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ABSTRACT

Lace, Arthur A. M.S.A.A., Purdue University, May 2016. Dynamic Sensor Tasking
and IMM EKF Estimation for Tracking Impulsively Maneuvering Satellites. Major
Professor: Inseok Hwang.

In order to efficiently maintain space situational awareness, care must be taken to

optimally allocate expensive observation resources. In most situations the available

sensors capable of tracking spacecraft have their time split between many different

monitoring responsibilities. Tracking maneuvering spacecraft can be especially diffi-

cult as the schedule of maneuvers may not be known and will often throw off previous

orbital models. Effectively solving this tasking problem is an ongoing focus of research

in the area of space situational awareness. Most methods of automated tasking do not

make use of interacting multiple model extended Kalman filter techniques to better

track satellites during maneuvers. This paper proposes a modification to a Fisher

information gain and estimated state covariance based sensor tasking method to take

maneuver probability and multiple model dynamics into account. By incorporating

the probabilistic maneuvering model, sensor tasking can be improved during satellite

maneuvers using constrained resources. The proposed methods are verified through

the use of numerical simulations with multiple maneuvering satellites and both orbital

and ground-based sensors.



1

1. INTRODUCTION

1.1 Motivation

It is essential to effectively track satellites and other spacecraft to ensure the

safety of both future and current space missions. Estimating the orbits of satellites

without the use of on-board telemetry is a task that requires limited and expensive

observational resources. Making the best use of these resources is an important

component of maintaining space situational awareness (SSA). To this end, dynamic

optimal sensor allocation can be utilized as a component of an effective tracking

system using distributed sensor resources. Efficient automated sensor tasking research

is a major focus of several recent developments in SSA [1] [2].

The current development of automated sensor tasking methods for tracking poten-

tially maneuvering or station keeping satellites using maneuver probability metrics is

somewhat underdeveloped. The quick detection of changes in orbit can be important

in crowded orbital zones or regions where high positioning precision is important [2].

Modern systems such as the Space-Based Space Surveillance (SBSS) system can be

used as a basis for modeling distributed sensor systems [3].

1.2 Maneuvering Satellite Tracking

Maintaining space situational awareness is an important component of effectively

managing the increasingly complex and valuable infrastructure in earth orbit. Satel-

lite telemetry is an important component of tracking satellites, but needs to be aug-

mented and verified by independent observations to ensure satellites are performing

as expected. By the nature of iterative probability, the more satellites are in space

and the longer they are in continuous operation, the greater chance there is for the
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Figure 1.1. Sensor and satellite configuration where earth orbiting or
ground-based sensors (black) observe certain limited regions (gray)
and attempt to track target satellites (red)

occurrence of accidents. To mitigate the potential for complications, techniques used

to track and verify the proper operation of satellites needs to continuously improve.

Human error or malice can also foul up communications between satellite operating

organizations, greatly increasing the risk of accidents or other misfortunes [2].

Satellites maneuver using impulsive or continuous propulsion systems in the vast

majority of cases [4] [2]. In the case of modern continuous systems using low thrust

propulsion methods, traditional extended Kalman filter (EKF) tracking methods can

maintain high accuracies as gradual state changes can be accounted for using either

the sensor data or adjustments to the system models [5]. However, in the case of
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impulsive maneuvers, the ability to quickly detect and respond to rapid changes is an

issue with state estimation techniques.

Impulsive maneuvers are a critical part of maintaining many satellites’ orbits or of

their transitions between orbits. Station keeping maneuvers can occur as often as four

times a day in the case of classical geostationary earth orbit (GEO) station keeping [6].

Often an observer has no knowledge of the schedule or method of maneuvers for a

given satellite. Because of the uncertainty inherent in when maneuvers may occur

it is difficult or unwise to include maneuvers directly into the EKF satellite model.

Probabilistic methods must be used to predict maneuvers instead.

1.3 Interacting Multiple Model Extended Kalman Filter

One of the more direct ways to account for partially known maneuvering models

in satellite tracking is to use an interacting multiple model (IMM) EKF [7]. By using

several EKF filters that utilize both maneuvering and non-maneuvering modes, the

blending of the modes generates a more accurate depiction of the satellite motion

during maneuvers. This IMM method is generally very useful when the potential

maneuver can be represented as an increase in state error.

IMM tracking is a well known and understood method of dealing with systems that

operate in distinct modes depending on certain state based parameters [8], especially

in tracking maneuvering satellites [7]. Satellite behavior when not maneuvering is

relatively deterministic, based on orbital mechanics and known disturbances while its

maneuvering behavior is uncertain and heavily dependent on the type of satellite and

its current state.

The design of a maneuver probability model is a key component of IMM EKF

methods of state estimation [7]. Assigning a high probability to the likely points of

maneuver allows the IMM EKF to properly adjust the estimation dynamics to better

follow the maneuvering target. The maneuver probability models are based around

having a high probability near the bounds of the geostationary operating window for
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geostationary satellites or near an apsis point for satellites in other orbits. Maneuver-

ing probability models have to change substantially between different satellite types

as the expected behavior for GEO station keeping differs significantly from orbital

transfers and other maneuvers.

1.4 Information Gain Sensor Allocation

The information gain method of sensor allocation is based on generating a metric

related to improvement in estimation accuracy of the EKF from a potential mea-

surement on each update step to use in the cost function of a linear programming

optimization [9]. One common metric used to express the potential accuracy gain of a

particular measurement is the Fisher information matrix, which is determined by the

sensor dynamics and error of the system [1]. The current state estimate covariance

matrix can also be used as a component of the information gain as a measure of the

current uncertainty of a particular satellite.

By calculating the information gain for each sensor-target pair at each update

step an optimal allocation of sensors can be generated. This tasking method has the

advantage of using simple linear programming techniques once the information gain

is calculated from the most recent state estimates. Fisher information gain is a well

researched method of sensor allocation that is fairly simple to implement even with

nonlinear orbital mechanics [1].

The Fisher information gain cannot be used alone for general satellite tracking

problems without other metrics. Fisher information gain tasking identifies which

potential measurements generate the greatest reduction in estimated state covariance

based on the available sensors, but does not take into account whether a target has

been observed recently. Without a state estimate covariance term in the information

gain, certain hard to measure targets could potentially never be observed if there are

not sufficient sensors to ensure that all targets are observed at every time step.
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It is assumed in this paper that the sensor allocation is altered at every update

step, which is not necessarily possible for several sensor technologies. However, sim-

plifications of the sensor dynamics are necessary to keep the scope of the problem

reasonable. Some adjustments to the IMM EKF model need to be made to account

for the potential lack of sensor data at a given update step. This paper does not ad-

dress the satellite acquisition and state initialization problem [10] and its integration

into these methods could be subject of future research.

1.5 Sensor Systems

The primary source of satellite observations in the United States is the distributed

network of sensors and satellites run by the US Air Force and related agencies. This

collection of radar, optical, passive radio, and other sensors provides information on a

wide variety of space objects [11]. Most of the current optical methods rely on detect-

ing orbital tracks and collating track data from different observatories to determine

positioning and orbital information [12]. SBSS and other observation systems track a

wide variety of satellites including GEO targets as part of their mission [3]. Because

this research is interested in tracking satellites in higher earth orbits optical sensors

are the preferred sensor type [13].

Observation planning was historically done on a daily basis [11] but developments

in automated sensor and distributed automation have enabled more advanced meth-

ods. To ensure automated systems are effectively used, their targets need to be

selected intelligently. Greedy optimization algorithms based on target priority were

initially used for satellite tracking but modern advancements in dynamic scheduling

has allowed for more advanced solutions [9]. Unfortunately, there are limited research

resources for dynamically tracking multiple potentially maneuvering spacecraft. Inte-

grating improved maneuvering spacecraft tracking methods [14] into a dynamic task-

ing method could demonstrate improved performance and illustrating this possibility

is one of the primary goals of this paper.
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1.6 Proposed Tasking Method Improvement

Using IMM EKF methods designed to track maneuvering satellites, the perfor-

mance of sensor networks tracking multiple targets can be improved. If a satellite

is not observed soon after a maneuver, larger errors can be generated requiring a

probabilistic component to be included in the information gain. Demonstrating im-

provements in tracking over single EKF methods in a sensor restricted system with

multiple maneuvering satellites would confirm the effectiveness of IMM EKF tracking.
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2. METHODOLOGY

2.1 Sensor Modeling

For every filter time step each target satellite i is observed using a subset of the

available sensors j. These sensors can be either orbital observation platforms or

ground-based satellite tracking resources, as seen in Figure 1.1.

The sensor dynamics need to be modeled in a manner approximating real world

sensors. Optical sensors generally make use of arc tracking techniques to determine

satellite orbits [11]. But to keep the sensor model manageable, the examples in this

paper use a simplified representation of satellite observations. The sensor outputs are

considered as simple range and angle measurements with associated error covariances

[1] [7]. The range ρi,j, longitude ψi,j, and latitude θi,j angles are calculated in the

Mode Update

EKF2EKF1

State Mixing

Maneuver Probability

Tasking

Sensors

γi,a,b

x̂0
i,q

x̂i,q=1 x̂i,q=2

x̂i

ϵ

x̂i,q
mi,q

yi
xi

x̂

mi,2

Figure 2.1. Tracking and tasking method block diagram
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earth centered earth fixed (ECF) reference frame and can be converted to the other

reference frames if needed.

