503 research outputs found

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Towards an enhanced driver situation awareness system

    Full text link
    This paper outlines our current research agenda to achieve enhanced driver situation awareness. A novel approach that incorporates information gathered from sensors mounted on the neighboring vehicles, in the road infrastructure as well as onboard sensory information is proposed. A solution to the fundamental issue of registering data into a common reference frame when the relative locations of the sensors themselves are changing is outlined. A description of the vehicle test bed, experimental results from information gathered from various onboard sensors, and preliminary results from the sensor registration algorithm are presented. ©2007 IEEE

    A new Gaussian mixture method with exactly exploiting the negative information for GMTI radar tracking in a low-observable environment

    Get PDF
    This paper investigates the problem of ground vehicle tracking with a Ground Moving Target Indicator (GMTI) radar. In practice, the movement of ground vehicles may involve several different manoeuvring types (acceleration, deceleration, standstill, etc.). Consequently, the GMTI radar may lose measurements when the radial velocity of the ground vehicle is below a threshold when it stops, i.e. falling into the Doppler blind region. Besides, there will be false alarms in low-observable environments where there exist high noises interferences. In this paper, we develop a novel algorithm for the GMTI tracking in a low-observable environment with false alarms while exactly incorporating the ‘negative information’ (i.e., the target is likely to stop when no measurements are recorded) based on the Bayesian inference framework. For the Bayesian inference implementation, the Gaussian mixture approximation method is adopted to approximate related distributions, while different filtering algorithms (including both extended Kalman filter and its generalization for interval-censored measurements) are applied for updating the Gaussian mixture components. Target state estimation can be directly obtained through the Gaussian mixture model for the GMTI tracking at every time instance. We have compared the developed method with other state-of-the-art ones and the simulation results show that the proposed method substantially outperforms the existing methods for the GMTI tracking problem

    Dynamic sensor tasking and IMM EKF estimation for tracking impulsively maneuvering satellites

    Get PDF
    In order to efficiently maintain space situational awareness, care must be taken to optimally allocate expensive observation resources. In most situations the available sensors capable of tracking spacecraft have their time split between many different monitoring responsibilities. Tracking maneuvering spacecraft can be especially difficult as the schedule of maneuvers may not be known and will often throw off previous orbital models. Effectively solving this tasking problem is an ongoing focus of research in the area of space situational awareness. Most methods of automated tasking do not make use of interacting multiple model extended Kalman filter techniques to better track satellites during maneuvers. This paper proposes a modification to a Fisher information gain and estimated state covariance based sensor tasking method to take maneuver probability and multiple model dynamics into account. By incorporating the probabilistic maneuvering model, sensor tasking can be improved during satellite maneuvers using constrained resources. The proposed methods are verified through the use of numerical simulations with multiple maneuvering satellites and both orbital and ground-based sensors

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Context-based Information Fusion: A survey and discussion

    Get PDF
    This survey aims to provide a comprehensive status of recent and current research on context-based Information Fusion (IF) systems, tracing back the roots of the original thinking behind the development of the concept of \u201ccontext\u201d. It shows how its fortune in the distributed computing world eventually permeated in the world of IF, discussing the current strategies and techniques, and hinting possible future trends. IF processes can represent context at different levels (structural and physical constraints of the scenario, a priori known operational rules between entities and environment, dynamic relationships modelled to interpret the system output, etc.). In addition to the survey, several novel context exploitation dynamics and architectural aspects peculiar to the fusion domain are presented and discussed

    Bayesian multi-target tracking: application to total internal reflection fluorescence microscopy

    No full text
    This thesis focuses on the problem of automated tracking of tiny cellular and sub-cellular structures, known as particles, in the sequences acquired from total internal reflection fluorescence microscopy (TIRFM) imaging technique. Our primary biological motivation is to develop an automated system for tracking the sub-cellular structures involving exocytosis (an intracellular mechanism) which is helpful for studying the possible causes of the defects in diseases such as diabetes and obesity. However, all methods proposed in this thesis are generalized to be applicable for a wide range of particle tracking applications. A reliable multi-particle tracking method should be capable of tracking numerous similar objects in the presence of high levels of noise, high target density and complex motions and interactions. In this thesis, we choose the Bayesian filtering framework as our main approach to deal with this problem. We focus on the approaches that work based on detections. Therefore, in this thesis, we first propose a method that robustly detects the particles in the noisy TIRFM sequences with inhomogeneous and time-varying background. In order to evaluate our detection and tracking methods on the sequences with known and reliable ground truth, we also present a framework for generating realistic synthetic TIRFM data. To propose a reliable multi-particle tracking method for TIRFM sequences, we suggest a framework by combining two robust Bayesian filters, the interacting multiple model and joint probabilistic data association (IMM-JPDA) filters. The performance of our particle tracking method is compared against those of several popular and state-of-the art particle tracking approaches on both synthetic and real sequences. Although our approach performs well in tracking particles, it can be very computationally demanding for the applications with dense targets with poor detections. To propose a computationally cheap, but reliable, multi-particle tracking method, we investigate the performance of a recent multi-target Bayesian filter based on random finite theory, the probability hypothesis density (PHD) filter, on our application. To this end, we propose a general framework for tracking particles using this filter. Moreover, we assess the performance of our proposed PHD filter on both synthetic and real sequences with high level of noise and particle density. We compare its results from both aspects of accuracy and processing time against our IMM-JPDA filter. Finally, we suggest a framework for tracking particles in a challenging problem where the noise characteristic and the background intensity of sequences change during the acquisition process which make detection profile and clutter rate time-variant. To deal with this, we propose a bootstrap filter using another type of the random finite set based Bayesian filters, the cardinalized PHD (CPHD) filter, composed of an estimator and a tracker. The estimator adaptively estimates the required meta parameters for the tracker such as clutter rate and the detection probability while the tracker estimates the state of the targets. We evaluate the performance of our bootstrap on both synthetic and real sequences under these time-varying conditions. Moreover, its performance is compared against those of our other particle trackers as well as the state-of-the art particle tracking approaches

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    Theoretical framework for In-Car Navigation based on Integrated GPS/IMU Technologies

    Get PDF
    In this report the problem of vehicular navigation based on the integration of the global positioning system and an inertial navigation system is tackled. After analysing some fundamental technical issues about reference systems, vehicle modelling and sensors, a novel solution, combining extended Kalman filtering with particle filltering, is developed. This solution allows to embed highly non-linear constraints originating from digital maps in the position estimation process and is expected to be implementable on commercial hardware platforms equipped with low cost inertial sensorsJRC.G.6-Digital Citizen Securit
    • …
    corecore