1,183 research outputs found

    Combining local regularity estimation and total variation optimization for scale-free texture segmentation

    Get PDF
    Texture segmentation constitutes a standard image processing task, crucial to many applications. The present contribution focuses on the particular subset of scale-free textures and its originality resides in the combination of three key ingredients: First, texture characterization relies on the concept of local regularity ; Second, estimation of local regularity is based on new multiscale quantities referred to as wavelet leaders ; Third, segmentation from local regularity faces a fundamental bias variance trade-off: In nature, local regularity estimation shows high variability that impairs the detection of changes, while a posteriori smoothing of regularity estimates precludes from locating correctly changes. Instead, the present contribution proposes several variational problem formulations based on total variation and proximal resolutions that effectively circumvent this trade-off. Estimation and segmentation performance for the proposed procedures are quantified and compared on synthetic as well as on real-world textures

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Modeling and rendering for development of a virtual bone surgery system

    Get PDF
    A virtual bone surgery system is developed to provide the potential of a realistic, safe, and controllable environment for surgical education. It can be used for training in orthopedic surgery, as well as for planning and rehearsal of bone surgery procedures...Using the developed system, the user can perform virtual bone surgery by simultaneously seeing bone material removal through a graphic display device, feeling the force via a haptic deice, and hearing the sound of tool-bone interaction --Abstract, page iii

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image

    Motion-resilient Heart Rate Monitoring with In-ear Microphones

    Full text link
    With the soaring adoption of in-ear wearables, the research community has started investigating suitable in-ear heart rate (HR) detection systems. HR is a key physiological marker of cardiovascular health and physical fitness. Continuous and reliable HR monitoring with wearable devices has therefore gained increasing attention in recent years. Existing HR detection systems in wearables mainly rely on photoplethysmography (PPG) sensors, however, these are notorious for poor performance in the presence of human motion. In this work, leveraging the occlusion effect that can enhance low-frequency bone-conducted sounds in the ear canal, we investigate for the first time \textit{in-ear audio-based motion-resilient} HR monitoring. We first collected the HR-induced sound in the ear canal leveraging an in-ear microphone under stationary and three different activities (i.e., walking, running, and speaking). Then, we devise a novel deep learning based motion artefact (MA) mitigation framework to denoise the in-ear audio signals, followed by an HR estimation algorithm to extract HR. With data collected from 20 subjects over four activities, we demonstrate that hEARt, our end-to-end approach, achieves a mean absolute error (MAE) of 5.46±\pm6.50BPM, 12.34±\pm9.24BPM, 14.22±\pm10.69BPM and 15.44±\pm11.43BPM for stationary, walking, running and speaking, respectively, opening the door to a new non-invasive and affordable HR monitoring with usable performance for daily activities. Not only does the performance hEARt outperform that of previous in-ear HR monitoring work, but is comparable (and even better whenever full-body motion is concerned) to that reported by in-ear PPG works

    Communication dans le bruit : perception de sa propre voix et rehaussement de la parole