The system state for satellite i is represented by xi = [ri
T ,vi

T ]T while the position

of sensor j is represented by rj. The sensor dynamics are derived from system states

composed of the position ri = [xi, yi, zi]
T and velocity vi = [vx,i, vy,i, vz,i]

T components

in the current reference frame along with sensor positions rj = [xj, yj, zj]
T .

ρi,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (2.1)

ψi,j = tan−1(
yi − yj
xi − xj

) (2.2)

θi,j = tan−1(
zi − zj√

(xi − xj)2 + (yi − yj)2
) (2.3)

hi,j(x) =


ρi,j

ψi,j

θi,j

 (2.4)

The above sensor dynamics can then be converted to a linearized matrix Ĉi,j that is

determined specifically for each sensor-target pair. During tasking the satellite state

values are based on the last estimate of the satellites state.

Ĉ
r

i,j =


δρi,j
δxi

δρi,j
δyi

δρi,j
δzi

δψi,j

δxi

δψi,j

δyi

δψi,j

δzi

δθi,j
δxi

δθi,j
δyi

δθi,j
δzi

 (2.5)

Ĉ
r

i,j =


xi−xj
ρi,j

yi−yj
ρi,j

zi−zj
ρi,j

−(yi−yj)
(xi−xj)2+(yi−yj)2

xi−xj
(xi−xj)2+(yi−yj)2 0

−(xi−xj)(zi−zj)√
(xi−xj)2+(yi−yj)2ρ2i,j

−(yi−yj)(zi−zj)√
(xi−xj)2+(yi−yj)2ρ2i,j

√
(xi−xj)2+(yi−yj)2

ρi,j

 (2.6)

Ĉi,j =
[
Ĉ

x

i,j,0
3×3

]
(2.7)

The Ĉi,j matrix is used as part of the sensor tasking as well as in the EKF using

the propagated system state estimate. The sensor model is the same no matter the

type of object being tracked within the scope of this paper.
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2.2 Reference Frames

The tracking and tasking methods described in this paper make use of three dif-

ferent orbital reference frames. The tasking problem is handled in the ECF reference

frame for easy positioning of ground-based observational resources and simplified han-

dling of GEO satellites. The orbital simulations and the low earth orbit (LEO) orbit

case tracking method make use of the earth centered inertial (ECI) frame due to

the ease of general orbital simulations. The GEO satellite tracking makes use of the

local horizontal local vertical(LHLV) reference frame centered at the satellites’ target

orbital position. In the LHLV reference frame x is along the orbital track, y is along

the axis from the earth center to the orbital target, and z is perpendicular to the

orbital plane.

The conversion between the ECF and the LHLV reference frames used in the GEO

satellite tracking is primarily dependent on the target longitude Li and radius Rg of

the geostationary orbit [15]. Neither ECF nor LHLV are inertial reference frames,

but they are contained within the same non-inertial frame.

xECF = cos(Li)(xLHLV +Rg)− sin(Li)yLHLV (2.8)

yECF = sin(Li)(xLHLV +Rg) + cos(Li)yLHLV (2.9)

zECF = zLHLV (2.10)

CLHLV
ECF =


cos(Li) − sin(Li) 0

sin(Li) cos(Li) 0

0 0 1

 (2.11)

vECF = CLHLV
ECF vLHLV (2.12)

Converting between ECF and ECI is more elaborate due to the change between a

non-inertial and inertial frames. This frame conversion requires the inclusion of the
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rotation rate of the earth against the inertial frame ωe and the time elapsed since the

initial alignment of the two frames (t− talign).

CECI
ECF (k) =


cos(ωe(t− talign)) sin(ωe(t− talign)) 0

− sin(ωe(t− talign)) cos(ωe(t− talign)) 0

0 0 1

 (2.13)

rECF (k) = CECI
ECF (k)rECI(k) (2.14)

vECF (k) = CECI
ECF (k)

(
vECI(k)− cross(

[
0, 0, ωe

]T
, rECI(k))

)
(2.15)

The state estimate covariance matrix also needs to be converted between reference

frames using the basic covariance rotation method from reference frame a to ECF.

Da
ECF (k) =

Ca
ECF (k) 0

0 Ca
ECF (k)

 (2.16)

P ECF = Da
ECF (k)

TP aD
a
ECF (k) (2.17)

The sensor readings taken in the ECF frame also need to be converted, but this

is simply a matter of altering the ψi,j term by the appropriate amount. The latitude

and range are the same in all reference frames used.

ψi,j,ECI = ψi,j,ECF + ωe(t− talign) (2.18)

ψi,j,LHLV = ψi,j,ECF − Li (2.19)

2.3 Fisher Information Gain

Assigning sensors to track multiple targets can be formulated as a traditional

linear optimization problem. Using a linear form allows simple and computationally

efficient techniques such as linear programming to be used. However, to get good

results from this assignment process, a consistent and effective method of assigning

tasking gains is required.
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One simple but very useful metric for the information gain where every satellite

would have at least one sensor observing it is the Fisher information gain [9]. This is

a metric that expresses the reduction of the state covariance matrix in the Kalman

filter tracking that object for a potential observation.

The Fisher information matrix for each sensor satellite pair Ωi,j is dependent pri-

marily on the sensor noise and the current system geometry. The Fisher information

matrix is related to the change in covariance P i at each update step whereMi sensors

observe satellite i.

P i(k)
−1 = P i(k|k − 1)−1 +

Mi∑
j=1

Ωi,j (2.20)

The Fisher information matrix is derived from the sensor model error covariance Rj

and the current estimate of the satellites position.

Ωi,j = (Ĉi,j)
TR−1

j (Ĉi,j) (2.21)

The Fisher information gain includes no components of the IMM EKF tracking

methodology or maneuver probability. Thus, the traditional implementation of Fisher

information gain µFi,j is not meaningfully different when using IMM EKF tracking

methods [1]. The sum of all the diagonal elements of the Fisher information matrix

is used as the Fisher information gain.

µFi,j = tr(Ωi,j) (2.22)

In the scenario considered in this paper, every satellite cannot have at least one

observation at every time step so purely Fisher information gain tasking will not

function properly, so alternative methods need to be used.

2.4 Tasking Methodology

The tasking of the sensor network is based on the maximization problem using

the information gain metric µi,j. This gain value is calculated for each sensor-target
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pair and is related to an estimate of how much reduction in error is gained from that

particular observation and the current estimated error of the system. The tasking can

be formulated as a linear optimization problem dependent on maximizing the sum of

all the µi,j values associated with active observations. Every possible observation is

represented as a variable ϵi,j [1] that equals one if sensor j observes satellite i, and is

zero otherwise. The cost function for the optimization problem can be expressed as a

simple summation to optimize the matrix ϵ. In this formulation there are N satellites

and M sensors in the system.

J =
N∑
i=1

M∑
j=1

µi,jϵi,j (2.23)

The optimization of ϵ is subject to the limitation that each sensor can only observe T

targets at any given time. Many sensor-target pairs would not be valid observations

due to range, angle, or visibility limitations. The limitations of ground-based sensors

can be represented as range and angle limitations. Orbital sensors are approximated

as range limited with a disk of the earth’s equatorial radius approximating line of

sight limitations. If visibility requirements are not satisfied, then the gain for that

satellite sensor pair can be set to µi,j = −1 to ensure good performance during the

sensor allocation. The optimization constraints are therefore expressed as the target

limit constraint and the potential range of ϵi,j.

N∑
i=1

ϵi,j < T, j = 1, 2, ...,M (2.24)

0 ≤ϵi,j ≤ 1 (2.25)

Information gain generation using the current state estimates is the key component

in accounting for the multiple model and maneuver probability elements of IMM EKF

based tracking. Differences in how the information gain is generated are the primary

differences between different tasking methods [9] . As discussed earlier, the purely

Fisher information gain method does not work in systems with more targets than

sensors and cannot directly account for maneuver probability and multiple model



13

methodology. Because of these limitations, modifications need to made to allow for

effective tasking.

An ad-hoc improvement [1] incorporating the current state estimate covariance P̂ i

demonstrates enhanced performance and can handle systems where not all targets can

be observed at any given time step. The scaling factors α and β are implementation

dependent and good design practices associated with selecting them are not well

defined [1]. The result is a metric that contains both the potential accuracy improve-

ments from a particular observation and the estimated inaccuracy of the satellite

being tracked.

µMi,j = α tr(Ωi,j) + (1− α)β tr(P̂ i) (2.26)

This Fisher information and covariance based tasking method does have certain

advantages and disadvantages when implemented in a IMM EKF tracking system.

