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Abstract: Error correcting codes constitute one of the core 

technologies in telecommunications field, especially digital 

communication applications. The objective of this paper is to 

compare performance among new designs of chien search block on 

the one hand and syndrome architectures on the other hand in error 

correcting codes. All comparison of all designs is made by 

computing the number of logic, bit error rate values and number of 

iteration in the case of syndrome architectures 

 Analysis results show that the performances of the new designs 

based on both second factorization method and Three-Parallel 

Syndrome architecture are superior to the performances of 

traditional designs. 
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1. Introduction 
 

The quality of a digital transmission depends mainly on the 

quantity of errors introduced into the transmission channel 

[1] [2]. Error checking by coding is therefore essential. The 

use of digital signal processing techniques, and in particular 

the coding of the information to be transmitted, allows the 

detection and correction of transmission errors [3] [4]. As 

these techniques make it possible to control the errors 

induced by the noise of the transmission channel, they are 

called "channel coding". Among the main techniques used, 

block coding and convolution coding are predominant. 

Blocks coding are used in particular in Ethernet networks, in 

wireless transmission standards such as Bluetooth, and in 

HDTV (High Definition Television) and DVB-C (Digital 

Video Broadcasting-Cable) transmission standards. 

Convolution coding is very common in digital wireless 

communication systems [5] [6] [7] and other codes like RS 

(Reed-Solomon), and BCH (Bose, Ray-Chaudhuri) [8]. 

The Reed Solomon codes are block and not binary codes 

where the message is divided into blocks to which is added 

redundant information. The length of the blocks depends on 

the capacity of this code. For each block on the addition of 

protection bits or of the additional parity for the old code, a 

word of n symbols. It is also a systematic code, i.e. the 

control symbols are added at the end of the information. The 

coder takes K data symbols and calculates the control 

information to construct n symbols, which gives n-k control 

symbols. The decoder can correct at most t symbols, or 2t = 

n-k. There are more efficient codes for detecting and 

correcting errors, for example, the RS code (255,233.33) 

which is used by NASA in space communications and also in 

a digital terrestrial transmission chain (DVB-T). 

The BCH codes (Bose, Ray-Chaudhuri, Hocquenghem), 

were invented in the 1960, they are cyclic codes and today 

they are used as a reference for many recent error correction 

codes. . These are relatively efficient codes, simple to 

implement and for which there is a set of low complexity 

algebraic decoding algorithms. The encoder / decoder 

assembly makes it possible to construct a cyclic code and to 

correct a number of t errors in a block of n coded symbols 

transmitted. Understanding the concepts of algebra in the 

Galois Field (GF) is necessary to better understand these 

codes. The block length of the BCH code built on GF (2m) is 

given by n = 2m – 1. Their uses are in particular in 

communications by satellite DVB-S2, compact discs CD and 

DVD. 

A number of methods have been proposed to enhance the 

performance of the chien search block and syndrome 

architecture [9] [10] [11] [12] [13].  

The goal of this work is to present a comparison analysis of 

the new chien search and new syndrome block with others 

designs in order to enhance these performances  [14] [15] 

[16] [17]. 

Finally, the obtained results indicate the proposed designs as 

having high performance. All designs are evaluated in terms 

of BER, number of iterations and logic gate resources [18]. 

The rest of the paper is organized as follows: The Proposed 

robust factorization methods for RS and BCH decoder are 

presented in section 2. The syndromes architecture is 

presented in the session 3, Performance Analysis of the 

designed circuits are presented in section 3, followed by a 

conclusion. 
 

2. Proposed Robust Factorization Methods for 

RS and BCH Decoder 
 

The proposed algorithm is based on a specific and methodic 

factorization of the error locator polynomial such as {(P (x) 

= Axn + B, where n = 1)} should be depicted in this 

polynomial.  This method allows us to conceive a new circuit 

of Chien Search Block i.e. we can minimize both the number 

of components and the response time compared to the basic 

Chien search block.   
 

