75 research outputs found

    Thermally Aware Design Approaches for High Power Density Ultra-Wide Bandgap Power Electronics

    Get PDF
    Ultra-wide bandgap (UWBG) semiconductors like β-type gallium oxide (β-Ga2O3) show promise for the development of next-generation high power density electronics devices such as RF and power electronics. The large bandgap (4.8 eV), high breakdown fields (8 MV/cm), and excellent thermal stability of β-Ga2O3 give promise to the production of low-loss power switching devices with large breakdown voltage, and potentially allows for high-temperature and deep space operation. However, a major drawback of β-Ga2O3 arises from its poor thermal conductivity, which results in devices with unacceptably high junction-to-package thermal resistance. While there is considerable promise for future devices made from UWBG materials, their adoption as a technology will hinge upon novel approaches to address heat dissipation at the die level which will enable high power density operation. The aims of this thesis are i) to develop novel thermal management strategies to reduce the junction-to-package thermal resistance for devices made from low thermal conductivity UWBG materials for both lateral and vertical devices, ii) to conduct an analysis of architectures for homoepitaxial β-Ga2O3 metal-oxide semiconductor field effect transistors (MOSFETs) to optimize the device thermal performance and verify experimentally, and iii) to optimize thermal management design for both steady-state and transient-state of UWBG transistors. Overall, the optimal thermally-aware design for vertical and lateral structures for steady-state and transient applications will be provided by investigating the device layout such as substrate orientation, configuration of electrodes (number of fingers, channel width, location of metallization pads), dielectric heat spreader, and thermal boundary conductance between metal and β-Ga2O3.Ph.D

    Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II

    Get PDF
    Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems

    Feature Papers in Electronic Materials Section

    Get PDF
    This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book
    • …
    corecore