Satellites with a high probability of maneuvering demonstrate much larger estimated

state covariance values, the satellites are more highly prioritized as a result, indirectly

incorporating maneuvering probability into the tasking. However, when very differ-

ent types of satellites are being tracked using the same sensor network, the scale of

the priorities can unfavorably focus on satellites with a higher expected error over

satellites that are expected to maneuver. To prioritize the tracking of maneuver-

ing satellites a more direct incorporation of the maneuvering probability needs to be

added to the information gain.

An additional term (1 + Υmq=2) introducing a stronger probability element as a

potential weighting method in the information gain is the a novel contribution of this

paper. The scaling value Υ determines the weighting of the probability of being in a

maneuvering state mq=2.

µLi,j = (1 + Υmq=2)(α tr(Ωi,j) + (1− α)β tr(P̂ i)) (2.27)

The above method only functions when used with state estimation methods that

take the maneuver probability into account or that can otherwise generate that value.
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This requirement limits the usefulness of this method to cases where the maneuvering

behavior of the target is well understood, such as station keeping GEO satellites or

satellites performing maneuvers near clear apsis points.

The use of a scaling factor based on the probability of maneuvering was moti-

vated by the desire to retain the dynamics of the Fisher information and covariance

based tasking method when the satellites are not near maneuvering points. When a

satellite is near a point where maneuvers are expected those satellites are observed

more frequently. Slightly fewer observations of other non-maneuvering satellites will

result from this probability component of the tasking, so the average error of non-

maneuvering satellites may increase slightly. But this is a reasonable trade off for

better tracking of satellites during large maneuvers.

2.5 Maneuver Probability

The IMM EKF method makes use of two state estimators updated at every sys-

tem step with different estimated state error matrices. A satellite can be considered

to potentially operate in two modes, one where the satellite is maneuvering and an-

other where it is not. The modes are differentiated using the variable q, which has

a value of 1 for the non-maneuvering model and 2 for the maneuvering model. The

probability of each mode cannot be accurately determined purely from the current

state estimates as both the maneuvering and non-maneuvering modes have different

state estimates. Instead, what can be determined from both state estimates is the

probability of transitioning between the modes γi,a,b(k) based on all previous mea-

surements Y i(k− 1). Using this transition probability, the mode probabilities can be

computed iteratively [7].

γi,a,b(k) = p(q(k) = b|q(k − 1) = a,Y i(k − 1)) (2.28)

This mode transition probability distribution is based on the proximity of the state

estimate to the trigger boundary associated with maneuvering behavior. The prob-

ability of mode transition is modeled as a Gaussian normal distribution centered on
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the trigger boundary µb with a covariance Σ determined by the nature of the ma-

neuver condition. A g(x) function determines what derived statistics are utilized by

the trigger boundary. For example, the latitude and longitude based conditions could

use g(x) to generate the appropriate angle values. The L term is a matrix identifying

which derived values are used as the trigger conditions.

Nb(Lg(x),µ,Σ) (2.29)

To take into account the uncertainty of the state estimate, the associated multivariate

normal distribution of the current state estimate is used. The use of this value in a

scenario with dynamic sensor tasking results in oscillatory behavior in the probabil-

ity of maneuvering, as the current error of the state estimate can increase by large

amounts during iterations where it is unobserved.

Np(x, x̂i,q(k − 1), P̂ i,q(k − 1)) (2.30)

By integrating across the entirety of the real state space, one can determine the overall

probability that the satellite is in the proximity of the trigger conditions for any given

bound.

γi,a,b(k) =

∫
R
Nb(Lg(x),µ,Σ)Np(x, x̂i,q(k − 1), P̂ i,q(k − 1))dx (2.31)

In the GEO case, the maneuver probability is dependent on the latitude and longitude

of the current estimate of the satellite position. For the sake of simplification these

angle limits can be approximated as displacement limits in the LHLV reference frame,

specifically along the y and z axises. These limits forms a bounding box around the

central point of the LHLV frame. There are a total of four different probability dis-

tributions at the corresponding positive and negative values of the allowable position

error. Differing L matrices alter which variables are being considered.

LEW =
[
0 1 0 0 0 0

]
(2.32)

LNS =
[
0 0 1 0 0 0

]
(2.33)
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In the GEO satellite case, g(x) is an identity function as any transformations

are handled earlier in the conversion to LHLV. When the geostationary satellite ap-

proaches the bounding box shown in Figure 2.2, the probability of transitioning to

the maneuvering state increases.

y

z

EW1 EW2

NS1

NS2

Figure 2.2. Geostationary mode transition boundaries in LHLV

In the case of a LEO satellite, the mode change probability can be based on

proximity to the nearest apsis point of the orbit. Many impulsive maneuvers take

place near apsis points in the satellite’s orbit, such as Hohmann transfers. Finding

this probability can be simplified via reference frame conversion to a LHLV frame,

much like the GEO case such that the zero point of the y and z axes are at the nearest

apsis point.

In the LEO case the probability of transitioning to the maneuvering state increases

when the satellite is near the boundary seen in Figure 2.3. The reference frame

transition is only done for the mode probability calculations for the LEO case and

the rest of the satellite state estimation is done in the ECI frame. Because of the
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y

z

EW

Figure 2.3. LEO mode transition boundary in LHLV around apsis point

high relative velocity of the satellite in the LHLV reference frame, a larger Σ value

has to be used due to the sampling rate potentially missing the maneuvering point.

Because this wider range results in a lower probability of maneuvering than is useful,

an additional correction factor is included to increase the probability such that it

approaches a consistent high value when near the apsis point.

The GEO probability results in four separate probabilities as each bound is cal-

culated independently. Because only one maneuver can take place during any given

short time frame, only the maximum probability is considered in the IMM EKF dy-

namics. More developed methods to resolve the multiple maneuvering probabilities

would be the subject of future work.

As both the GEO and LEO probability models allow for a g(x) that is an identity

function the linear nature of the Gaussian distributions allows for a significant sim-

plification of the probability dynamics [7]. The two probability distributions can be
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combined into a single distribution with a mean λi,q and covariance Λi,q multiplied

by a correction gain κ.

Λi,q = (P̂ i,q(k − 1)−1 +LTΣ−1L)−1 (2.34)

λi,q = Λi,q(P̂ i,q(k − 1)−1x̂i,q(k − 1) +LTΣ−1µ) (2.35)

κ1 =
|Λi,q|

1
2

(2π|P̂ i,q(k − 1)||Σ|) 1
2

(2.36)

κ2 = exp(−1

2
(µTΣ−1µ+ x̂i,q(k − 1)T P̂ i,q(k − 1)−1x̂i,q(k − 1)− λTi,qΛ

−1
i,q λi,q))

(2.37)

κ = κ1κ2 (2.38)

Nb(Lg(x),µ,Σ)Np(x, x̂i,q(k − 1), P̂ i,q(k − 1))dx = κNn(x, λi,q,Λi,q) (2.39)

As the probability is integrated over the whole real space associated with the state,

the probability becomes the correction gain κ.

γi,a,b(k) = κ (2.40)

2.6 Estimated State Mixing

Once the transition probabilities are determined, the mixing probabilitiesmi,a|b(k)

are calculated using the previous state probability estimate mi,a(k − 1) [7].

mi,a(k − 1) = p(qi(k − 1) = a|Y i(k − 1)) (2.41)

mi,a|b(k) = p(qi(k − 1) = a|qi(k) = b,Y i(k − 1)) (2.42)

mi,a|b(k) =
γi,a,b(k − 1)mi,a(k − 1)∑2
c=1 γi,c,b(k − 1)mi,c(k − 1)

(2.43)

This mixing probability allows for the previous estimated state and covariance of

the system to be combined to generate the most likely system state for both modes

of the current EKF estimation step.
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x̂0
i,a =

2∑
c=1

mi,c|a(k)x̂i,c(k − 1) (2.44)

P̂
0

i,a =
2∑
c=1

mi,c|a(k)(P̂ i,a(k − 1) + [x̂i,c(k − 1)− x̂0
i,a][x̂i,c(k − 1)− x̂0

i,a]
T ) (2.45)

2.7 Interacting Multiple Model Extended Kalman Filter

The IMM EKFmethod is used to track a maneuvering spacecraft more closely soon

after an impulsive maneuver. A basic system model derived from orbital mechanics

is used for the non-maneuvering mode and allows for tracking using Kalman filter

techniques. At the same time, a similar model making use of a much higher state

noise is also being tracked [7]. The state q describes the two different maneuvering

modes where one is non-maneuvering and two is maneuvering. The primary difference

between each mode is the Qq state error covariance matrix, which is of a much higher

magnitude in the maneuvering case. Additionally, this filtering method needs to be

able to account for multiple or no sensor measurements at any given update step.

