97 research outputs found

    Performance Improvement in Multi-class Classification via Automated Hierarchy Generation and Exploitation through Extended LCPN Schemes

    Full text link
    Hierarchical classification (HC) plays a pivotal role in multi-class classification tasks, where objects are organized into a hierarchical structure. This study explores the performance of HC through a comprehensive analysis that encompasses both hierarchy generation and hierarchy exploitation. This analysis is particularly relevant in scenarios where a predefined hierarchy structure is not readily accessible. Notably, two novel hierarchy exploitation schemes, LCPN+ and LCPN+F, which extend the capabilities of LCPN and combine the strengths of global and local classification, have been introduced and evaluated alongside existing methods. The findings reveal the consistent superiority of LCPN+F, which outperforms other schemes across various datasets and scenarios. Moreover, this research emphasizes not only effectiveness but also efficiency, as LCPN+ and LCPN+F maintain runtime performance comparable to Flat Classification (FC). Additionally, this study underscores the importance of selecting the right hierarchy exploitation scheme to maximize classification performance. This work extends our understanding of HC and establishes a benchmark for future research, fostering advancements in multi-class classification methodologies

    Automated energy compliance checking in construction

    Get PDF
    Automated energy compliance checking aims to automatically check the compliance of a building design – in a building information model (BIM) – with applicable energy requirements. A significant number of efforts in both industry and academia have been undertaken to automate the compliance checking process. Such efforts have achieved various levels of automation, expressivity, representativeness, accuracy, and efficiency. Despite the contributions of these efforts, there are two main gaps in existing automated compliance checking (ACC) efforts. First, existing methods are not fully-automated and/or not generalizable across different types of documents. They require different degrees of manual efforts to extract requirements from text into computer-processable representations, and matching the concept representations of the extracted requirements to those of the BIM. Second, existing methods only focused on code checking. There is still a lack of efforts that address contract specification checking. To address these gaps, this thesis aims to develop a fully-automated ACC method for checking BIM-represented building designs for compliance with energy codes and contract specifications. The research included six primary research tasks: (1) conducting a comprehensive literature review; (2) developing a semantic, domain-specific, machine learning-based text classification method and algorithm for classifying energy regulatory documents (including energy codes) and contract specifications for supporting energy ACC in construction; (3) developing a semantic, natural language processing (NLP)-enabled, rule-based information extraction method and algorithm for automated extraction of energy requirements from energy codes; (4) adapting the information extraction method and algorithm for automated extraction of energy requirements from contract specifications; (5) developing a fully-automated, semantic information alignment method and algorithm for aligning the representations used in the BIMs to the representations used in the energy codes and contract specifications; and (6) implementing the aforementioned methods and algorithms in a fully-automated energy compliance checking prototype, called EnergyACC, and using it in conducting a case study to identify the feasibility and challenges for developing an ACC method that is fully-automated and generalized across different types of regulatory documents. Promising noncompliance detection performance was achieved for both energy code checking (95.7% recall and 85.9% precision) and contract specification checking (100% recall and 86.5% precision)

    Ticket Automation: an Insight into Current Research with Applications to Multi-level Classification Scenarios

    Get PDF
    odern service providers often have to deal with large amounts of customer requests, which they need to act upon in a swift and effective manner to ensure adequate support is provided. In this context, machine learning algorithms are fundamental in streamlining support ticket processing workflows. However, a large part of current approaches is still based on traditional Natural Language Processing approaches without fully exploiting the latest advancements in this field. In this work, we aim to provide an overview of support Ticket Automation, what recent proposals are being made in this field, and how well some of these methods can generalize to new scenarios and datasets. We list the most recent proposals for these tasks and examine in detail the ones related to Ticket Classification, the most prevalent of them. We analyze commonly utilized datasets and experiment on two of them, both characterized by a two-level hierarchy of labels, which are descriptive of the ticket’s topic at different levels of granularity. The first is a collection of 20,000 customer complaints, and the second comprises 35,000 issues crawled from a bug reporting website. Using this data, we focus on topically classifying tickets using a pre-trained BERT language model. The experimental section of this work has two objectives. First, we demonstrate the impact of different document representation strategies on classification performance. Secondly, we showcase an effective way to boost classification by injecting information from the hierarchical structure of the labels into the classifier. Our findings show that the choice of the embedding strategy for ticket embeddings considerably impacts classification metrics on our datasets: the best method improves by more than 28% in F1- score over the standard strategy. We also showcase the effectiveness of hierarchical information injection, which further improves the results. In the bugs dataset, one of our multi-level models (ML-BERT) outperforms the best baseline by up to 5.7% in F1-score and 5.4% in accuracy