 2.1  Design using the First factorization method   
 

If we take the case of RS (15, 11, t) the error locator 

polynomial is: 

Λ(x) =14X2+14X+1                                                    (1)                                                                                                                                  

It’s a polynomial of degree 2 as type:  

Λ (x) = A2X2+A1X+ A0 = (AX+B) (AX+C)               (2)                                                                                        

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Morelos-Zaragoza%2C+Robert+H
https://www.sciencedirect.com/science/article/abs/pii/S0920548918301545#!
https://sciprofiles.com/profile/author/YjVqamV6cmp0VkYyS3lVN0lYNEZDUmJTcXc3SGVsYlNYbDBYNGRxYVNObz0=
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The equation (2) can be written as form:  

Λ (x) = (αX+β) (αX+γ)= α2X2 +αXγ+ αXβ+βγ 

         =  α2X2+α(γ+β)X+βγ                                           (3)                                  

Or  A2 = α2 ,A1 = α(γ+β) and A0=βγ 

For equation (2) the basic circuit corresponding is 

represented in Figure 1.  

 
Figure 1. Basic schema of Chien Search. 

For the equation (3) the modified circuit by using the 

factorization method is represented in Figure 2. 

 
Figure 2. Modified circuit of Chien Search 

 
Figure 3. Modified circuit of Chien Search   

For the case of a polynomial of degree 3 we have: 

Λ (X) = (αX+β) (αX+γ) (αX+λ) 

          = (α2X2 + α (γ + β) X + β.γ) (α X+ λ)               (4)                                               

Generally for:  

Λ (X) = (αX+β) (αX+ γ) … (αX+ν)                            (5)                                                                                   

The corresponding logic circuit is represented in Figure 3.   

  2.2  Design using the second factorization method   

• Case for odd polynomial 

If we take the polynomial of degree 3 we have: 

Λ(X) =AX3+BX2+  CX+D= X2(Ax + B) + (Cx + D)  (6)                                                                                

If we take the polynomial of degree5 we have: 

Λ(X) = AX5+BX4+  CX3+D X2+EX+F 

          = X4(Ax + B) + X2 (Cx + D) + ( EX+F)            (7)                                          

If we take the polynomial of degree7 we have: 

Λ(X) =AX7+BX6+  CX5+D X4+EX3+F X2+GX+H 

         = X6(Ax + B) + X4 (Cx + D)  

           + X2(EX+F)+ (GX+H)                                      (8)                                                                                           

If we take the polynomial of degree 9 we have: 

Λ(X) =AX9+BX8+  CX7+D X6+EX5+F X4+GX3+H X2+IX+J 

        = X8(AX + B) +X6 (CX + D) + X4(EX+F) 

           +X2( GX+H)+( IX+J)                                        (9)                                                                      

If we take the polynomial of degree n we have: 

Λ(X) = AnXn+ An-1Xn-1 +…+A1X1+A0                                    (10)                                                                                                                 (10) 

• Case for even polynomial 

If we take the polynomial of degree 4we have: 

Λ(X) = AX4+BX3+CX2+DX+E 

          =X3(AX+B)+X(CX+D)+E   (11)                                                        

If we take the polynomial of degree 6 we have: 

Λ(X) = AX6+BX5+CX4+DX3+EX2+FX+G= X5(AX+B) +X3 

             (CX+D) + X (EX + F)+G                                   (12) 

If we take the polynomial of degree 8 we have: 

Λ(X) = AX8+BX7+CX6+DX5+EX4+FX3+GX2+HX+I  

= X7(AX+B)+X5 (CX+D)                                              (13) 

 +X3 (EX + F)+X (GX + H) + I      

If we take the polynomial of degree 10 we have: 

Λ(X) = 

         AX10+BX9+CX8+DX7+EX6+FX5+GX4+HX3+IX2+JX+K 

    = X9(AX+B) +X7 (CX+D)+X5 (EX + F)+X3(GX+H)  