An EKF system model can be represented using the system state x(k) ∈ Rm×1

and the sensor outputs y(k) ∈ Rn×1 . The state error wq(k) ∈ Rm×1 with covariance

Qq ∈ Rm×m and sensor noise v(k) ∈ Rn×1 with covariance R ∈ Rn×n represents the

unknown stochastic errors in the observations of the system. The control component

∆u ∈ Rm×1 represents the maneuvers of the target. Due to the unknown nature of

the maneuvering model outside of specific tracking applications, the maneuvering im-

pulses cannot be directly incorporated into the EKF. The nonlinear system dynamics

f(x) and sensor dynamics h(x) are used to represent the system dynamics and sensor

dynamics of the given system. The full system model then takes the form seen in

Equation 2.46 and Equation 2.47.

xi(k + 1) = fi(xi(k)) +wq,i(k) + ∆ui(k) (2.46)

yi,j(k) = hi,j(x(k)) + vi,j(k) (2.47)
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The propagated system state makes use of the state dynamics model. In the case

with no sensor readings for a given satellite, this propagated value is the final value

for the EKF update. This same propagation without update also applies to the state

estimate covariance P̂ i ∈ Rm×m propagation.

x̂i,q(k|k − 1) = fi(x̂
0
i,q(k − 1)) (2.48)

The EKF makes use of the linearized dynamics of the system as part of the maximum

likelihood Kalman filter estimation. The linearized sensor dynamics Ĉi,j, as seen in

Equation 2.7, can be calculated for each sensor satellite pair. A total of u sensor

readings for a given satellite can be combined into one larger matrix of yi ∈ Rp×1

with an error covariance Ri ∈ Rp×p, where p = n ∗ u, with a trace composed of each

sensor’s error covariance matrices. The sensor dynamics are combined accordingly,

becoming a larger matrix Ĉi ∈ Rp×m. The linearized state dynamics F i are required

as part of the estimated state covariance P̂ i update process.

F i,q(k) =
∂f

∂x

∣∣∣∣
x̂i,q,m(k)

(2.49)

P̂ i,q(k|k − 1) = F i,q(k − 1)P̂
0

i,q(k − 1)(F i,q(k − 1))T +Qq (2.50)

To account for the sensor readings of the satellite at each time step, estimated sensor

readings are used along with the Kalman gain Kq,ito determine the appropriate

changes to the state estimate and estimate covariance to adjust the current maximum

likelihood state estimate.

Kq,i = P̂ i,q(k|k − 1)Ĉ
T

i,q(Ĉi,qP̂ i,q(k|k − 1)Ĉ
T

i,q +Ri) (2.51)

x̂i,q(k) = x̂q(k|k − 1) +Ki,q(yi − h(x̂i,q(k|k − 1))) (2.52)

P̂ i,q(k) = (I −Ki,qĈi,q)P̂ i,q(k|k − 1) (2.53)

2.8 Estimated State Fusion

After the EKF update is complete, a final estimate that is a fusion of the two

state estimates using the mode probabilities is generated [7]. Mode probabilities are
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dependent on the previous mode filter iteration probabilities and the probability that

the given sensor readings match the expected state. Additionally, both of the modes’

state estimates and covariances are retained for the next EKF update.

The state probability has to be updated to take into account the transition prob-

abilities calculated earlier, before being used to find the overall state estimate.

p(yi(k)|q(k) = a,Y i(k − 1)) = Ns(yi(k)− hi(x̂a(k|k − 1),0,Sa(k)) (2.54)

Sa(k) = Ĉi,qP̂ i,q(k|k − 1)Ĉ
T

i,q +Ri (2.55)

The normalizing variable s normalizes the results such that
∑2

c=1mi,c(k) = 1.

p(q(k) = b|Y i(k − 1)) =
2∑
c=1

γi,c,b(k)mi,c(k) (2.56)

mi,a(k) =
1

s
p(yi(k)|q(k) = a,Y i(k − 1))p(q(k) = a|Y i(k − 1))

(2.57)

The probability update gives us the probability of each of the two modes at time step

k. This then allows for the merging of the two estimates to create the overall state

estimate, which is used for future tracking allocation and monitoring the satellite’s

position.

x̂i(k) =
2∑
c=1

x̂i,c(k)mi,c(k) (2.58)

P̂ i(k) =
2∑
c=1

(
P̂ i,c(k) + [x̂i,c(k)− x̂(k)][x̂i,c(k)− x̂(k)]T

)
mi,c(k) (2.59)
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3. NUMERICAL SIMULATION

3.1 Simulation Overview

Due to the complexities of demonstrating the analytical behavior of extremely

nonlinear and discontinuous state estimators, numerical simulations were used to

demonstrate the effectiveness of the tasking methods. A somewhat abstracted rep-

resentation of potential observational resources are used, along with a set of geosta-

tionary satellites and a low earth orbit maneuvering satellite as tracking targets as

seen in Figure 1.1.

The simulation configuration is based on a general overview of the SBSS program

published by Boeing [3]. Four satellites in 630km altitude sun synchronous orbits

are used as orbital sensors. In this implementation each satellite occupies a different

quarter of the same orbit. The five ground telescopes in the simulation are approx-

imately located at longitudes corresponding the east(−75◦) and west(−120◦) coasts

of the United States, Greenland(−45◦), northern Europe(0◦), and Hawaii(−155◦).

However, the sensor positions are approximated at the equator. The ground sensors

are modeled as capable of viewing a 30 deg cone with a range of 40000km and able

to track a single target. The orbital sensors are able to view in all directions with a

range of 80000km and able to track a single target. These details of sensor capabilities

are heavily abstracted as details on modern, real world sensor capabilities are often

classified.

The weighting coefficients used during sensor assignment are set somewhat arbi-

trarily and could be refined in future work. The weighting coefficients used in the

covariance and probability based tasking methods using Equations 2.26 and 2.27 can

be seen in Table 3.1.
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Symbol Value

α 0.5

β 1

Υ 1

Table 3.1. Tasking coefficients

The ten target GEO satellites in the example configuration are located at 20◦

intervals from 20◦ longitude to −160◦, where ground sensors have the opportunity to

view them. These GEO satellites are numbered 1 through 10. The initial states of

the satellites are set at zero in their LHLV reference frame. However, to keep all the

satellites from maneuvering at once due to roughly similar drift rates, every satellite

after the first is altered to have an initial condition two hours into its simulation later

than the previous one.

Additionally, one LEO satellite numbered Satellite 11 is initially in an orbit of

eccentricity 0.17 with a semilatus rectum of 8371km, performing a transfer with

maneuvers at times 703800s and 708100s with a magnitude 200m
s
along and against

the satellite direction of motion respectively.

A sampling period of 10 seconds is used as an approximation of the sensor networks

observation interval. The sensor covariance of measurement noise Rj is set based on

other work with similar sensor dynamics [1] [7]. All sensors have the same error

and dynamics as an approximation of a unified sensor network. A more detailed

simulation in potential future work could make use of sensor characteristics that

represent specific installations.

Rj =


σ2
ρ 0 0

0 σ2
ψ 0

0 0 σ2
θ

 =


10−2km2 0 0

0 16× 10−12rad2 0

0 0 16× 10−12rad2

 (3.1)

The mode dependent state error covariance is the primary difference in the model-

ing between the two different state estimators and is derived from other work [7] but
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increased in magnitude. Finding the correct tasking method coefficients and adjust-

ments to work with a smaller state error covariance matrix would require additional

research.

Q1 =



102km2 0 0 0 0 0

0 102km2 0 0 0 0

0 0 102km2 0 0 0

0 0 0 (0.1km
s
)2 0 0

0 0 0 0 (0.1km
s
)2 0

0 0 0 0 0 (0.1km
s
)2


(3.2)

The covariance for the maneuvering model is much higher in order to model the

greater state uncertainty around the point of maneuver.

Q2 = 100Q1 (3.3)

3.2 Orbital Mechanics Modeling

A simplified orbital mechanics model is used for both the target satellites and

LEO observation platforms [16] [17] [15]. Outside of the standard two body orbital

dynamics, the model accounts for third body perturbations of the sun and moon, the

non-spherical dynamics of the earth, resistance due to the earth’s atmosphere, and

solar radiation pressure [4]. A more elaborate and accurate simulation or real world

satellite state data could be a potential improvement for future work in verifying

tracking method validity.

The orbital simulations is run using continuous time system acceleration dynamics

in MATLAB. Thus, only the acceleration components for each perturbation needs to

be calculated using the current state variables and certain earth orbit parameters [15].

