the observed ratings, which is then

used to predict unknown ratings. Model-based CF algorithms have shown

prominent prediction power in some well-known competitions of recom-

mendation tasks (e.g., the Net�ix Prize Challenge [4], the Yahoo! Music

KDD-Cup [14] and the Million Song Dataset Challenge [30]).

Advantages: Collaborative �ltering has gained great success in on-

line recommender systems. It is acknowledged that collaborative �ltering

approaches are the most prevailing and popular algorithms being used in

existing recommendation services. Compared to other algorithms, collab-

orative �ltering usually achieves better recommendation accuracy.

Limitations: Even though collaborative �ltering tends to achieve higher

recommendation accuracy, it su�ers from three notorious drawbacks: cold-

start, data sparsity and scalability problem. The �rst two problems are

related to each other. In the prediction phase, a su�cient amount of rat-

ing data is required to search for near neighbors or learn a decent model.

When a new user or a new item is �rst introduced into the recommender

2http://www.amazon.com/
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system, there is no interaction data for it at all and thus results in the

cold-start problem. Even for existing users or items, without enough rating

data available, recommendation quality of the CF algorithm will degrade

substantially. Additionally, the computational bottleneck in conventional

memory-based CF is the search for neighbors among a large user population

of potential neighbors. Thus, improving the e�ciency of the recommenda-

tion algorithm and solving the scalability problem is also challenging.

2.1.4 Context-aware Approaches

Traditional music recommender systems focus on satisfying long-term

user preferences, but context-aware approaches put more emphasis on user's

current context (e.g., user's mood [25], activity [45], location [37] and Web

documents the user is reading [8]). Context-based recommendation algo-

rithms detect or infer the user's current context and then recommend songs

that match the user's current context.

Advantages: User musical preferences are complicated, and they are a

combined result of many external and internal factors. Therefore, di�erent

environments will lead to di�erent user preferences. Context-aware recom-

mendation approaches are getting increasingly popular because they aim

to satisfy short-term user preferences. In addition, the dramatic expansion

of mobile internet and mobile devices creates new needs and opportunities

for context-based recommendation algorithms.

Limitations: Contextual data is not always available in the recom-

mender system, and sometimes people are reluctant to provide their envi-

ronmental information (e.g., geospatial data). Currently, automatically de-

tecting and inferring a user's context is inaccurate. More e�ort is needed to

12



improve the relevant techniques. Another limitation is that context-based

recommender systems require additional devices to �nish the recommen-

dation task (e.g., sensor and smart phone).

2.1.5 Hybrid Methods

Hybrid recommendation is a method that combines two or more dif-

ferent recommendation approaches together. Hybrid methods [41, 43, 49]

highlight the necessity of following multimodal approaches so as to alle-

viate limitations of methods that solely depend on audio content or user

rating data. Yoshii et al. [49] use a probabilistic graphical model to com-

bine content-based and collaborative �ltering music recommendation algo-

rithms. Tiemann et al. [43] combine a content-based and a social recom-

mendation algorithm using ensemble learning methods. A recent work by

Tan et al. [41] creatively uses a hypergraph model to combine rich social

media information including six di�erent types of objects and nine di�erent

types of relations for music recommendation.

Advantages: Since hybrid recommendation methods combine multiple

techniques, they can overcome the shortcomings of solely using one class

of recommendation approach. Thus, hybrid recommendation approaches

often achieve better recommendation performance.

Limitations: Hybrid methods require di�erent data sources, which

increases the di�culty in collecting data. In addition, combining multiple

approaches often results in a very complicated model, thus e�ciency issues

become a critical problem.

13



2.1.6 Summary

In summary, according to the approaches used in the prediction phase,

various music recommendation algorithms can be classi�ed into the �ve cat-

egories introduced in the previous sections. Table 2.2 presents a summary

of these algorithms.

Data Advantages Limitations

song title, album 
name, artist name, 

genre, …

easy to 
implement, high 

efficiency

difficult data collection, require 
expertise knowledge, noise in the 

free text, difficult to verify 
information correctness, predictable 

recommendations

music audio files
no additional data 

is required
difficult to select effective features, 

huge semantic gap, lack variety

User-
oriented

Item-
oriented

geospatial data, 
environmental 

sound, weather, 
surrounding text, …

satisfy short-term 
user preferences

require specific devices, difficult 
data collection, inaccurate context 

detecting and inferring

all types of data 
listed above, social 

data (friendship 
relations, affinity 

group membership 
relations, …)

high 
recommendation 

accuracy and 
quality

difficult data collection, complex 
model, efficiency issues

Context-aware

Hybrid Methods

Music Recommendation Algorithms
Category

Metadata-based

Content-based

Collaborative 
Filtering

Memory-
based

user-song interaction 
data (explicit 

feedback or implicit 
feedback )

high 
recommendation 

accuracy and 
quality

cold-start, data sparsity, scalability 
problem

Model-based

Table 2.2: A summary of various music recommendation algorithms.
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2.2 Greedy Recommendation Strategy

Chapter 2.1 reviews �ve di�erent categories of music recommendation

algorithms. The major di�erences between these recommendation ap-

proaches lie in the prediction phase of the algorithms. However, no matter

what di�erent methods are used in the prediction phase, various recommen-

dation algorithms adopt almost the same strategy in the recommendation

phase: rank the candidate songs according to their predicted ratings and

then recommend the songs with the highest predicted ratings (some rec-

ommender systems may also generate a list of top-N recommended songs).

We call this strategy a greedy recommendation strategy.

It seems reasonable to recommend the songs with the highest predicted

ratings because people assume that it can maximize user satisfaction. Now

the greedy recommendation strategy is very popular in existing music rec-

ommender systems, so much so that many system designers fail to notice

the drawbacks of the greedy strategy.

Since the predicted ratings are estimated values based on the data avail-

able in the recommender system, they always carry uncertainty. This un-

certainty may result in a situation where the target user may probably show

stronger preference for a non-greedy song than the greedy song. Therefore,

over the long term, the greedy recommendation strategy may lead to sub-

optimal performance. To better illustrate this point, we will give a simple

example in subsequent sections.
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2.2.1 A Probabilistic Perspective

Before introducing a concrete example, we �rst need to reconsider the

music recommendation problem from a probabilistic perspective due to the

ever-existing uncertainty.