    +X(IX+J) + K                                                          (14) 

If we take the polynomial of degree n we have: 

 Λ(X) = AnXn+ An-1Xn-1 +…+A1X1+A0                     (15)                                                                                      
 

 
Figure 4. Modified circuit 2 of Chien Search Block 

polynomial as degree 5 
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Figure 5. Modified circuit 2 of Chien Search Block 

polynomial as degree 6 

3. Syndromes Architecture 

The calculation of the syndrome is defined as the remainder 

of the division between the received polynomial R(x) and the 

generator polynomial g (x). The rest indicated the presence 

of errors. As the division operation is always a complex 

operation in relation to sums and additions, we are led to 

look for another method for calculating the syndrome. 

The calculation of the syndrome can also be carried out by 

an iterative process as illustrated in Figure 6. Before being 

able to calculate the polynomial of the syndrome, we must 

wait until we have received all the elements of the 

polynomial     R (x). 

 

Figure 6. syndrome calculator cell 

Given the binary codeword polynomial: 

C(𝑥) = C0+C1𝑥+⋯+C𝑛−1𝑥𝑛−1                                                        (16)                                                                                                                         

The received polynomial R (𝑥) =R0+R1𝑥+⋯+R𝑛−1𝑥𝑛−1 is the 

sum of C (𝑥) and  E( 𝑥) 

R (x) = C (x) + E( x)                                                      (17)                                                               

Where: 

      E (𝑥)  = E0+ E1𝑥+⋯+E𝑛−1𝑥𝑛−1                                 (18)                                                                             

We obtain:  

      S i  = R (αi) = C (αi) + E (αi ) = E (αi )                    (19)                                                                                 

Or: 

       M(x).Xn-k = g(x).q(x) +X(x)                                    (20) 

M(x).Xn-k + X(x) = g(x).q(x) => C(x) = g (αi).q (αi) = 0 

Then:       

Si = R (αi) = E(αi) = Y1αie1+ Y2 αie2 + … + Y𝑣 αi e𝑣 

                = Y1Xi
1 + Y2Xi

2 + … + Y𝑣Xi𝑣                   (21)                                                                                                   

Where   X1 =  αe1, X2= αe2………………..X𝑣 = αe𝑣 

By the equation (21) we can define the different equations 

which link the polynomial Syndrome errors: 

Si = Y1Xi
1 + Y2Xi

2 + … + Y𝑣Xi𝑣 

S0 = Y1X0
1 + Y2X0

2 + … + Y𝑣X0𝑣 

S1 = Y1X1
1 + Y2X1

2 + … + Y𝑣X1𝑣 

S2 = Y1X2
1 + Y2X2

2 + … + Y𝑣X2𝑣 

The General equations of syndromes are: 

0 0 0
10 1 2

1 1 1
21 1 2

2 1 0 2 1
2 1 1 1

. . .

. . .

. . . . . .. . .

. . . . . . . .

. . . . . . . .

. . .t t
t

s X X X Y

s X X X Y

s X X X Y





 
− −

−

     
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     
     

=     
     
     
     
     

(22) 

If the received code r (x) is not affected by errors then all the 

coefficients of the Syndrome will be zero (r (x) = c (x)). 

3.1 Methods for Calculing the syndromes 

The syndrome computation block calculates all the syndromes 

Si (1 ≤ i ≤16) by putting the roots of generator polynomial g(x) 

into the received codeword polynomial R(x). 