The satellite specific parameters such as Asat CDsat or msat are very rough estimates

derived from the LaoSat-1 [18].
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Symbol Parameter Value Units

ωe Earth’s Rotation Rate 7.292× 10−5 rad
s

µ Earth’s Gravitational Parameter 3.986× 1014 m3

s2

µM Moon’s Gravitational Parameter 4.903× 1012 m3

s2

µS Sun’s Gravitational Parameter 1.327× 1020 m3

s2

Re Earth’s Average Equatorial Radius 6.378× 106 m

rM Average Earth-Moon Distance 3.850× 108 m

rS Average Earth-Sun Distance 1.496× 1011 m

J2 Earth’s Oblateness Parameter 1.0826× 10−3 −

ha0 Atmospheric Cutoff Altitude 7× 105 m

Ha Atmospheric Scale Height 8.866× 104 m

ρ0 Cutoff Density 3.164× 10−13 kg
m3

Ls Sun Luminosity 3.8395× 1026 W

c Speed of Light 2.998× 108 m
s

Asat Satellite Area 28.4 m2

CDsat Satellite Drag Coefficient 1 −

msat Satellite Mass 4200 kg

Table 3.2. Satellite simulation parameters

The general acceleration dynamics of a satellite fs(x, t) are the sum of the various

separate dynamics components. The current state x is composed of the position r

and velocity v components where the magnitude of those two vectors are r and v

respectively.

fs(x, t) = a2body(x, t) + a3B(x, t) + aJ2(x, t) + adrag(x, t) + arad(x, t) (3.4)

The two body gravitational model makes use of the gravitational attraction be-

tween the satellite and the earth and represents the primary acceleration in the orbit.
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a2body(x, t) = − µ

r3
r (3.5)

The third body gravitational perturbations from the sun and the moon are mod-

eled using the position of those bodies approximated as circular orbits in the ECI

frame with a radius of the average distance of those bodies from the earth. This sim-

ple time based calculation generates a vector of the bodies’ position in the ECI frame

of r3B. The acceleration for the body can be calculated as the difference between the

acceleration of the satellite and the acceleration of the earth due to the body.

a3B(x, t) = −µ3B

(
r − r3B

||r − r3B||3
+

r3B

r33B

)
(3.6)

This third body acceleration is calculated for both the sun and moon, neglecting

all other gravitational bodies.

The non-spherical dynamics of the earth are primarily dependent on the current

position of the satellite relative to the earth.

aJ2(x, t) = −3µR2
eJ2

2r5


(1− 5( z

r
)2)x

(1− 5( z
r
)2)y

(3− 5( z
r
)2)z

 (3.7)

Atmospheric drag is not a substantial factor for GEO satellites due to their posi-

tion in high earth orbit. However drag needs to be included for the sake of complete-

ness and for modeling the LEO satellite. This calculation is also the least accurate

component of the model due to the extremely rough estimates of the satellite pa-

rameters and very simplistic atmospheric density and aerodynamic models. Both the
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atmospheric models and the solar radiation models assume a constant satellite profile

as an approximation.

B =
CDsatAsat
msat

(3.8)

ρ(r) = ρ0 exp

(
ha0 − r

Ha

)
(3.9)

vrel = v − cross([0, 0, ωe]
T , r) (3.10)

adrag(x, t) = −1

2
ρ(r)Bvrelvrel (3.11)

The solar pressure of the sun’s radiation is simulated using a similarly simplified

model. The third body position vector r3B for the sun rS is used. The solar pressure

model is another calculation where a more advanced satellite and disturbance model

would result in more accurate simulations.

Psat =
Asat
msat

; (3.12)

psrp =
Ls

4cπ||(r − rS)||2
(3.13)

arad(x, t) = psrpPsat
(r − rS)

||(r − rS)||
(3.14)

3.3 Maneuver Modeling

To model the maneuvering behavior of GEO station keeping satellites, a simple two

burn correction method is used. A simplified version of the linearized state transition

model, along with a propagated state estimate, can be utilized to determine the state

after the assigned maneuver duration. The propagated state δrprop(t) can then be

used along with the linearized dynamics and numerical minimization techniques, to

determine the appropriate velocity change vector needed to return to the desired

system state.

Converting to the LHLV reference frame results in orbital dynamics that can be

linearized to a closed form solution Ψ(τ) for a given maneuver time frame τ , which is

from the current time t to the time of the maneuver tn, and the rotation rate of the
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earth ωe. This transition matrix is calculated in terms of the change in position δr

due to impulsive velocity ∆V changes and is derived from Hills equations [19].

δr(t) = δrprop(t) +
2∑

n=1

Ψ(t− tn)∆VnHeaviside(t− tn) (3.15)

Ψ(τ) =


sin(ωe)τ
ωe

2
ωe
(1− cos(ωeτ)) 0

− 2
ωe
(1− cos(ωeτ))

4 sin(ωeτ)−3ωeτ
ωe

0

0 0 sin(ωeτ)
ωe

 (3.16)

The appropriate ∆V value is then found by solving a nonlinear minimization

problem with a cost function J to minimize fuel consumption.

J =
2∑

n=1

∆V T
n ∆Vn (3.17)

This minimization is subject to a constraint such that the position at the end of the

maneuver period is within a set range δrmax of the target point with the distance

from the target point being δr(t).

δr(t) < δrmax (3.18)

The calculated maneuver is triggered whenever the satellite moves outside of the

allowable bounds of 115km in approximated latitude and longitude error from the

target point. The maneuver attempts to get the satellite within δrmax = 5km in a

time period of 3 days and a typical 9 day period after simulation initialization can be

seen in Figure 3.1.

This above station keeping method does not produce good long term results. How-

ever, alternative methods [6] [15] [20] demonstrated difficulties during implementation

and were discarded as options because they were problematic to implement. But the

station keeping serves as an adequate example of a maneuvering GEO satellite to

demonstrate the maneuver probability dependent tracking that is the focus of this

paper.



30

Y Axis Position (km)
0 20 40 60 80 100 120

Z
 A

xi
s 

P
os

iti
on

 (
km

)

-15

-10

-5

0

5

10

15

Figure 3.1. Station keeping maneuver of GEO Satellite 2 over the
course of 9 days in LHLV reference frame

To represent maneuvering a LEO satellite, a hand tuned maneuver between two

elliptical orbits is used. This maneuver has a much higher impulse than station keep-

ing maneuvers and serves as the primary illustration of tracking error of maneuvering

satellites. The behavior of the LEO satellite during the maneuver can be seen in

Figure 3.2.

3.4 State Probability

The LEO and GEO satellites perform very different types of maneuvers, but all of

the maneuvering conditions can be approximated as trigger bounds where a maneuver

is likely to occur. As discussed in section 2.5, probability bounds are represented as

a probability distribution along the relevant state axis. The GEO case, bounds have

a variance of ΣGEO = 4km2 located at µb,GEO = 115km in the east-west and north-

south directions. In the LEO case, the bound is located at a zero point µb,LEO = 0km
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Figure 3.2. Orbital transfer maneuver of LEO Satellite 11 in the ECF
frame during the time period between 700000s− 730000s

on the EW axis and has a variance of ΣLEO = (1000km)2 and a correction factor such

that the peak value of γi,1,2(k) is 0.7.

γi,1,2(k) =

∫
R
Nb(Lg(x),µ,Σ)Np(x, x̂i,1(k − 1), P̂ i,1(k − 1))dx (3.19)

γi,2,2(k) =

∫
R
Nb(Lg(x),µ,Σ)Np(x, x̂i,2(k − 1), P̂ i,2(k − 1))dx (3.20)

γi,1,2(k) = 1− γi,1,1(k) (3.21)

γi,2,2(k) = 1− γi,2,1(k) (3.22)

To prevent irregular numerical errors from occurring, the transition probability is

restricted between 0.01 and 0.99. The probability of the LEO case is only calculated

if the eccentricity of the orbit is greater than 0.075. These restrictions could be

minimized with additional fine tuning of the probability models.
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3.5 Extended Kalman Filter Details

To attain the forms described in section 2.7, the GEO and LEO satellites need to

be tracked using different nonlinear dynamics models due to differences in reference

frame. Additionally, discrete models need to be used with the EKF [7]. The initial

state estimate used is the true state of the satellite, as the acquisition and state initial-

ization problems [10] are beyond the scope of this paper. The initial state estimate

error covariance was set to be the state error covariance for the non-maneuvering

mode.

Symbol Parameter Value Units

Rc Target Radius 4.2164× 104 km

µ Earth’s Gravitational Parameter 3.986× 105 km3

s2

∆t Measurement Sample Period 10 s

Table 3.3. IMM EKF parameters

To account for the motion of the GEO satellite in the LHLV reference frame, the

mean motion n has to be included in the equations. The state for a satellite i is used

in the following equations, so the specific satellite is not identified.
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n =

(
µ

r(k)3

)0.5

(3.23)

δvx = 2nvy(k) + n2x(k)− µ(Rc + x(k))

((Rc + x(k))2 + y(k)2 + z(k)2)0.5
(3.24)

δvy = −2nvy(k) + n2x(k)− µy(k)

((Rc + x(k))2 + y(k)2 + z(k)2)0.5
(3.25)

δvz = − µz(k)

((Rc + x(k))2 + y(k)2 + z(k)2)0.5
(3.26)

x(k + 1) =



x(k + 1)

y(k + 1)

z(k + 1)

vx(k + 1)

vy(k + 1)

vz(k + 1)


=



x(k) + ∆tvx(k)

y(k) + ∆tvy(k)

z(k) + ∆tvz(k)

vx(k) + ∆tδvx

vy(k) + ∆tδvy

vz(k) + ∆tδvz


+w(k) +

 0

∆V

 (3.27)

The LEO satellite tracking makes use of two body orbital mechanics with less

complications due to its being tracked in the ECI frame.

nh = − µ

r(k)3
(3.28)

x(k + 1) =



x(k + 1)

y(k + 1)

z(k + 1)

vx(k + 1)

vy(k + 1)

vz(k + 1)


=



x(k) + ∆tvx(k)

y(k) + ∆tvy(k)

z(k) + ∆tvz(k)

vx(k) + ∆tnhx(k)

vy(k) + ∆tnhy(k)

vz(k) + ∆tnhz(k)


+w(k) +

 0

∆V

 (3.29)

There are a few ad-hoc modifications made to the EKF method to mitigate numer-

ical issues that cropped up when observing satellites that had been unobserved for an

extended period. This sudden error correction was primarily an issue only with the

purely Fisher information based method and certain rare cases with other methods.