    Facial expression recognition and intensity estimation.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Facial Expression is one of the profound non-verbal channels through which human emotion state is inferred from the deformation or movement of face components when facial muscles are activated. Facial Expression Recognition (FER) is one of the relevant research fields in Computer Vision (CV) and Human-Computer Interraction (HCI). Its application is not limited to: robotics, game, medical, education, security and marketing. FER consists of a wealth of information. Categorising the information into primary emotion states only limit its performance. This thesis considers investigating an approach that simultaneously predicts the emotional state of facial expression images and the corresponding degree of intensity. The task also extends to resolving FER ambiguous nature and annotation inconsistencies with a label distribution learning method that considers correlation among data. We first proposed a multi-label approach for FER and its intensity estimation using advanced machine learning techniques. According to our findings, this approach has not been considered for emotion and intensity estimation in the field before. The approach used problem transformation to present FER as a multilabel task, such that every facial expression image has unique emotion information alongside the corresponding degree of intensity at which the emotion is displayed. A Convolutional Neural Network (CNN) with a sigmoid function at the final layer is the classifier for the model. The model termed ML-CNN (Multilabel Convolutional Neural Network) successfully achieve concurrent prediction of emotion and intensity estimation. ML-CNN prediction is challenged with overfitting and intraclass and interclass variations. We employ Visual Geometric Graphics-16 (VGG-16) pretrained network to resolve the overfitting challenge and the aggregation of island loss and binary cross-entropy loss to minimise the effect of intraclass and interclass variations. The enhanced ML-CNN model shows promising results and outstanding performance than other standard multilabel algorithms. Finally, we approach data annotation inconsistency and ambiguity in FER data using isomap manifold learning with Graph Convolutional Networks (GCN). The GCN uses the distance along the isomap manifold as the edge weight, which appropriately models the similarity between adjacent nodes for emotion predictions. The proposed method produces a promising result in comparison with the state-of-the-art methods.Author's List of Publication is on page xi of this thesis

    Learning and Leveraging Structured Knowledge from User-Generated Social Media Data

    Get PDF
    Knowledge has long been a crucial element in Artificial Intelligence (AI), which can be traced back to knowledge-based systems, or expert systems, in the 1960s. Knowledge provides contexts to facilitate machine understanding and improves the explainability and performance of many semantic-based applications. The acquisition of knowledge is, however, a complex step, normally requiring much effort and time from domain experts. In machine learning as one key domain of AI, the learning and leveraging of structured knowledge, such as ontologies and knowledge graphs, have become popular in recent years with the advent of massive user-generated social media data. The main hypothesis in this thesis is therefore that a substantial amount of useful knowledge can be derived from user-generated social media data. A popular, common type of social media data is social tagging data, accumulated from users' tagging in social media platforms. Social tagging data exhibit unstructured characteristics, including noisiness, flatness, sparsity, incompleteness, which prevent their efficient knowledge discovery and usage. The aim of this thesis is thus to learn useful structured knowledge from social media data regarding these unstructured characteristics. Several research questions have then been formulated related to the hypothesis and the research challenges. A knowledge-centred view has been considered throughout this thesis: knowledge bridges the gap between massive user-generated data to semantic-based applications. The study first reviews concepts related to structured knowledge, then focuses on two main parts, learning structured knowledge and leveraging structured knowledge from social tagging data. To learn structured knowledge, a machine learning system is proposed to predict subsumption relations from social tags. The main idea is to learn to predict accurate relations with features, generated with probabilistic topic modelling and founded on a formal set of assumptions on deriving subsumption relations. Tag concept hierarchies can then be organised to enrich existing Knowledge Bases (KBs), such as DBpedia and ACM Computing Classification Systems. The study presents relation-level evaluation, ontology-level evaluation, and the novel, Knowledge Base Enrichment based evaluation, and shows that the proposed approach can generate high quality and meaningful hierarchies to enrich existing KBs. To leverage structured knowledge of tags, the research focuses on the task of automated social annotation and propose a knowledge-enhanced deep learning model. Semantic-based loss regularisation has been proposed to enhance the deep learning model with the similarity and subsumption relations between tags. Besides, a novel, guided attention mechanism, has been proposed to mimic the users' behaviour of reading the title before digesting the content for annotation. The integrated model, Joint Multi-label Attention Network (JMAN), significantly outperformed the state-of-the-art, popular baseline methods, with consistent performance gain of the semantic-based loss regularisers on several deep learning models, on four real-world datasets. With the careful treatment of the unstructured characteristics and with the novel probabilistic and neural network based approaches, useful knowledge can be learned from user-generated social media data and leveraged to support semantic-based applications. This validates the hypothesis of the research and addresses the research questions. Future studies are considered to explore methods to efficiently learn and leverage other various types of structured knowledge and to extend current approaches to other user-generated data