In the music recommender system, a user can listen to a song multiple

times. A�ected by a broad range of external and internal factors (e.g.,

mood, location and activity), di�erent ratings may be given by the target

user each time he listens to the same song. Therefore, we can treat the user

rating as a random variable with an underlying probability distribution

which is unknown to the recommender system. Commonly, we can assume

that the underlying probability distribution is a normal distribution.

0 1 2 2.5 3 4 5
rating

0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Figure 2.1: An example of the underlying probability distribution of the
user rating. This is a normal distribution with mean µ = 2.5 and variance
σ2 = 1.

Figure 2.1 shows a normal distribution, where the mean µ is 2.5 and

the variance σ2 is 1. It conveys a piece of information that no matter how

16



the user will be a�ected by all the complicated factors, over the long term,

it can be expected that on average he will give this song a rating of 2.5.

The mean µ is a very important unknown parameter that the recommender

system cares about because the mean is the expected rating that the user

is likely to give to the song. Since the mean is unknown, the major task

of the music recommender system is thus to estimate the mean of the

user rating for each candidate song j. These predicted mean ratings then

become the important knowledge the recommender system relies on so as

to make appropriate recommendation.

Following a greedy strategy, the system merely exploits its current

knowledge and recommends the song with the highest predicted mean rat-

ing (i.e. recommend song j∗ that has maximum estimated mean rating

µ̂j∗).

2.2.2 Bayesian Estimation

In the prediction (or estimation) process, a Bayesian method is usually

preferred over a Frequentist method, because the Bayesian method can rep-

resent uncertainty about the unknown parameter [6]. Bayesian estimation

uses probability to quantify the uncertainty, thus the unknown parameter

is treated as a random variable rather than a �xed value. Bayesian method

also allows us to inject our priori knowledge of the estimated parameter,

and then use evidence (i.e. the observed data) to update and re�ne our

estimation of the parameter.

Figure 2.2 shows an example of Bayesian estimation process. Suppose

we want to estimate the mean of a Gaussian distribution (the correct mean

is 0.8). At the beginning, our initial prior distribution (a Gaussian dis-
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Figure 2.2: An example of Bayesian estimation. N is the number of ob-
served data samples. As we gradually get more observed data (i.e. N
becomes larger), the estimated mean gets closer to the correct value 0.8,
the posterior distribution becomes sharper, and the variance gets smaller.

tribution with mean = 0) may be a very �at and broad (i.e with big

variance) distribution. As we gradually collect more observed data to per-

form Bayesian update, the estimated mean shifts toward the true value,

the posterior distribution (i.e. our estimation of the parameter given the

data) is sharpened, and the variance becomes smaller, which means that

we are getting more con�dent about our estimation.

Due to the advantages of Bayesian estimation over Frequentist estima-

tion, we will adopt a Bayesian method to estimate the expected ratings of

songs in all subsequent examples.
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Figure 2.3: A simple example of the music recommender system.

2.2.3 Limitations of The Greedy Strategy

As shown in Figure 2.3, there are four users {Sam, Helen, Tom, Amy}

and three songs {A, B, C} in the music recommender system. Suppose Amy

is the target user, and the recommender system is going to recommend a

song from two candidate songs {B, C} to Amy. Sam has listened to song

A twice, and the two ratings he has given to song A are 2 and 1. Similarly,

Tom has listened to song C twice, and ratings are 1 and 2.

Since no interaction data between Amy and the candidate songs is avail-

able in the system, based on the idea of collaborative �ltering, the recom-

mender system collects preference information from other users to make

rating predictions about the candidate songs {B, C}. Thus the predicted

mean ratings for song B and song C are 1.667 and 1.5, respectively. Figure

2.4a shows the estimated posterior distribution of the mean rating. Suppose

the true expected ratings for song B and C are 1.8 and 2, respectively. A
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(a) The initial estimation of the mean rating.
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(b) Our estimation of the mean rat-

ing after several runs of update under

greedy strategy.
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(c) Our estimation of the mean rating

after several runs of update under non-

greedy strategy.

Figure 2.4: Our estimation of the mean rating under di�erent recommen-
dation strategies.

greedy strategy will recommend song B to Amy. After collecting Amy's

rating feedback for song B, the predicted rating will approach the correct

value 1.8 (see Figure 2.4b). Then song B always has a higher predicted rat-

ing than song C, therefore, the greedy strategy keeps recommending song

B and never has a chance to recommend song C so as to �nd out its true
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expected rating. Since song C actually has a higher expected rating than

song B, over the long term, the greedy strategy can only achieve suboptimal

performance.

At the beginning, variance in the predicted rating of song C is larger

than song B, it is thus worthwhile to recommend song C and explore Amy's

true preference for it, so as to decrease the variance of our estimation of

song C's mean rating . After recommending song C, Amy will give a rating

feedback which has the mean of 2, therefore, predicted mean rating for

song C will gradually shift toward the correct value 2, and the variance

will become smaller. After several runs of non-greedy recommendation,

the system is able to �nd out that Amy likes song C better than song B

(Figure 2.4c), and then keeps recommending song C to Amy. This strategy

can thus achieve better recommendation performance in the long run.

2.2.4 Solving The Greedy Problem

In the music recommendation research domain, we know only one piece

of relevant work on addressing the greedy problem: Wang et al. [46] pro-

posed a reinforcement learning approach to balance exploration and ex-

ploitation in music recommendation. However, this work is based on a

content-based recommendation method. One major drawback of their per-

sonalized user rating model is that low-level audio features are used to

represent the content of songs. This purely content-based approach is

not satisfactory due to the semantic gap between low-level audio features

and high-level user preferences. Moreover, songs recommended by content-

based methods often lack variety because they are all acoustically similar

to each other. Another limitation is that, they use a piecewise linear ap-
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proximation of the model to speed up Bayesian inference, which leads to

inconvenient parameters tunning process.

While no work has attempted to address the greedy problem of collab-

orative �ltering approaches in the music recommendation context, Karimi

et al. [18, 19] have investigated this problem in other recommendation ap-

plications (e.g., movie recommendation). However, their active learning

approach [18] merely explores items to optimize the prediction accuracy

on a pre-determined test set. No attention is paid to the exploration-

exploitation trade-o� problem. In their other work [19], the recommen-

dation process is split into two steps. In the exploration step, they select

an item that brings maximum change to the user parameters, and then in

the exploitation step, they pick the item based on the current parameters.

This work takes balancing exploration and exploitation into consideration,

but only in an ad hoc way. In addition, their approach is evaluated using

only an o�ine and pre-determined dataset. In the end, their algorithm is

not practical for deployment in online recommender systems due to its low

e�ciency.