The first modification to the EKF method mirrors the upper triangular component



34

of the updated covariance matrix of the state estimate to ensure symmetry. If any

of the eigenvalues of the covariance matrix are negative due to numerical errors, an

identity matrix multiplied by a correction term equal to the highest magnitude of the

negative eigenvalues is added to the covariance.

3.6 Simulation Results

Multiple simulations of tracking the same state data are performed with random

noise to get a reasonable example of the average behavior of the tracking methods.

A 3× 104s interval from 700000s to 730000s into the orbital simulation that contains

multiple satellite maneuvers is used to illustrate tasking method effectiveness. Overall,

six maneuvers are performed at times listed in Table 3.4 within the tasking period.

Time (s) Sat#

703800 11

708100 11

719570 3

720750 1

721550 10

725350 2

Table 3.4. Satellite maneuver times

The purely Fisher information based tasking seen in Equation 2.22 demonstrated,

as expected, substantial errors in Figure 3.3 due to extended periods without obser-

vations of certain satellites. Purely Fisher information based tasking is not a useful

demonstration of tasking method effectiveness.
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Figure 3.3. RMS position error for all satellites averaged over 100
simulations using only Fisher information based tasking

3.6.1 Single EKF Tasking

Using the method seen in Equation 2.26, which included the current state estimate

covariance [1], the long periods without observation are not a problem and effective

tasking results can be seen. A single EKF based tracking and tasking method used in

previous research [1] serves as a baseline comparison for the performance of tracking

in a system with dynamic sensor allocation. This Fisher information and covariance

method has previously demonstrated accurate tracking of multiple non-maneuvering

satellites and the errors it demonstrates when used in a maneuvering system illustrate

the kind of problems the probabilistic IMM EKF tracking methods are designed to

minimize.

For small maneuvers, such as satellite station keeping, the single EKF method

demonstrates good tracking as in Figure 3.4 and 3.5. However, larger maneuvers

such as the LEO satellite’s transfer, has significant velocity error that takes upwards

of 300s to be corrected (Figure 3.9). Position error during maneuvers (Figure 3.7) is
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Figure 3.4. RMS position error for all satellites averaged over 100 sim-
ulations using Fisher information and covariance based sensor tasking
with a single EKF estimator

less substantial, but that is more an artifact of this method’s tendency to prioritize

the closer LEO satellites due to their much higher Fisher information gain. When a

satellite is being continuously observed, position error is reasonable after maneuvers.

But if the tasking method does not ensure continuous measurements, substantial

errors can result, as can be seen with the Fisher and covariance based IMM EKF

tasking method. The satellite tasking demonstrates oscillatory behavior (Figure 3.6)

where the number of observations alternates between a higher and lower number of

sensor observations at each time step. These oscillations are a result of the covariance

behavior, as steps with less observations result in covariance spikes that are mitigated

by performing more observations of that satellite in the next step.

One trend that can be observed is the LEO satellite non-maneuvering velocity

error in Figure 3.8 is much higher than the average error of the GEO satellites.

The larger LEO velocity error is due to the higher effect of atmospheric drag, the

higher relative velocities, and the fact that the satellite can be observed by more
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Figure 3.5. RMS velocity error for all satellites’ except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking with a single EKF estimator

sensors on one side of the planet due to all ground-based sensors being located in

the western hemisphere. This discrepancy in sensor availability is the cause of the

periodic oscillation of the velocity error. The LEO satellite has a lower degree of

position error as the sensor angle measurement error has a diminished effect on the

corresponding position estimate.
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Figure 3.6. Number of sensor observations of a given satellite averaged
over 100 simulations using Fisher information and covariance based
sensor tasking with a single EKF estimator

Time (s) #105

7 7.05 7.1 7.15 7.2 7.25 7.3

R
M

S
 P

os
iti

on
 E

rr
or

 (
m

)

0

10

20

30

40

50

60

70

Figure 3.7. Satellite 11 RMS position error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
with a single EKF estimator
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Figure 3.8. Satellite 11 RMS velocity error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
with a single EKF estimator
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Figure 3.9. Satellite 11 RMS velocity error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
with a single EKF estimator during first LEO maneuver
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3.6.2 Fisher and Covariance Tasking

An IMM EKF tracking method can be used to reduce the error of the satellites’

state estimate during maneuvers in the case of continuously observed satellites [7].

But when the tracking has to account for periods without observation or with multiple

satellite observations, certain issues with the satellite state estimate covariance matrix

become apparent. Because of the higher state error of the maneuvering mode EKF

a satellite’s state estimate covariance is much higher near maneuvering boundaries

and the satellite is appropriately more highly prioritized by the tasking method. This

increase in covariance is most pronounced after a satellite has not been observed for an

iteration as the error covariance directly after multiple measurements is low (Figures

3.18 and 3.17). These oscillations in state estimate covariance have the potential to

leave satellites unobserved for several time steps after a significant maneuver as can be

seen in Figure 3.12. Infrequent observations after maneuvers could also easily occur

with the single EKF method if the satellites are in very different orbital positions

relative to the available sensors. Any strong bias towards certain satellites could

result in steps with no observations, even soon after a maneuver.

The position error results in Figure 3.10 demonstrate a wider range of errors

than the single EKF method. Several satellites have lower error than the group

average. This difference in error is primarily due to the probability of maneuvering

affecting the covariance of the satellite state resulting more observations for certain

satellites. The position error of the LEO satellite during the first maneuver (Figure

3.15) demonstrates substantial error spikes due to brief periods without observation

before the velocity error can be corrected, demonstrating a substantial issue with the

tracking method.

The spike in velocity error for Satellite 11 seen in Figure 3.16 during the first

maneuver demonstrates a reduction in the time required to return to the normal

levels of error. In this case the Satellite 11 velocity estimate only takes around 160s

instead of 300s to return to normal. This improvement in velocity tracking is offset
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Figure 3.10. RMS position error for all satellites except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking

by spikes in position error due to the periods without observations. To improve the

tracking of maneuvering satellites, the probability of maneuvering can be included in

the information gain term, as was addressed earlier in Equation 2.27.
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Figure 3.11. RMS velocity error for all satellites except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking
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Figure 3.12. Number of sensor observations of a given satellite av-
eraged over 100 simulations using Fisher information and covariance
based sensor tasking
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Figure 3.13. Satellite 11 RMS position error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
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Figure 3.14. Satellite 11 RMS velocity error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
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Figure 3.15. Satellite 11 RMS position error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
around the first LEO maneuver
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Figure 3.16. Satellite 11 RMS velocity error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
around the first LEO maneuver
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Figure 3.17. Average trace of the covariance matrix for Satellite 11
over 100 simulations using Fisher information and covariance based
sensor tasking
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Figure 3.18. Average trace of the covariance matrix for Satellite 2
over 100 simulations using Fisher information and covariance based
sensor tasking
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3.6.3 Fisher, Probability and Covariance Tasking

To improve the behavior of tracking maneuvering satellites, the method proposed

by this paper makes use of a probability component in the information gain as seen

in Equation 2.27. Because the probability of maneuvering is just an additional gain

applied to the tasking optimization gain, more satellite observations are allocated to

satellites near maneuvering states, reducing the error around maneuvering by making

it more likely the satellite will be continuously observed while the velocity error is

being corrected after the maneuver.

This probability dependent tasking method demonstrates improved velocity er-

ror convergence rates. In Figure 3.23, error convergence time going down to 50s

while avoiding the oscillatory position errors of the other IMM EKF method (Fig-

ures 3.22 and 3.24). These results appear very promising as it is an improvement in

the maneuver tracking behavior while maintaining similar non-maneuvering tracking

performance.

