89 research outputs found

    Enhancing BER performance limit of BCH and RS codes using multipath diversity

    Get PDF
    Modern wireless communication systems suffer from phase shifting and, more importantly, from interference caused by multipath propagation. Multipath propagation results in an antenna receiving two or more copies of the signal sequence sent from the same source but that has been delivered via different paths. Multipath components are treated as redundant copies of the original data sequence and are used to improve the performance of forward error correction (FEC) codes without extra redundancy, in order to improve data transmission reliability and increase the bit rate over the wireless communication channel. For a proof of concept Bose, Ray-Chaudhuri, and Hocquenghem (BCH) and Reed-Solomon (RS) codes have been used as FEC to compare their bit error rate (BER) performances. The results showed that the wireless multipath components significantly improve the performance of FEC. Furthermore, FEC codes with low error correction capability and employing the multipath phenomenon are enhanced to perform better than FEC codes which have a bit higher error correction capability and did not utilise the multipath. Consequently, the bit rate is increased, and communication reliability is improved without extra redundancy

    Coded-GFDM for Reliable Communication in Underwater Acoustic Channels

    Get PDF
    The performance of the coded generalized frequency division multiplexing (GFDM) transceiver has been evaluated in a shallow underwater acoustic channel (UAC). Acoustic transmission is the scheme of choice for communication in UAC since radio waves suffer from absorption and light waves scatter. Although orthogonal frequency division multiplexing (OFDM) has found its ground for multicarrier acoustic underwater communication, it suffers from high peak to average power ratio (PAPR) and out of band (OOB) emissions. We propose a coded-GFDM based multicarrier system since GFDM has a higher spectral efficiency compared to a traditional OFDM system. In doing so, we assess two block codes, namely Bose, Chaudari, and Hocquenghem (BCH) codes, Reed-Solomon (RS) codes, and several convolutional codes. We present the error performances of these codes when used with GFDM. Furthermore, we evaluate the performance of the proposed system using two equalizers: Matched Filter (MF) and Zero-Forcing (ZF). Simulation results show that among the various block coding schemes that we tested, BCH (31,6) and RS (15,3) give the best error performance. Among the convolutional codes that we tested, rate 1/4 convolutional codes give the best performance. However, the performance of BCH and RS codes is much better than the convolutional codes. Moreover, the performance of the ZF equalizer is marginally better than the MF equalizer. In conclusion, using the channel coding schemes with GFDM improves error performance manifolds thereby increasing the reliability of the GFDM system despite slightly higher complexity.This research was funded by a grant from the Spanish Ministry of Science and Innovation in the framework of the project “NAUTILUS: Swarms of underwater autonomous vehicles guided by artificial intelligence: its time has come” (PID2020-112502RB/AEI/10.13039/501100011033). The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4300148DSR01). Partial funding for open access charge: Universidad de Málag

    Evaluation of Overlay/underlay Waveform via SD-SMSE Framework for Enhancing Spectrum Efficiency

    Get PDF
    Recent studies have suggested that spectrum congestion is mainly due to the inefficient use of spectrum rather than its unavailability. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) are two terminologies which are used in the context of improved spectrum efficiency and usage. The DSA concept has been around for quite some time while the advent of CR has created a paradigm shift in wireless communications and instigated a change in FCC policy towards spectrum regulations. DSA can be broadly categorized as using a 1) Dynamic Exclusive Use Model, 2) Spectrum Commons or Open sharing model or 3) Hierarchical Access model. The hierarchical access model envisions primary licensed bands, to be opened up for secondary users, while inducing a minimum acceptable interference to primary users. Spectrum overlay and spectrum underlay technologies fall within the hierarchical model, and allow primary and secondary users to coexist while improving spectrum efficiency. Spectrum overlay in conjunction with the present CR model considers only the unused (white) spectral regions while in spectrum underlay the underused (gray) spectral regions are utilized. The underlay approach is similar to ultra wide band (UWB) and spread spectrum (SS) techniques utilize much wider spectrum and operate below the noise floor of primary users. Software defined radio (SDR) is considered a key CR enabling technology. Spectrally modulated, Spectrally encoded (SMSE) multi-carrier signals such as Orthogonal Frequency Domain Multiplexing (OFDM) and Multi-carrier Code Division Multiple Access (MCCDMA) are hailed as candidate CR waveforms. The SMSE structure supports and is well-suited for SDR based CR applications. This work began by developing a general soft decision (SD) CR framework, based on a previously developed SMSE framework that combines benefits of both the overlay and underlay techniques to improve spectrum efficiency and maximizing the channel capacity. The resultant SD-SMSE framework provides a user with considerable flexibility to choose overlay, underlay or hybrid overlay/underlay waveform depending on the scenario, situation or need. Overlay/Underlay SD-SMSE framework flexibility is demonstrated by applying it to a family of SMSE modulated signals such as OFDM, MCCDMA, Carrier Interferometry (CI) MCCDMA and Transform Domain Communication System (TDCS). Based on simulation results, a performance analysis of Overlay, Underlay and hybrid Overlay/Underlay waveforms are presented. Finally, the benefits of combining overlay/underlay techniques to improve spectrum efficiency and maximize channel capacity are addressed

    PERFORMANCE COMPARISON OF NEW DESIGNS OF CHIEN SEARCH AND SYNDROME BLOCKS FOR BCH AND REED SOLOMON CODES

    Get PDF
    Error correcting codes constitute one of the core technologies in telecommunications field, especially digital communication applications. The objective of this paper is to compare performance among new designs of chien search block on the one hand and syndrome architectures on the other hand in error correcting codes. All comparison of all designs is made by computing the number of logic, bit error rate values and number of iteration in the case of syndrome architectures Analysis results show that the performances of the new designs based on both second factorization method and Three-Parallel Syndrome architecture are superior to the performances of traditional designs

    Maximizing signal to leakage ratios in MIMO BCH cooperative beamforming scheme

    Get PDF
    Beamforming (BF) technique in cooperative multiple input multiple output (MIMO) antenna arrays improves signal to noise ratio (SNR) of the intended user. The challenge is to design transmit beamforming vectors for every user while limiting the co-channel interference (CCI) from other users. In this paper, we proposed cooperative beamforming based on Signal-to-Leakage Ratio (SLR) to exploit the leakage power as a useful power in the second time slot after user cooperation, for this purpose successive interference cancellation (SIC) is employed in each user to separate the leakage signal from the desired signal. Without increasing the complexity, Maximizing Signal-to-Leakage Ratio (SLR) subject to proposed power constraint instead of a unity norm is the way to achieve extra leakage power. To reduce the erroneous, Bose–Chaudhuri–Hocquenghem (BCH) codes employed in Beamforming of (SIC) cooperative scheme BF(CS-SIC-BCH). Maximum-likelihood (ML) estimator method is used at each user receiver. Simulation results show that the performance of the proposed scheme BF (CS-SIC-BCH) over Rayleigh and Rician fading channel is significantly better than the performance beamforming based on SLR in Non-cooperative system. More specifically to achieve a BER of about the required SNR for the proposed scheme is about 1 dB less than the Non-cooperative system

    Design and Analysis of Forward Error Control Coding and Signaling for Guaranteeing QoS in Wireless Broadcast Systems

    Get PDF
    Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.Siirretty Doriast

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suffers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on efficient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and differential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate differential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC offers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed
    corecore