Similar to our work, Li et al. [27] also formulate their news article

recommendation problem as an n-armed Bandit problem. They treat user-

click feedback as reward, and their reward function is a linear function of

the news articles' feature vectors. A LinUCB approach is then proposed

to learn the weights of the linear reward function. The di�erences between

our work and their work lie in the following three aspects. First, compared

to other recommendation problems, music recommendation has its speci�c

nature: in the music recommender system, a user can listen to a song

multiple times, however, recommending an already-consumed news article,
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book or movie doesn't make much sense. This special repeatability makes

music recommendation a unique problem because temporal factors need to

be considered in the rating model. The reward function in our approach is

nonlinear as a result of the additional novelty score, therefore, we resort to

a more sophisticated Bayesian-UCB approach. Second, Li et al. use o�ine

methods to evaluate their algorithm while we carry out online evaluation

due to the interactiveness and dynamic property of our proposed algorithm.

Third, our approach is based on collaborative �ltering while their approach

is based on contextual information. The focus of our study is on balancing

between exploration and exploitation as as to remedy the greedy nature of

the CF-based recommendation techniques.

2.3 Reinforcement Learning

In this paper, in order to temper the greedy nature of collaborative �l-

tering music recommendation, we use a reinforcement learning approach to

investigate the exploration-exploitation trade-o�. We introduce necessary

background knowledge in this section.

Di�erent from supervised learning that learns from a ground truth

dataset containing correct input/output examples, reinforcement learning

needs to learn from its interactions with an unknown environment. Re-

inforcement learning is a category of machine learning techniques that in-

vestigates the problem of how to take actions in an environment so as to

maximize a cumulated reward [39]. No external expertise knowledge will

tell the reinforcement learning algorithm which actions to take, and the

algorithm's suboptimal actions will not be explicitly corrected. The learn-
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ing algorithm has to discover the optimal actions by trying them. In other

words, the reinforcement learning algorithm must be able to learn from its

own experience.

In reinforcement learning domain, online performance is a focus of

study, which involves a key problem of �nding a balance between explo-

ration of the unknown environment and exploitation of the current knowl-

edge. The exploration-exploitation trade-o� has been thoroughly studied

in the n-armed Bandit problem [39].

2.3.1 n-armed Bandit Problem

The n-armed bandit problem assumes a slot machine with n levers.

Pulling a lever generates a random payo� (also called reward) chosen from

an unknown and lever-speci�c probability distribution. The objective is to

maximize the expected total payo� over a given number of action selections,

say, over 1000 plays.

More formally, the n-armed bandit problem can be formulated as fol-

lows: Let L = {1, 2, ..., n} be the set of all levers of the slot machine. The

reward ri of pulling each lever i ∈ L follows an underlying probability dis-

tribution pi which is unknown to us. We have totally N rounds to play

the slot machine. At the kth round, we can choose to pull an lever Ik ∈ L

and receive a random reward rIk sampled from the probability distribution

pIk . Our objective is to carefully choose the lever to pull at each round

((I1, I2, ..., IN) ∈ LN) so as to maximize the expected cumulated reward

E[
∑N

k=1 rIk ].

In the n-armed bandit problem, exploration is to randomly pull levers to

gain knowledge of their distribution pi, and exploitation is to pull the lever
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that yields maximum expected reward based on the current estimation.

Researchers have come up with various algorithms that try to provide

principled ways to solve the n-armed bandit problem, including ε-greedy,

Boltzmann exploration, pursuit algorithms [42], upper con�dence bounds

(UCB) [2], Bayes-UCB [20] and so on. For more details on these algorithms,

please refer to [24,39].

In this paper, we formulate the music recommendation as an n-armed

bandit problem (see Chapter 3.2.1) and adopt one of state-of-the-art algo-

rithms called Bayes-UCB [20] to strike a balance between exploration and

exploitation. In the Bayes-UCB algorithm, the expected reward Ui of lever

i is predicted using Bayesian estimation. Thus Ui is treated as a random

variable instead of a �xed value, and the posterior distribution of Ui given

the observed reward history D, denoted as p(Ui|D), will be updated and

re�ned when a new reward data is received. At each round of play, the

algorithm will select the lever that has the maximum �xed-level quantile

of the posterior distribution p(Ui|D).
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Chapter 3

Proposed Approach

We �rst present one of the most powerful techniques for collaborative

�ltering (CF) music recommendation, namely a low-rank matrix factoriza-

tion model. Then, we point out major limitations of this traditional and

popular CF algorithm. Finally, our improved approach will be described

in detail.

3.1 Matrix Factorization for Collaborative Fil-

tering

Suppose we havem users and n songs in the music recommender system.

Let R = {rij}m×n denote the user-song rating matrix, where each element

rij represents the rating of song j given by user i.

Matrix factorization models assume that characteristics of songs and

user preferences can be explained by a number of latent factors, therefore

these methods map users and songs to a joint latent factor space of di-

mensionality f . In this low-dimensional latent factor space, every user is
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associated with a user feature vector ui ∈ Rf , i = 1, 2, ...,m, and every

song is associated with a song feature vector vj ∈ Rf , j = 1, 2, ..., n.

For a given song j, elements of vj measure the extent to which the song

contains the latent factors. For a given user i, elements of ui measure the

extent to which he likes these latent factors. The user rating can thus be

approximated by the inner product of the corresponding user feature vector

and song feature vector:

r̂ij = uTi vj (3.1)

Let U = [ui] denote the user feature matrix, where ui ∈ Rf (i =

1, 2, ...,m) represents the ith column of U, and let V = [vj] denote the

song feature matrix, where vj ∈ Rf (j = 1, 2, ..., n) represents the jth

column of V. The algorithm learns feature matrix U and V by minimizing

the following objective function that is also used in [52]:

∑
(i,j)∈I

(rij − uTi vj)
2 + λ(

m∑
i=1

nui ‖ui‖
2 +

n∑
j=1

nvj ‖vj‖
2) (3.2)

where I is the index set of all the known ratings, λ is a regularization

parameter, nui is the number of ratings given by user i, and nvj is the

number of ratings for song j. This objective function consists of two parts:

the �rst part
∑

(i,j)∈I(rij − uTi vj)
2 is the squared error function and the

second part λ(
∑m

i=1 nui ‖ui‖
2 +
∑n

j=1 nvj ‖vj‖
2) is a regularization term to

avoid over�tting.