In Figure 3.21 a much more consistent spread of potentially maneuvering satellite

observations than previous methods (Figure 3.12) can be seen. However, the spikes

in velocity error of Satellite 10 (Figure 3.20) are the result of the tasking method

allocating the non-maneuvering satellites as a lower priority. The constants used in

Table 3.1 could be fine tuned to specific applications, minimizing these kinds of minor

errors and could be the subject of future work.
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Figure 3.19. RMS position error for all satellites averaged over
100 simulations using probability, Fisher information, and covariance
based sensor tasking
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Figure 3.20. RMS velocity error for all satellites except Satellite 11
averaged over 100 simulations using probability, Fisher information,
and covariance based sensor tasking
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Figure 3.21. Number of sensor observations on a given satellite aver-
aged over 100 simulations using probability, Fisher information, and
covariance based sensor tasking
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Figure 3.22. Satellite 11 RMS position error averaged over 100 sim-
ulations using probability, Fisher information, and covariance based
sensor tasking
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Figure 3.23. Satellite 11 RMS velocity error averaged over 100 sim-
ulations using probability, Fisher information, and covariance based
sensor tasking
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Figure 3.24. RMS position error for all satellites averaged over
100 simulations using probability, Fisher information, and covariance
based sensor tasking near the first LEO maneuver
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Figure 3.25. Satellite 11 RMS velocity error averaged over 100 sim-
ulations using probability, Fisher information, and covariance based
sensor tasking near the first LEO maneuver
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Figure 3.26. Average probability of the maneuvering mode for Satel-
lite 2 over 100 simulations using probability, Fisher information, and
covariance based sensor tasking
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Figure 3.27. Trace of estimated state covariance for Satellite 11 aver-
aged over 100 simulations using probability, Fisher information, and
covariance based sensor tasking
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Figure 3.28. Average trace of estimated state covariance for Satel-
lite 2 over 100 simulations using probability, Fisher information, and
covariance based sensor tasking
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3.6.4 Method Comparisons

Given the high variability of error with multiple satellites being tracked it is some-

what difficult to clearly ascertain the relative performance of different satellite tasking

and tracking methods. The average of the RMS position and velocity errors across

all satellites is calculated to compare the tasking performance between the different

methods. The specific tasking behavior of each satellite can be seen in Appendix A.

Time (s) #105

7 7.05 7.1 7.15 7.2 7.25 7.3

A
ve

ra
ge

 R
M

S
 P

os
iti

on
 E

rr
or

 (
m

)

80

100

120

140

160

180

200

Fisher and Covariance-Single Model EKF
Fisher and Covariance
Fisher, Covariance, and Probability

Figure 3.29. Average of all satellites’ position error over 100 simula-
tions for all tasking methods

As can be seen in Figure 3.29, at time periods with no maneuvers, the perfor-

mance of all three methods is roughly similar with the single EKF method exhibiting

a greater range of errors and a slightly higher mean. The largest obvious difference

between the methods is the substantial position error in the IMM EKF method with-

out the direct probability component, previously seen in Figure 3.15. This spike of

position error is not present with other methods and are the result of lack of observa-

tion directly after a maneuver as can be seen in Figure 3.31. The visible spike in this
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metric is heavily weighted towards the error of Satellite 11 while the average value is

heavily dependent on the less accurate tracking of the GEO satellites.
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Figure 3.30. Average of all satellites’ velocity error over 100 simula-
tions for all tasking methods

The velocity error averages in Figure 3.30 also demonstrates spikes due to the

Satellite 11 maneuvers. The overall average of the velocity error appears to be domi-

nated by the Satellite 11 error. It appears that outside of LEO maneuvers, the single

EKF model performs slightly better than the IMM methods but that is a result of

multiple potentially maneuvering satellites being present in the later section of the

time period simulated, see for example Figure 3.26. As the potentially maneuver-

ing satellites are observed more closely at the expense of other satellites, there is a

slight increase in average velocity error as these maneuvers are not substantial enough

to seriously disrupt the single EKF satellite tracking. The improvement in position

error is of a comparable degree to the increase in velocity error during this period

(Table 3.5). These very small loses could likely be reduced by fine tuning the satellite

probability models and tasking coefficients with different priorities based on the satel-
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Method Error Metric Value Standard

Deviation

Single EKF Mean Position Error 108.7346m 4.8029m

Max Position Error 199.2855m −

Mean Velocity Error 2.3908m
s

0.5420m
s

Max Velocity Error 119.1369m
s

−

IMM Fisher and Covariance Mean Position Error 107.4954m 4.11049m

Max Position Error 1059.6797m −

Mean Velocity Error 2.4291m
s

0.3898m
s

Max Velocity Error 110.2265m
s

−

IMM Fisher, Covariance, Mean Position Error 107.6523m 3.4713m

and Probability Max Position Error 204.7985m −

Mean Velocity Error 2.41675m
s

0.2969m
s

Max Velocity Error 108.5713m
s

−

Table 3.5. Method error comparison from 700500s to 730000s
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Figure 3.31. Average number of observations of Satellite 11 over 100
simulations for all tasking methods

lite type. Such modifications could be the subject of future work to bring velocity

tracking results closer to the single EKF method while still allowing for improved

maneuver tracking behavior. Over the full simulation period, the results of the single

and IMM EKF methods are comparable, which is expected as improvements from

the IMM method are primarily seen around maneuvers.

In an attempt to better illustrate the differences between the probability based and

covariance based tracking methods, a shorter time frame around the large Satellite

11 maneuvers can be seen in Figure 3.32 and Figure 3.33 for the first maneuver, and

in Figure 3.35 and Figure 3.36 for the second maneuver. The mean and max errors

for these time periods can also be found in Table 3.6 and Table 3.7, respectively.

The large spikes in the Fisher and covariance IMM EKF method position error are

the primary issue that can be detected near the first maneuver. The error is the

result of the oscillatory tasking behavior that can be seen in Figure 3.34 and as

without the additional probability component in tasking the error there are steps
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where no observations which causes the large position errors to occur. The position

error performance near maneuvers is in favor of the IMM EKF method that directly

incorporates probability.

Near maneuvers, the velocity tracking is best done with the method directly em-

ploying probability, while other methods demonstrate worse performance. The im-

provement in velocity error settling time with the IMM methods is quite substantial,

potentially reducing the settling time by a factor of around six (Figure 3.36). The

period limited averages of position and velocity error seen in Table Table 3.6 and

Table 3.7 reflect these improvements with the greatest difference in error is seen in

the method directly incorporating probability.

One performance metric that is lost when converting to the average error across

all satellites is the maximums errors of each satellite that can be seen in Figures 3.4,

3.10, and 3.19. The maximum position and velocity errors seen for any particular

satellite appear to be relatively consistent between different tasking methods with

some potential reductions in the number of error spikes using the IMM EKF methods.

As the many maximums in position error do not correspond to satellite maneuvers,

other methods than maneuver prediction will need to be applied to minimize these

errors.

3.7 Discussion

The baseline performance of velocity and position error away from large maneu-

vers is comparable to what is seen in other work using similar sensor error dynamics

observing geostationary satellites [7] [12]. Because the error results are very heavily

dependent on particular satellite configurations, it is difficult to make direct compar-

isons to the results of other research [1]. The average error values seen in this paper

is slightly worse than single sensor single target results, but that is to be expected

in sensor limited systems with higher state error covariance values. The differences

between the IMM EKF methods and the single EKF method are a better indicator
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Method Error Metric Value Standard

Deviation

Single EKF Mean Position Error 106.8932m 3.3337m

Max Position Error 147.1400m −

Mean Velocity Error 2.7291m
s

1.7837m
s

Max Velocity Error 109.2691m
s

−

IMM Fisher and Covariance Mean Position Error 106.8130m 12.5088m

Max Position Error 1059.6797m −

Mean Velocity Error 2.5414m
s

1.6706m
s

Max Velocity Error 110.2265m
s

−

IMM Fisher, Covariance, Mean Position Error 105.8925m 2.2275m

and Probability Max Position Error 160.2447m −

Mean Velocity Error 2.1986m
s

0.93674m
s

Max Velocity Error 109.2691m
s

−

Table 3.6. Method error comparison from 703500s to 704500s
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Method Error Metric Value Standard

Deviation

Single EKF Mean Position Error 108.8932m 4.2465m

Max Position Error 190.4877m −

Mean Velocity Error 3.3492m
s

1.9087m
s

Max Velocity Error 119.1369m
s

−

IMM Fisher and Covariance Mean Position Error 104.7563m 3.5236m

Max Position Error 193.2763m −

Mean Velocity Error 2.6795m
s

0.9298m
s

Max Velocity Error 108.5308m
s

−

IMM Fisher, Covariance, Mean Position Error 104.9494m 2.4846m

and Probability Max Position Error 181.4694m −

Mean Velocity Error 2.6772m
s

0.9381m
s

Max Velocity Error 108.5713m
s

−

Table 3.7. Method error comparison from 707800s to 708800s
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Figure 3.32. Average of all satellites’ position error over 100 simula-
tions for all tasking methods near the first LEO maneuver

of performance improvements. The improvements in average position error near ma-

neuvers can result in improvements on the order of a tenth of the non-maneuvering

error as seen in Figure 3.35 which is an improvement in line with other notable devel-

opments [1]. With alternative satellite simulation configurations the improvements

from IMM EKF tracking can be even greater as can be seen in Appendix B.