For example the code RS (15, 11): 2t=4 syndrome (S0, S1, 

S2,S3) 

𝑆 (𝑥) = 𝑆3𝑥3 + 𝑆2𝑥2 + 𝑆1𝑥1 + 𝑆0𝑥0                                  (23) 

Direct Method: 

The equation for calculing the syndrome with the direct 

method [19] is: 

Si = R(αi) = Rn-1(αi)n-1+ Rn-2(αi)n-2+…+ R1(α1)+R0    (24)                                                                                   

For calculing S1 we replace x by α1 in the following 

equation:  

S0 = (α0)14 +2(α0)13 + 3(α0)12 + 4(α0)11 + 5(α0)10 + 11(α0)9 + 

7(α0)8 +8(α0)7 + 9(α0)6 + 10(α0)5 + 11(α0)4 + 3(α0)3 + (α 0)2 + 

12(α0) + 12 

 S0=15   

S1 = (α1)14 + 2(α1)13 + 3(α1)12 + 4(α1)11 + 5(α1)10 + 11(α1)9 + 

7(α1)8   +8(α1)7 + 9(α1)6 + 10(α1)5 + 11(α1)4 + 3(α1)3+ (α1)2 + 

12(α1) + 12 

 S1 = 3   

Horner Method: 

The equation for calculing the syndrome with the Horner 

Method [20] is: 

Si = (………( Rn-1αi+ Rn-2)αi+…+ R1)α1+R0         (25)                                                                                    

S2 = (((((((((((((1 α2 + 2).α2 + 3) α2 + 4).α2 + 5) α2 + 11).α2 + 

7).α2 + 8) α2 + 9) α2 + 10).α2  + 11) 

S2 = 4 

D 



238 
International Journal of Communication Networks and Information Security (IJCNIS)                                         Vol. 12, No. 2, August 2020 

 

S3 = (((((((((((((1 α3 + 2).α3 + 3) α3 + 4).α3 + 5) α3 + 11).α3 + 

7).α3 + 8) α3 + 9) α3 + 10).α3  + 11) 

S3 = 12 

𝑆 (𝑥) = 𝑆3𝑥3 + 𝑆2𝑥2 + 𝑆1𝑥1 + 𝑆0𝑥0 

𝑆 (𝑥) = 12𝑥3+ 4𝑥2+ 3𝑥1+ 15𝑥0 

The following figure shows the principle of calculation of 

the four syndromes at the same time:  

 

Figure 7. Logic circuit of the RS syndrome block (15, 11) 

3.2 Serial Architecture 

The serial syndrome computation block is implemented by 

following equation 4. 

Si = R (αi) =  r254(αi)254 + r253(αi)253 +……. r1(αi) + r0          (26)                                                                                                                                

 
Figure 8. Serial Syndrome Block Diagram 

The received vector enters serially to the circuit to compute the 

syndrome coefficients in parallel in n or (255) clock cycles, as 

shown in Figure 8.  

For the case of RS (255, 239,) where: N = 255, K = 239 we 

have N-K = t =16=> 16 Syndromes: S1, S2, …, S16. 

S1 can be calculated by the direct method and the even 

syndromes can be calculated using the following relationship 

S2i = Si2. 

3.3 Three-Parallel Syndrome 

Three -parallel syndrome computation block [ref] can be 

expressed by the equation presented in equation. 4. Which 

equivalent to equation.4.1 but in another form. 

R(x) = r254x254 + r253x253 +……. r1x + r0                             (27)                                                                                                                             

G(x) = (x-α0) (x-α1) ………. (x-α14) (x-α15)                (28)                                                                                          

Si = R(αi) =  r254(αi)254 + r253(αi)253 +……. r1(αi) + r0   (29)                                                                                                                         

Where: i = 1, 2, . . ., 2t 

 
Figure 9. Three parallel syndrome computation block 

The Three parallel syndrome computation block calculated by 

this equation: 

S i= R(αi) = 

((…(r254(αi)2+r253(αi)1+r252)(αi)3+r251(αi)2+r250(αi)1+r249) 

(αi)3+….)(αi) 3+r2(αi)2+r1(αi)1+r0 )        (30) 

In the first clock, the mot received is (r254, r253, r252) in 

parallel, the  second mot r252 is going to adder, r523  is 

multiplied by αi and added to r252,the final r254 is multiplied by 

(αi)2 and added to( r253*(αi)1+r251). So the output of latch(1) is : 

r254(αi)2r253*(αi)1+r251.the second clock the output of latch(1) is 

multiplied by (αi)3 and then added with r251(αi)2+ r250(αi)1+r249 

4. Performance Analysis of the Designed 

Circuits 

4.1 performance and Comparison of designs based 

factorization methods 

The proposed circuits are compared in terms of BER 

performance and Number of iterations, and number of 

minimized logic gates.  