We adopt the alternating least squares (ALS) technique [52] to minimize

Equation (3.2). The process is as follows: First, we �x matrix V, take the

partial derivative of Equation (3.2) with respect to ui, set it to zero and
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solve it, thus we can derive the updating rule for each ui:

∀i,ui = (VIui
VT
Iui

+ λnuiE)−1(VIui
RT
i,Iui

) (3.3)

where Iui denotes the set of songs that user i has rated, VIui
is a matrix

containing all columns j ∈ Iui of V, E is a f×f identity matrix, and Ri,Iui

is a row vector where columns j ∈ Iui of the ith row of R are selected.

Similarly, we then �x matrix U, take the partial derivative of Equation

(3.2) with respect to vj, set it to zero and solve it, thus we obtain the

following updating rule for each vj:

∀j,vj = (UIvj
UT
Ivj

+ λnvjE)−1(UIvj
RIvj ,j

) (3.4)

where Ivj denotes the set of users who have rated song j, UIvj
is a matrix

containing all columns i ∈ Ivj of U, E is a f ×f identity matrix, and RIvj ,j

is a column vector where rows i ∈ Ivj of the jth column of R are selected.

An advantage of ALS is that the algorithm computes each ui indepen-

dently of the other user feature vectors and computes each vj indepen-

dently of the other song feature vectors [23]. This advantage allows us

to implement a multi-threaded parallel ALS algorithm so as to make the

collaborative �ltering process much more e�cient.

In our parallel ALS algorithm, each thread is responsible for updating an

independent subset of the column vectors of matrix U or V. The stopping

criterion of the ALS algorithm will be achieved when the change in root

mean square error (RMSE) on the validation set is less than 10−4. The

detailed steps are presented in Algorithm 1.
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Algorithm 1 Multi-threaded Parallel ALS for Collaborative Filtering
Initialize matrix V with small random numbers;
while stopping criterion is not satis�ed do
Fix matrix V, create k threads to update U;
for all thread t = 0→ k − 1 do
Update U's columns ui, i = t× (m/k), ..., (t+ 1)× (m/k)− 1, using
Equation (3.3);

end for

Fix matrix U, create k threads to update V;
for all thread t = 0→ k − 1 do
Update V's columns vj, j = t× (n/k), ..., (t+ 1)× (n/k)− 1, using
Equation (3.4);

end for

end while

Even though matrix factorization model is a powerful tool for collab-

orative �ltering (CF) [23], this traditional CF technique has two major

drawbacks:

1. It fails to take recommendation novelty into consideration. A user

can listen to the same song multiple times, but each time he listens

to it, the novelty of this song may be di�erent to him. For example,

if the system keeps recommending the same song to the target user

just because he has given this song a very high rating before, he will

quickly get bored with this song, and the novelty of this song will

degrade dramatically.

2. It works greedily, always recommending songs with the highest pre-

dicted mean ratings, while a better approach may be to actively ex-

plore a user's preferences rather than to merely exploit available rat-

ing information. Chapter 2.2 has illustrated the limitations of the

greedy recommendation strategy in detail.

To address these two drawbacks, we propose to use a reinforcement
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learning approach to modify the original matrix factorization model for

music recommendation. Technical details about this improved approach

will be described in subsequent sections.

3.2 A Reinforcement Learning Approach

Music recommendation is an interactive process. The system repeatedly

choose among n di�erent songs to recommend. After each recommendation,

it receives a rating feedback (or reward) chosen from an unknown probabil-

ity distribution. The goal of the recommender system is to maximize user

satisfaction, i.e. the expected total reward, in the long run. Similarly, rein-

forcement learning explores an environment and takes actions to maximize

the cumulated reward. It is thus �tting to treat music recommendation as a

well-studied reinforcement learning task called n-armed bandit (introduced

in Chapter 2.3.1).

3.2.1 Problem Formulation

To formulate music recommendation problem as an n-armed bandit

problem, we can treat the recommender system as the player, treat the

target user as the slot machine, treat songs in the recommender system

as levers of the slot machine, and treat rating for a song as the reward of

pulling the corresponding lever.

More formally, the interactive music recommendation problem can be

formulated as follows: Let S = {1, 2, ..., n} be the set of all songs in the

recommender system. The rating feedback Ri given by the target user for

each song i ∈ S follows an underlying probability distribution pi which
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is unknown to the recommender system. Suppose the system has totally

N chances to recommend a song to the target user. At the kth iteration,

the system selects a song Ik ∈ S to recommend and will receive a rating

feedback RIk sampled from the probability distribution pIk . The objective

of the music recommender system is to wisely select a recommended song at

each recommendation iteration((I1, I2, ..., IN) ∈ SN) so as to maximize the

user satisfaction over the long term (i.e. maximize the expected cumulated

rating E[
∑N

k=1RIk ]).

3.2.2 Modeling User Rating

To address drawback (1) pointed out in Chapter 3.1, we assume that

a song's rating is mainly a�ected by two factors: the extent to which the

user likes the song in terms of each CF latent factor, and the dynamically

changing novelty of the song. The former is quanti�ed as the CF score,

and the latter is quanti�ed as the novelty score.

From Equation (3.1), we de�ne the CF score as:

UCF = θTv (3.5)

where vector θ is a parameter indicating the user's preferences for di�erent

CF latent factors and v is the song feature vector learned from the parallel

ALS CF algorithm (Algorithm 1).

For the novelty score, we adopt the formula used in [46]:

UN = 1− e−t/s (3.6)

where t is the time elapsed since when the song was last heard, s is a param-
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eter indicating the relative strength of the user's memory, and e−t/s is the

well-known forgetting curve proposed by Ebbinghaus et al. [15]. Clearly,

the larger the elapsed time t is, the more novel the song is to the target

user. On the other hand, the larger the memory strength s is, the less novel

the song is to the user. Equation (3.6) assumes that the novelty of a song

decreases immediately when the user listens to it and then gradually recov-

ers as time goes by. The novel score is on a per-song basis, and it seems to

be sparse because there are relatively very few songs that are heard by the

target user in the whole dataset. As a result, someone may suggest that we

should de�ne our novelty score based on a larger group of songs such as the

musical genres. However, we must argue that the purpose of introducing a

novelty score into the rating model is not to distinguish every song in the

dataset, but to degrade the priority of recommending those already-heard

and high-scored songs. Only the songs that are heard by the target user

can have di�erent novelty scores, while those non-heard songs all have the

same novelty score (i.e. UN = 1). Therefore, the sparseness issue is not

our concern.