    Get PDF
    La communication dans le bruit est un problĂšme de tous les jours pour les travailleurs qui oeuvrent dans des environnements industriels bruyants. Un grand nombre de travailleurs se plaignent du fait que leurs protecteurs auditifs les empĂȘchent de communiquer facilement avec leurs collĂšgues. Ils ont alors tendance Ă  retirer leurs protecteurs et mettent ainsi leur audition Ă  risque. Ce problĂšme de communication est en fait double : les protecteurs modifient Ă  la fois la perception de la propre voix du porteur, ainsi que la comprĂ©hension de la parole des autres personnes. Cette double problĂ©matique est considĂ©rĂ©e dans le cadre de cette thĂšse. La modification de la perception de la propre voix du porteur des protecteurs est en partie due Ă  l’effet d’occlusion qui se produit lorsque le conduit auditif est occlus par un bouchon d’oreille. Cet effet d’occlusion se traduit essentiellement par une amĂ©lioration de la perception des sons de basses frĂ©quences internes Ă  l’ĂȘtre humain (bruits physiologiques), et par une modification de la perception de la propre voix de la personne. Dans le but de mieux comprendre ce phĂ©nomĂšne, suite Ă  une Ă©tude approfondie de ce qui se trouve dĂ©jĂ  dans la littĂ©rature, une nouvelle mĂ©thode pour quantifier l’effet d’occlusion a Ă©tĂ© dĂ©veloppĂ©e. Au lieu d’exciter la boite crĂąnienne du sujet au moyen d’un pot vibrant ou de faire parler le sujet, comme il se fait classiquement dans la littĂ©rature, il a Ă©tĂ© dĂ©cidĂ© d’exciter la cavitĂ© buccale des sujets au moyen d’une onde sonore. L’expĂ©rience a Ă©tĂ© conçue de telle maniĂšre que l’onde sonore qui excite la cavitĂ© buccale n’excite pas l’oreille externe ou le reste du corps directement. La dĂ©termination des seuils auditifs en oreilles ouvertes et occluses a ainsi permis de quantifier un effet d’occlusion subjectif pour une onde sonore dans le conduit buccal. Ces rĂ©sultats ainsi que les autres quantifications d’effet d’occlusion prĂ©sentĂ©es dans la littĂ©rature ont permis de mieux comprendre le phĂ©nomĂšne de l’effet d’occlusion et d’évaluer l’influence des diffĂ©rents chemins de transmission entre la source sonore et l’oreille interne. La comprĂ©hension de la parole des autres personnes est altĂ©rĂ©e Ă  la fois par le fort niveau sonore prĂ©sent dans les environnements industriels bruyants et par l’attĂ©nuation du signal de parole due aux protecteurs auditifs. Une possibilitĂ© envisageable pour remĂ©dier Ă  ce problĂšme est de dĂ©bruiter le signal de parole puis de le transmettre sous le protecteur auditif. De nombreuses techniques de dÂŽebruitage existent et sont utilisĂ©es notamment pour dĂ©bruiter la parole en tĂ©lĂ©communication. Dans le cadre de cette thĂšse, le dĂ©bruitage par seuillage d’ondelettes est considĂ©rĂ©. Une premiĂšre Ă©tude des techniques “classiques” de dĂ©bruitage par ondelettes est rĂ©alisĂ©e afin d’évaluer leurs performances dans un environnement industriel bruyant. Ainsi les signaux de paroles testĂ©s sont altĂ©rĂ©s par des bruits industriels selon une large de gamme de rapports signal Ă  bruit. Les signaux dĂ©bruitĂ©s sont Ă©valuĂ©s au moyen de quatre critĂšres. Une importante base de donnĂ©es est ainsi obtenue et est analysĂ©e au moyen d’un algorithme de sĂ©lection conçue spĂ©cifiquement pour cette tĂąche. Cette premiĂšre Ă©tude a permis de mettre en Ă©vidence l’influence des diffĂšrents paramĂȘtres du dĂ©bruitage par ondelettes sur la qualitĂ© de celui-ci et ainsi de dĂ©terminer la mĂ©thode “classique” qui permet d’obtenir les meilleures performances en terme de qualitĂ© de dĂ©bruitage. Cette premiĂšre Ă©tude a Ă©galement permis de donner des guides pour la conception d’une nouvelle loi de seuillage adaptĂ©e au dĂ©bruitage de la parole par ondelettes dans un environnement industriel bruitĂ©. Cette nouvelle loi de seuillage est prĂ©sentĂ©e et Ă©valuĂ©e dans le cadre d’une deuxiĂšme Ă©tude. Ses performances se sont avĂ©rĂ©es supĂ©rieures Ă  la mĂ©thode “classique” mise en Ă©vidence dans la premiĂšre Ă©tude pour des signaux de parole dont le rapport signal Ă  bruit est compris entre −10 dB et 15 dB
    • 

    corecore