Tables 1, 2 and 3, also Figure 10, 11, 12, 13, 14 and 15 show 

the evaluation of the performance based on the number of the 

used logic gates and the obtained values of bit error rate BER 

for all designs by using the modified circuit for different error 

locator polynomials, especially in the case of second 

factorization method both odd error locator and even error 

locator. 

        Table 1.  Computational minimization rate logic gates 

and BER values of the design based first factorization 

method 
Error locator 
 polynomial 

Minimization rate 

 

BER 

 

Λ(X) =AX2+BX+ C 45, 45 0,000054 

Λ(X) =AX3+BX2+  

CX+D 

 

46,66 0,000053 

Λ(X) =AX4+BX3+  

CX2+DX+E 

 

47,36 0,000052 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Λ(X)=AnX
n+ 

…….+A1X+A0 2 1
.100 %

3 4

n

n

+ 
 

+ 
 

 

 

    
D 

    
D 

    
D 

    
D 
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Table 2.  Computational minimization rate logic gates and 

BER values of the design based second factorization method 

with odd error locator polynomial 
Error locator 

polynomial 

Minimization rate 

 

BER 

 

Λ(X) =AX3+BX2+  

CX+D 
33 ,33 0.000066 

Λ(X) =  

AX5+BX4+CX3+DX2+

EX+F 

34,78 0 .000065 

Λ(X)=AX7+BX6+CX5

+DX4+EX3+FX2+GX+

H 

35,48 0.000064 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Λ(X)=AnX
n+ 

…….+A1X+A0 
 

 

 

Table 3.  Computational minimization rate logic gates and 

BER values of the design based second factorization method 

with even error locator polynomial 
Error locator polynomial Minimization 

rate 

 

BER 

 

Λ(X)=AX4+BX3+CX2+ 

DX+E 
 

31,57 0,000068 

Λ(X)=AX6+BX5+CX4+

DX3+EX2+FX+G 
 

33, 33 0,000066 

Λ(X)=AX8+BX7+CX6+
DX5+EX4+FX3+GX2+H

X+I 

 

34 ,28 
0,000065 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Λ(X)=AnX+…..A1X+A0 

 
 

 

These tables provide the necessary information about the 

performance of each design in terms of Number of 

minimized logic gates and the bit error rate (BER). 

During testing from all designs, we can see that there is a 

significant decrease of number of minimized logic gates after 

enhancement is applied (for both proposed designs). 

Minimization rate for the second factorization method is over 

34% or 35%, and for the first factorization method varies 

from 45% to 47,36%. Therefore, although for both presented 

figures 10, 11, 12, 13, 14 and 15, also table 1, 2 and 3 

comparisons, we can say that both proposed designs, 

especially, the one based first factorization are adequate 

solutions for BCH and RS decoders and give slightly better 

results. 
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Figure 10. Evolution of the minimization rate depending on 

the degree of the error locator polynomial for the modified 

circuit based first factorization method 
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Figure 11. Evolution of the minimization rate depending on 

the degree of the odd error locator polynomial for the 

modified circuit based second factorization method 
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Figure 12.  Evolution of the minimization rate depending on 

the degree of the even error locator polynomial for the 

modified circuit based second factorization method 
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Figure 13. Evolution of the bit error rate BER depending on 

the minimization rate for the modified circuit based first 

factorization method 
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Figure 14.  Evolution of the bit error rate BER depending on 

the minimization rate for the modified circuit based second 

factorization method with odd error locator polynomial 
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Figure 15. Evolution of the bit error rate BER depending on 

the minimization rate for the modified circuit based second 

factorization method with even error locator polynomial 

4.2 performance and Comparison of the serial and parallel 

Circuits for the syndrome Computation architectures 

Let’s discuss now the performances of different types of 

Syndrome Computation Architectures by using number of 

iteration criteria. In this context, Table 5 shows the effect of 

the number of iteration to the performance of the proposed 

designs.  