We model the �nal user rating by combining these two scores:

U = UCFUN = (θTv)(1− e−t/s) (3.7)

It is worth noting that di�erent users may have di�erent musical tastes

and memory strengths, therefore, each user is associated with a pair of

parameters Ω = (θ, s) that are unknown to the recommender system and

need to be learned from the user's rating history. More technical details

about learning these parameters will be described in Chapter 3.2.3.

Let Rj denote the rating of song j given by the target user. From a
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probabilistic perspective, Rj is a random variable that follows an unknown

probability distribution pj. We assume that the expectation of Rj is the

Uj de�ned in Equation (3.7):

E[Rj] = Uj = (θTvj)(1− e−tj/s) (3.8)

Given this assumption, the major task of the music recommendation al-

gorithm is thus to predict or estimate the expected rating Uj for each

candidate song j in the system.

A traditional recommendation strategy will �rst obtain the song feature

vector vj and the elapsed time tj of each song j to compute the mean

rating Uj using Equation (3.7) and then recommend the song with the

highest predicted mean rating. We call this a greedy recommendation as the

system is merely exploiting its current knowledge of the user preferences.

By selecting one of the non-greedy recommendations and gathering more

user feedback, the system explores further and gains more knowledge about

the user preferences. If we knew the user's true preferences (i.e. the true

value of the user parameter Ω = (θ, s)), then it would be trivial to solve the

recommendation problem by just recommending the greedy song because

the predicted mean rating is exactly the true mean rating. However, the

value of user parameter Ω = (θ, s) is learned based on currently observed

data (i.e. the target user's rating history). Therefore, the predicted mean

rating we compute using Equation (3.7) is just an estimator of the true

mean rating, and it may contain inaccuracy. A greedy recommendation

would result in suboptimal performance over the long term. This is because

several non-greedy recommendations may be deemed nearly as good but

come with substantial variance (or uncertainty), and it is thus possible
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Figure 3.1: Bayesian Graphical Model.

that some of them are actually better than the greedy recommendation.

Without exploration, however, we will never know which ones they are.

In order to counter the greedy nature of collaborative �ltering, i.e. the

drawback (2) pointed out in Chapter 3.1, we introduce exploration into

music recommendation to balance exploitation. To do so, we adopt one of

the state-of-the-art algorithms developed in the n-armed bandit problem,

namely the Bayesian Upper Con�dence Bounds (Bayes-UCB) [20]. In the

Bayes-UCB, the expected rating Uj is a random variable rather than a �xed

number. Given the target user's rating history D, the posterior distribution

of Uj, denoted as p(Uj|D), needs to be estimated. At each recommendation

iteration, the song with the highest �xed-level quantile value of p(Uj|D) will

be recommended to the target user.

3.2.3 Bayesian Graphical Model

To estimate the posterior distribution p(Uj|D), we adopt the Bayesian

graphical model shown in Figure 3.1. The corresponding probability de-
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pendency is de�ned as follows:

R|v, t,θ, s, σ2 ∼ N (θTv(1− e−t/s), σ2) (3.9)

θ|σ2 ∼ N (0, a0σ
2I) (3.10)

s ∼ Gamma(b0, c0) (3.11)

τ = 1/σ2 ∼ Gamma(d0, e0) (3.12)

I is the f × f identity matrix. N represents Gaussian distribution with

parameters mean and variance. Gamma represents Gamma distribution

with parameters shape and rate. θ, s, and τ are parameters. a0, b0, c0, d0,

and e0 are hyperparameters of the priors.

Suppose at current iteration h+ 1, we have gathered h observed recom-

mendation history Dh = {(vi, ti, ri)}hi=1. Recall that, in our rating model,

each user is describe as a pair of parameters Ω = (θ, s). According to the

Bayes theorem, the posterior distribution of these parameters given the

history data is:

p(Ω | Dh) ∝ p(Ω)p(Dh | Ω) (3.13)

Then the posterior probability density function (PDF) of the expected

rating Uj of song j can be estimated as:

p(Uj|Dh) =

∫
p(Uj|Ω)p(Ω|Dh)dΩ (3.14)

Since Equation (3.13) has no closed form solution, we are unable to directly

estimate the posterior PDF in Equation (3.14). To solve this problem, we

thus turn to a Markov Chain Monte Carlo (MCMC) algorithm to draw an

adequate amount of samples of parameters Ω = (θ, s). We then substitute

35



every parameter sample into Equation (3.7) to obtain a sample of Uj. Fi-

nally, the posterior PDF in Equation (3.14) can be approximated by the

histogram of the samples of Uj.

After estimating the posterior PDF of each song's expected rating, we

follow the Bayes-UCB approach [20] to achieve a balance between explo-

ration and exploitation, i.e. recommend song j∗ that maximizes the fol-

lowing quantile function:

j∗ = arg max
j=1,...,|S|

Q (α, p(Uj|Dh)) (3.15)

where α = 1 − 1
h+1

, |S| is the total number of songs in the recommender

system, and the quantile function Q returns the value x such that Pr(Uj ≤

x|Dh) = α. The pseudo code of our exploration-exploitation balanced

music recommendation algorithm is presented in Algorithm 2.

It is worth mentioning that, di�erent from some typical recommenda-

tion problems which may recommend a list of top-N items (e.g., images

and query suggestions), we recommend only the top song at each iteration.

The reason is that a user only has one pair of ears, and only one song can

be heard by the user at a time unlike other types of visual information.

What's more, our interactive music recommender system is just like an

online radio station application. Recommending one song per iteration is

enough for our application scenario, so there is no need to recommend a

list of songs.
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Algorithm 2 Exploration-Exploitation Balanced Music Recommendation

for h = 1→ N do

if h == 1 then
Recommend a song randomly;

else

Draw samples of θ and s based on p(Ω | Dh−1);
for song j = 1→ |S| do
Obtain vj and tj of song j and compute samples of Uj using
Equation (3.7);
Estimate p(Uj|Dh−1) using histogram of the samples of Uj;
Compute quantile value qhj = Q

(
1− 1

h
, p(Uj|Dh−1)

)
;

end for

Recommend song j∗ = argmaxj=1,...,|S| q
h
j ;

end if

Collect user rating feedback rh and update p(Ω | Dh);
end for

3.3 E�cient Sampling Algorithm

When we use an o�-the-shelf MCMC sampling algorithm1, Bayesian

inference becomes very slow because it takes a long time for the Markov

chain to converge. In response, Wang et al. [46] proposed an approxi-

mate Bayesian model using piecewise linear approximation. However, not

only is the original Bayesian model altered, tuning the numerous (hy-

per)parameters is also tedious.