    Hierarchical ensemble methods for protein function prediction

    Get PDF
    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware \u201cflat\u201d prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a \u201cconsensus\u201d ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research

    Toward Effective Knowledge Discovery in Social Media Streams

    Get PDF
    The last few decades have seen an unprecedented growth in the amount of new data. New computing and communications resources, such as cloud data platforms and mo- bile devices have enabled individuals to contribute new ideas, share points of view and exchange newsworthy bits with each other at a previously unfathomable rate. While there are many ways a modern person can communicate digitally with others, social media outlets, such as Twitter or Facebook have been occupying much of the focus of inter-person social networking in recent years. The millions of pieces of content published on social media sites have been both a blessing and a curse for those trying to make sense of the discourse. On one hand, the sheer amount of easily available, real time, contextually relevant content has been a cause of much excitement in academia and the industry. On the other hand, however, the amount of new diverse content that is being continuously published on social sites makes it difficult for researchers and industry participants to effectively grasp. Therefore, the goal of this thesis is to discover a set of approaches and techniques that would help enable data miners to quickly develop intuitions regarding the happenings in the social media space. To that aim, I concentrate on effectively visualizing social media streams as hierarchical structures, as such structures have been shown to be useful in human sense makingPh.D., Information Studies -- Drexel University, 201

    Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic Medical Records

    Get PDF
    Coding Electronic Medical Records (EMRs) with diagnosis and procedure codes is an essential task for billing, secondary data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While coding errors could lead to more patient-side financial burden and misinterpretation of a patient’s well-being, timely coding is also needed to avoid backlogs and additional costs for the healthcare facility. Therefore, it is necessary to develop automated diagnosis and procedure code recommendation methods that can be used by professional medical coders. The main difficulty with developing automated EMR coding methods is the nature of the label space. The standardized vocabularies used for medical coding contain over 10 thousand codes. The label space is large, and the label distribution is extremely unbalanced - most codes occur very infrequently, with a few codes occurring several orders of magnitude more than others. A few codes never occur in training dataset at all. In this work, we present three methods to handle the large unbalanced label space. First, we study how to augment EMR training data with biomedical data (research articles indexed on PubMed) to improve the performance of standard neural networks for text classification. PubMed indexes more than 23 million citations. Many of the indexed articles contain relevant information about diagnosis and procedure codes. Therefore, we present a novel method of incorporating this unstructured data in PubMed using transfer learning. Second, we combine ideas from metric learning with recent advances in neural networks to form a novel neural architecture that better handles infrequent codes. And third, we present new methods to predict codes that have never appeared in the training dataset. Overall, our contributions constitute advances in neural multi-label text classification with potential consequences for improving EMR coding
    • …
    corecore