In this table 4 shows the number of the gained iterations by 

using the basic and the modified circuit for different RS and 

BCH codes. 

Table 4.  Computational minimization rate of logic gates and 

number of iterations of the serial and parallel Circuits for the 

syndrome Computation block 
Minimization 
rate 

 

 

Number 
of    

gained 

iterations 

Number 
of 

iterations 

parallel 
circuit  

Number 
of  

iterations  

serial 
Circuit    

 

Codes RS 
or 

BCH  

 

Code             
N° 

65.62 

65.62 

65.62 

65.62 

65.62 
65.62 

42 

42 

42 

42 

42 
42 

 

22 

22 

22 

22 

22 
22 

64 

64 

64 

64 

64 
64 

 

(63, 55)  

 (63, 47)  

(63, 39)  

(63, 31)  

 (63, 23)  
 (63, 15)  

1 

2 

3 

4 

5 
6 

66.40 
66.40 

66.40 

66.40 
66.40 

66.40 

66.40 
66.40 

170 
170 

170 

170 
170 

170 

170 
170 

 

86 
86 

86 

86 
86 

86 

86 
86  

256 
256 

256 

256 
256 

256 

256 
256 

  (255, 239)  
  (255, 225)  

  (255, 205)  

  (255, 191)  
  (255, 183)  

  (255, 175) 

  (255, 165) 
  (255, 135) 

7 
8 

9 

10 
11 

12 

13 
14 

66.64 2160 1081 3241 (3240, 
3072) 

15 

 

A - B (n/3) + 1 n+1  Code (n, k) 

 

n 

 

As can be seen, we use the following parameter Block 

Length (n) and the number of information symbols in a code 

word (k). Thus, from this analysis, we can see that first 

design based the first factored method gives the better 

performance than the other design in term number of gained 

iterations.  Because, it needs ((n/3) + 1) iteration instead 

(n+1) for the second design, however this method gives 

Minimization rate between 66.40 and   65.62. 

This increase in performance, as well as the increase in 

reliability makes it perfect for BCH and RS decoders. Here 

the number of iterations are taken are minimize and its 

summary of the performance is presented in Table 5. 

Figure 16 shows the minimization rate performance of the 

modified Circuit for the syndrome Computation architectures. 

Performance analysis is carried out by varying the Block 

Length (n) and number of information symbols in a code word 

(k) and calculating the corresponding number of iteration and 

minimization rate percentage. The results obtained are 

compared to that obtained from the serial circuit. 
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Figure 16.  Evolution of the minimization rate depending on 

the code (n, k) 

5. Conclusions 

In this work, different designs were analyzed and compared 

.therefore, several test scenarios concerning the proposed 

designs have been carried out, in order to validate its 

effectiveness. Evaluation performances showed that it is 

effective when the new designs are applied. 

The major advantage of the proposed design using second 

factorization method is its minimized number of logic gates 

and ease of implementation. That is can decrease the BER to 

optimal values.  

For the second contribution, the new design based Three-

Parallel Syndrome architecture shows a high performance in 

term number of gained iterations. It can be seen that when 

considering the minimized number of iterations, the Three-

Parallel Syndrome architecture is the obvious choice for the 

real time RS and BCH decoders. 

Further work could be done in optimizing designs for RS and 

BCH codes and developing techniques specifically designed 

and LPDC codes. 
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