The e�ciency of the MCMC sampling is highly related to the proposal

distribution selected. A better proposal distribution will lead to faster

convergence of the Markov chain and hence reduce the time of Bayesian

inference. In contrast, with a bad proposal distribution, it takes a long time

for the Markov chain to converge. In this paper, we present a better way

to improve e�ciency. Given that it is simple to sample from a conditional

distribution, we develop a speci�c Gibbs sampling algorithm to hasten

1http://mcmc-jags.sourceforge.net/
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convergence of the Markov chain.

Given N observed recommendation history D = {vi, ti, ri}Ni=1, the con-

ditional distribution p(θ|D, τ, s) is still a Gaussian distribution and can be

obtained as follows:

p(θ|D, τ, s) ∝ p(τ)p(θ|τ)p(s)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ p(θ|τ)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ exp

(
−1

2
θT (a0σ

2I)−1θ

)
× exp

(
N∑
i=1

− 1

2σ2

(
ri − θTvi(1− e−ti/s)

)2)

∝ exp

[
−1

2
θT

(
τ

a0
I + τ

N∑
i=1

(1− e−ti/s)2vivTi

)
θ +

(
τ

N∑
i=1

ri(1− e−ti/s)vTi

)
θ

]

∝ exp

(
−1

2
θTΛθ + ηTθ

)
∝ N (µ,Σ) (3.16)

where µ and Σ, respectively the mean and covariance of the multivariate

Gaussian distribution, satisfy:

Σ−1 = Λ = τ

(
1

a0
I +

N∑
i=1

(1− e−ti/s)2vivTi

)
(3.17)

µTΣ−1 = ηT = τ

(
N∑
i=1

ri(1− e−ti/s)vTi

)
(3.18)

Similarly, the conditional distribution p(τ |D,θ, s) remains a Gamma

distribution and can be derived as:
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p(τ |D,θ, s) ∝ p(τ)p(θ|τ)p(s)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ p(τ)p(θ|τ)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ τ d0−1exp(−e0τ)× exp

(
−1

2
θT (a0σ

2I)−1θ

)
×

(
σ
√

2π
)−N

exp

(
N∑
i=1

− 1

2σ2

(
ri − θTvi(1− e−ti/s)

)2)

∝ τα−1exp(−βτ)

∝ Gamma (α, β) (3.19)

where α and β are respectively the shape and rate of the Gamma distribu-

tion and satisfy:

α = d0 +
f +N

2
(3.20)

β = e0 +
θTθ

2a0
+

1

2

N∑
i=1

(
ri − θTvi(1− e−ti/s)

)2
(3.21)

The conditional distribution p(s|D,θ, τ) has no closed form expression.

We thus adopt the Metropolis-Hastings (MH) algorithm [11] with a pro-

posal distribution q(st+1|st) = N (st, 1) to draw samples of s. Our e�cient

Gibbs sampling algorithm is presented in Algorithm 3.
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Algorithm 3 Gibbs Sampling for Bayesian Inference

Initialize θ, s, τ ;
for t = 1→ BURN_IN + SAMPLE_SIZE do

Sample θ(t+1) ∼ p(θ|D, τ (t), s(t));
Sample τ (t+1) ∼ p(τ |D,θ(t+1), s(t));
stmp = s(t);
for i = 1→ K do # MH Step
Draw y ∼ N (stmp, 1);

α = min
(

p(y|D,θ(t+1),τ (t+1))

p(stmp|D,θ(t+1),τ (t+1))
, 1
)
;

Draw u ∼ Uniform(0, 1);
if u < α then
stmp = y;

end if

end for

s(t+1) = stmp;
end for

return Last SAMPLE_SIZE sets of samples (θ, s, τ);
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Chapter 4

Experiments

We conduct experiments to:

• determine the optimal parameter setting for our matrix factorization

model, Gibbs sampling algorithm and Bayesian graphical model,

• learn the collaborative �ltering latent factors for each song,

• show the e�ciency of our proposed Gibbs sampling algorithm for

Bayesian inference,

• show the e�ectiveness of our exploration-exploitation balanced music

recommendation algorithm in terms of recommendation performance.

4.1 Dataset

The Taste Pro�le Subset1 used in the Million Song Dataset Challenge

[30] provides over 48 million triplets (user, song, play count) describing

the listening history of over 1 million users and 380,000 songs. In the mu-

sic recommendation domain, this is one of the largest publicly available

1http://labrosa.ee.columbia.edu/millionsong/tastepro�le
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# Users # Songs # Observations % Density
100,000 20,000 20,699,820 1.035%

Training Validation Test
16,619,732 1,969,562 2,110,526

Table 4.1: Dataset size statistics. Density is the percentage of entries in
the user-song interaction matrix that have observations.

collaborative �ltering datasets. Since the raw audio data is absent in the

dataset, we obtain 30-second audio clips for songs in the dataset from 7dig-

ital.com2. According to the computational resource we have, performing

collaborative �ltering on the entire dataset is impractical due to the huge

amount of data. Therefore, we select 20,000 songs with top listening counts

and 100,000 users who have listened to the most songs. Since listening his-

tory data is a form of implicit feedback data and only contains positive

examples, we need to perform preprocessing on the dataset using the ap-

proach proposed in [33]: First, all the non-zero play counts are mapped

to value 1 in the user-song interaction matrix. Then, adopt user-oriented

negative sampling method to randomly draw the same amount of negative

examples as the positive examples on a per-user basis. Finally, the negative

examples are mapped to value 0 in the user-song interaction matrix. Thus,

we get our collaborative �ltering dataset ready for matrix factorization.

We randomly split the dataset into three disjoint parts: training set (80%),

validation set (10%), and test set (10%). The detailed statistics of the �nal

dataset we used are shown in Table 4.1.

2http://www.7digital.com/
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4.2 Learning CF Latent Factors

First, we need to determine the optimal values for the two parameters

in the matrix factorization model, i.e. λ, the regularization parameter, and

f , the dimensionality of the latent feature vectors.

The training set is used to learn the CF latent factors, and the conver-

gence criterion of the ALS algorithm (Algorithm 1) is achieved when the

change in root mean square error (RMSE) on the validation set is less than

10−4. Then we use the learned latent factors to predict the ratings on the

test set3.

We �rst �x f = 55 and vary λ from 0.005 to 0.1; minimal RMSE is

achieved at λ = 0.025 (experimental results are shown in Figure 4.1).

We then �x λ = 0.025 and vary f from 10 to 80, and f = 75 yields

minimal RMSE (shown in Figure 4.2).

Finally, we adopt the optimal value λ = 0.025 and f = 75 to perform

the ALS CF algorithm and obtain the learned latent feature vector of each

song in our dataset. These latent feature vectors will later be used in the

proposed music recommendation algorithm.

4.3 E�ciency Study

To show that our Gibbs sampling algorithm makes Bayesian inference

signi�cantly more e�cient, we conduct simulation experiments to com-

pare it with an o�-the-shelf MCMC algorithm developed in JAGS4. We

3We ran our parallel ALS algorithm on a 64-processor Linux server. All processors are
AMD Opteron 6376 @ 2.3GHz. It takes about 6.3 minutes to �nish one ALS iteration,
and the converged solution (with 15 ALS iterations on average) can be computed within
1.6 hours.

4http://mcmc-jags.sourceforge.net/
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Figure 4.1: Fix f = 55, RMSE results of CF with di�erent λ values.
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Figure 4.2: Fix λ = 0.025, RMSE results of CF with di�erent f values.
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implemented the Gibbs algorithm in C++, which JAGS uses, for a fair

comparison.

For each data point di ∈ {(vi, ti, ri)}ni=1 in the simulation experiments,

vi is randomly chosen from the latent feature vectors learned in Chapter4.2.

ti is randomly sampled from uniform(50, 2592000), i.e. between a time gap

of 50 seconds and one month. ri is calculated using Equation (3.7) where

elements of θ are sampled from N (0, 1) and s from uniform(100, 1000).

To determine the two parameters (i.e. burn-in and sample size) of the

two sampling algorithms and to ensure they draw samples equally e�ec-

tively, we �rst check to see if they converge to a similar level.

We generate a test set of 300 data points and vary the size of the training

set to gauge the prediction accuracy. The value of K in the Metropolis-

Hastings (MH) step of our Gibbs algorithm (Algorithm 3) is set to 5.

While our Gibbs algorithm achieves reasonable accuracy with burn-in

= 20 and sample size = 100, the MCMC algorithm gives comparable results

only when both parameters are 10000. Figure 4.3 shows their prediction

accuracies averaged over 10 trials.

With the parameters burn-in and sample size determined, we can ensure

that the two sampling algorithms draw samples equally e�ectively, based

on which, we can then conduct an e�ciency study of the two algorithms.

We vary the training set size from 1 to 1000 and record the time they

take to �nish the sampling process5. The e�ciency comparison result is

shown in Figure 4.4. (For more details on the numerical results, please re-

fer to Table 4.2). We can see that computation time of both two sampling

algorithms grows linearly with the training set size. However, our proposed

5We use a computer with Intel Core i7-2600 CPU @ 3.40Ghz and 8GB RAM.
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Training Set Size TimeMCMC (second) TimeGibbs (second)

1 1.613 0.034
100 47.219 0.075
200 100.780 0.140
300 151.650 0.202
400 203.508 0.255
500 266.518 0.310
600 319.629 0.363
700 375.958 0.421
800 408.789 0.469
900 456.071 0.527
1000 538.762 0.579

Table 4.2: E�ciency comparison of the two sampling algorithms (with
detailed numerical results).

Gibbs sampling algorithm is hundreds of times faster than MCMC, sug-

gesting that our proposed approach is practical for deployment in online

recommender systems6.

4.4 E�ectiveness Study

We denote our proposed recommendation algorithm as Bayes-UCB-CF

because it adopts Bayes-UCB approach to temper the greedy nature of CF-

based music recommendation. We compare it with two baseline algorithms:

1. the Greedy algorithm, representing the traditional recommendation

strategy withou exploration-exploitation trade-o�. This is to check

if balancing exploration-exploitation can improve the performance of

music recommendation.

6In the online music recommender system prototype we developed, the entire process
of generating next recommendation can �nish in 2 seconds, which meets the e�ciency
requirement well.
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Figure 4.5: Online evaluation platform.

2. the Bayes-UCB-Content algorithm [46], which also adopts the Bayes-

UCB technique but is content-based instead of CF-based. This is to

check if our proposed algorithm can outperform existing work that

also attempts to address the greedy problem of traditional music rec-

ommendation approaches.

To evaluate the e�ectiveness of these three algorithms, we conducted an

online user study. We perform online evaluation instead of o�ine evaluation

because the latter cannot capture the e�ect of the elapsed time t in our

rating model and the interactiveness of our recommendation approach.

Eighteen undergraduate and graduate students (9 females and 9 males,

age 19 to 29) are invited to participate in the user study. The subject pool

covers a variety of majors of study and nationalities, including American,

Chinese, Korean, Malaysian, Singaporean and Iranian. Subjects receive a

small payment for their participation. The user study takes place over the

course of three weeks in April 2014 on an online evaluation platform7 we

constructed (Figure 4.5).

The three algorithms evaluated are randomly assigned to numbers 1-3

to avoid bias. For each of these three algorithms, every subject is asked

7http://evaluation.smcnus.org/
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to evaluate 200 recommendations using a rating scale from 1 to 5. To

mimic regular recommendation sessions, subjects are reminded to take a

5-minute break after evaluating 20 songs, which also ensures the quality of

the ratings. To minimize the carryover e�ect, subjects cannot evaluate two

di�erent algorithms in one day8.

At the �rst recommendation iteration, the recommender system knows

nothing about the user, therefore, every song in the dataset has equal

probability to be recommended. The user listens to the �rst song and

gives a rating feedback based on his own musical preferences. Then the

system learns from the user's feedback, re�nes its knowledge about the

user's preferences and tries to improve its next recommendation. This

process is repeated until the 200th recommendation iteration. Intuitively,

if we sum up the user's 200 ratings, then the higher the total rating is, the

better the recommendation algorithm is.

Therefore, the evaluation metric we used to compare the performance

of the three algorithm is the cumulated average rating, denoted as R̄. Sup-

pose currently we are at the nth recommendation iteration, the cumulated

average rating R̄ can be calculated as follows:

R̄ =
1

m× n

m∑
u=1

n∑
i=1

Rui (4.1)

where m is the number of subjects in the user study (i.e. 18 in our exper-

iment), n is the current recommendation iteration, and Rui is the rating

given by the subject u at the ith iteration.

8For the user study, hyperparameters of the Bayes-UCB-CF algorithm are set as:
a0 = 10, b0 = 3, c0 = 0.01, d0 = 0.001 and e0 = 0.001.
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Figure 4.6: Recommendation performance comparison.

Figure 4.6 shows the cumulated average ratings (along with their stan-

dard errors) of each recommendation algorithm from the beginning till the

nth recommendation iteration. The standard error (SE) is computed as:

SE =
SD√
m× n

=

√
1

m×n
∑m

u=1

∑n
i=1(Rui − R̄)2

√
m× n

(4.2)

where m is the number of subjects (i.e. 18 in our experiment), n is the

current recommendation iteration, Rui is the rating given by the subject u

at the ith iteration, R̄ is the cumulated average rating de�ned in Equation

(4.1), and SD stands for �standard deviation�.

From Figure 4.6, we can see that our proposed Bayes-UCB-CF algo-

rithm signi�cantly outperforms Bayes-UCB-Content, suggesting that the

latter still fails to bridge the semantic gap between high-level user pref-

erences and low-level audio features. T-tests show that Bayes-UCB-CF
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starts to signi�cantly outperform the Greedy baseline after the 46th itera-

tion (p-value < 0.0472). In fact, Greedy's performance decays rapidly after

the 60th iteration while others continue to improve. Because Greedy solely

exploits, it is quickly trapped at a local optima, repeatedly recommending

the few songs with initial good ratings. As a result, the novelty of those

songs plummets, and users become bored. Greedy will introduce new songs

after collecting many low ratings, only to be soon trapped into a new local

optima. By contrast, our Bayes-UCB-CF algorithm balances exploration

and exploitation and thus signi�cantly improves the recommendation per-

formance.
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Chapter 5

Conclusion

We present a reinforcement learning approach to music recommenda-

tion that remedies the greedy nature of the collaborative �ltering (CF)

approaches by balancing exploitation with exploration. A Bayesian graph-

ical model incorporating both the CF latent factors and recommendation

novelty is used to learn user preferences. We also develop an e�cient sam-

pling algorithm to speed up Bayesian inference. In CF-based music rec-

ommendation, our work is the �rst attempt to investigate the exploration-

exploitation trade-o� and to address the greedy recommendation problem.

Results from simulation experiments and user study have shown that our

proposed approach signi�cantly improves recommendation performance.

Limitations and possible improvements are discussed as follows:

• In the initial stage, our interactive music recommender system gives

each song in the dataset equal probability, and randomly recommends

a song to the target user. This is because we assume that the system

knows nothing about the target user. However, it is usually possible

that the system has some prior information about the target user's
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musical preferences. For example, when a new user signs up in the

recommender system, we can ask the new user to provide some in-

formation about his musical tastes such as his favorite artists and

musical genres. Based on this prior knowledge, we can give higher

prior probabilities to a group of songs that belong to the user's fa-

vorite artists and genres. In this way, we can probably reduce the time

of exploration and improve the overall recommendation performance.

• In our approach, learning the CF latent factors and learning the user's

musical preferences are two independent components. The CF latent

factors of each song are learned o�ine and won't be changed anymore.

On the other hand, the user's preferences are learned online and will

be re�ned each time we receive a rating feedback from the user. Ac-

tually, it would be better to combine these two components together.

That is to say, when we collect a rating feedback, we can simultane-

ously update our estimation about the song's CF latent factors and

update our knowledge about the user's preferences.

• In our online experiments, in order to compare the performance of

di�erent recommendation algorithms, we ask the subjects to give ex-

plicit rating feedback (i.e. ratings on a scale of 1-5). However, in real

life applications, users are reluctant to give explicit feedback when

they listen to music. It is very di�cult to gather explicit rating feed-

back from users, but implicit feedback data (such as �like� or �dislike�,

listening count, and how quickly the user skips a recommended song)

is often easy to collect. Our model can be easily modi�ed and adapted

to these recommendation scenarios when only implicit feedback data

is available. (e.g., we can treat �like� rate, listening count and lis-
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tening time on a recommended song as the reward in our bandit

algorithm.)
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Chapter 6

Future Work

We suggest potential future research directions in this chapter.

6.1 Increasing Recommendation Diversity

In our proposed algorithm, we only take two factors into consideration,

namely the recommendation novelty and the CF latent factors of songs.

More factors (e.g., diversity) can be integrated into our user rating model

so as to further improve user satisfaction and recommendation performance.

Most of the previous research in recommender systems mainly focuses

on designing better algorithms to improve the accuracy of recommendation.

Recently, there has been a growing interest in investigating the diversity of

the recommendation results [10,38,50,51].

We have put emphasis on better exploring and modeling user's musical

preferences, but less attention has been paid to increasing the diversity of

the recommended songs. It is possible that users in the music recommender

system would like to listen to more diverse songs, which help to avoid

fatigue and increase freshness. Additionally, diversity of the recommended
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songs can facilitate a user's music discovery.

One possible way to integrate diversity into our rating model could be

described as follows: Di�erent users may have di�erent interests in songs'

diversity, which can be denoted as a parameter k and needs to be learned

during the interaction between the user and the recommender system. We

need to �nd a method to represent and measure the diversity d, treat it as

the third factor, compute a diversity score UD = kd and then multiply it

with the other two scores UCF and UN to generate the �nal user rating.

It may also be interesting to try some ad hoc methods which address the

diversity problem in post-processing phase. For example, we can keep the

approaches used in the prediction phase unchanged, but choose to recom-

mend a non-greedy song from a genre that is di�erent from the previously

recommended n songs.

6.2 Hybrid Recommendation Model

In this paper, we mainly focus on enhancing one popular category of mu-

sic recommendation approaches (i.e. the collaborative �ltering approach).

We can apply our proposed method to other more sophisticated recommen-

dation approaches (e.g., hybrid recommendation approach) in the future.

A year ago, we developed a hybrid social music recommender system.

It is a web application embedded into the Facebook platform. Using this

recommender system, we are able to collect multiple sources of input data

including rating data, friendship data, music sharing data between friends,

and so on. Rating predictions are made based on the analysis of data from

these multiple sources. However, a greedy recommendation strategy is
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used in this hybrid recommender system. Therefore, we plan to deploy the

framework proposed in this paper into this hybrid recommender system in

order to check if the framework can also improve the performance of other

categories of recommendation approaches.
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