The improvement in velocity error settling time after substantial maneuvers from

around five minutes to less than one (Figure 3.33) is significant on the scale of the

continuous observation times used in arc tracking methods that often continuously

observe for five or more minutes [12]. This faster tracking performance would poten-

tially allow for the allocation of shorter observation times, increasing the efficiency

of tasking methods. Refinements in the tasking model in future work could also take

this into account by adjusting the probability of maneuvering model to have lower

boundary covariance.
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Figure 3.33. Average of all satellites’ velocity error over 100 simula-
tions for all tasking methods near the first LEO maneuver

The mitigation of the massive position error spikes seen in Figure 3.15 is a major

improvement in the probability based tasking method proposed by this paper. Any

tasking method that does not include maneuver prediction or detection methodolo-

gies runs the risk of this type of error, as there are no tasking components to ensure

that satellites are continuously observed around a maneuver. The improved velocity

error settling time from IMM EKF methods helps some with this issue but without

continuous observations the improvements are reduced as can be seen in Figure 3.33.

Additionally in Figure 3.34 it is apparent that the improved performance in large ma-

neuver tracking occurs with less observations than the single EKF method indicating

a substantial increase in tracking method performance. The second LEO maneuver

avoids this same oscillatory behavior due to the satellite being continuously observed

by a ground-based sensor as can be seen in Appendix A. The probability component

in the information gain allows the simple linear optimization techniques to achieve

this goal with a minimum of other modifications while maintaining similar perfor-
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Figure 3.34. Average number of observations of Satellite 11 over 100
simulations for all tasking methods near the first LEO maneuver

mance away from maneuvers. Potential improvements in the tasking method could

use requirements that satellites above a certain maneuvering probability thresholds

are guaranteed continuous observations if possible. This requirement based tasking

modification could be a potential future research subject but would require additional

research into conflicting requirements management.

In future work the exact values of the tasking coefficients seen in Table 3.1, the

error values in the EKF, and in the maneuver probability model dynamics may need

to be tuned to function well with specific tasking configurations, potentially with

tasking coefficients tuned to each satellite type. Greater computational resources

would likely be necessary to develop general rules for determining the tasking method

coefficient values, as a wide variety of orbital scenarios and computationally intensive

tracking simulations would need to be run. An initial attempt to generate better

results through satellite specific changes can be seen in Appendix B.
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Figure 3.35. Average of all satellites’ position error over 100 simula-
tions for all tasking methods near the second LEO maneuver

The results of the implementation of the IMM EKF tracking method with prob-

ability dependent tasking demonstrates performance equivalent to single EKF meth-

ods away from substantial maneuvers. More importantly, substantial improvements

in tracking during periods with major maneuvers are also achieved while mitigating

potential major tracking errors that can be the result of sensor limited systems. The

improvements in sensor tasking to track maneuvering satellites discussed in this paper

seem promising for future developments in the area of SSA.
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Figure 3.36. Average of all satellites’ velocity error over 100 simula-
tions for all tasking methods near the second LEO maneuver
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Figure 3.37. Average number of observations of Satellite 11 over 100
simulations for all tasking methods the second LEO maneuver
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4. SUMMARY

The tasking of linked sensors to track multiple satellites in an efficient manner is an

area of research that has seen substantial recent developments. The use of interacting

multiple model extended Kalman filter tracking in Fisher information gain and co-

variance based satellite tasking techniques has the potential to demonstrate improved

satellite tracking performance. Probabilistic maneuver prediction allows for potential

satellite maneuvers to be incorporated into the tracking and tasking behavior.

The interacting multiple model extended Kalman filter makes use of the an arbi-

trary number of range and angle sensor readings at every time step to best update

both the maneuvering and non-maneuvering mode state estimates. The two modes

differ in their expected state error covariance, with the maneuvering mode having a

much higher value. To properly combine these modes to attain the best state esti-

mates, the probability of moving from one mode to the other based on the current

estimated state and maneuver trigger boundaries is employed.

The sensor tasking method makes use of the current estimated state and the

sensor positions to determine a sensor information gain for each sensor-target pair.

This information gain is based on a combination of the Fisher information, current

covariance of the estimate, and maneuver probability. These gains can be used as

part of a linear programming optimization to determine which combination of sensor

observations improves the overall state estimate of all satellites at any give observation

step. The direct incorporation of probability into the tasking method, as well as an

evaluation of the effects of multiple sensor multiple target systems using interacting

multiple model tracking of maneuvering satellites, is the primary focus of this research.

To illustrate the effectiveness of these methods, numerical simulations of a sample

multiple satellite configuration are used. The results of these simulations demonstrate

that even when tracking more targets than can be targeted by available sensors, the
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multiple model method can track maneuvering satellites better than a single model

method. Maneuver probability has to be included in the information gain directly to

compensate for high covariance fluctuations inherent in the multiple model method,

or else serious tracking errors can occur after substantial maneuvers.

Potential future improvements of the simulation aspect of this research could be

attained through better maneuvering satellite data. Improved satellite data could

be acquired through the use of more advanced simulations or actual processed satel-

lite tracking data. Long term tracking behavior analysis using the tracking methods

described in this paper could be properly evaluated. A significant step towards re-

fining these results could result from a deeper analysis into which values of tracking

constants and maneuvering probability models result in better performance. Overall,

the tasking and state estimation techniques used in this research performed well in

simulation and demonstrated that interacting multiple model extended Kalman filter

methods can result in substantial improvements in tracking multiple maneuvering

satellites using limited sensor resources.
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A. Sensor Specific Tasking Comparison

To better illustrate the differences between tasking methods a set of graphs showing

the target satellites of specific sensors along with the satellites visible to that sensor

are used. The time around the first and second LEO maneuver as seen in Section

3.6 are shown as trends over shorter time periods are fairly consistent across the

whole time period. The sensors are numbered such that Sensors 1 through 4 are

the space-based sensors located in each quadrant of the same sun synchronous orbit.

Sensors 5 through 9 are the ground-based sensors located at longitudes of 0◦W, 45◦W,

75◦W,120◦W, 155◦W respectively.

Each tasking method’s selected satellite to observe at each time step is represented

as a symbol in the tasking matrix. Due to uncertainty in the system there is some

variation between simulation runs of which satellite is targeted so the maximum

likelihood tasking solution is shown. The black sections in the figures represents the

time periods where the indicated target satellites are not visible to a particular sensor.

Changes in visibility are primarily due to the LEO target satellites and the orbital

sensors movement around the earth causing certain satellites to become obscured.

The ground based sensors have a much more consistent set of visible satellites in

terms of seeing a certain set of GEO satellites at all times with intermittent views of

the LEO target Satellite 11.
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A.1 First LEO Satellite Maneuver
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Figure A.1. The target allocation for Sensor 1 during the first LEO
satellite maneuver
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Figure A.2. The target allocation for Sensor 2 during the first LEO
satellite maneuver
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Figure A.3. The target allocation for Sensor 3 during the first LEO
satellite maneuver
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Figure A.4. The target allocation for Sensor 4 during the first LEO
satellite maneuver
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Figure A.5. The target allocation for Sensor 5 during the first LEO
satellite maneuver
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Figure A.6. The target allocation for Sensor 6 during the first LEO
satellite maneuver
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Figure A.7. The target allocation for Sensor 7 during the first LEO
satellite maneuver
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Figure A.8. The target allocation for Sensor 8 during the first LEO
satellite maneuver
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Figure A.9. The target allocation for Sensor 9 during the first LEO
satellite maneuver
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A.2 Second LEO Satellite Maneuver

Satellite 11 is briefly visible to a ground-based sensor as can be seen in Figure

A.15 due to the relatively low field of view of the sensor and the high relative speed

of the LEO satellite. This period of visibility is the reason why the second Satellite

11 maneuver does not exhibit the same oscillatory tracking behavior as the first

maneuver. The LEO satellite is highly prioritized by the ground-based sensors due to

the very high Fisher information gain of that observation due to the close proximity

of the sensor and target.
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Figure A.10. The target allocation for Sensor 1 during the second
LEO satellite maneuver
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Figure A.11. The target allocation for Sensor 2 during the second
LEO satellite maneuver
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Figure A.12. The target allocation for Sensor 3 during the second
LEO satellite maneuver
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Figure A.13. The target allocation for Sensor 4 during the second
LEO satellite maneuver
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Figure A.14. The target allocation for Sensor 5 during the second
LEO satellite maneuver
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Figure A.15. The target allocation for Sensor 6 during the second
LEO satellite maneuver
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Figure A.16. The target allocation for Sensor 7 during the second
LEO satellite maneuver
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Figure A.17. The target allocation for Sensor 8 during the second
LEO satellite maneuver
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Figure A.18. The target allocation for Sensor 9 during the second
LEO satellite maneuver
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A.3 Tasking Discussion

The inclusion of Fisher information gain in the tasking method results in sensors

tending to favor the target satellites that are closest to them, which is most visible

with the single EKF method. This is a desirable behavior as it allows the sensors

to target the satellites they are best able to observe compared to other sensors. The

estimate covariance component ensures that satellites further away area also observed

if more briefly and infrequently. Because of this proximity based priority the LEO

satellite tends to be much more highly prioritized which could be adjusted using

satellite specific tasking method tuning in future work.

The IMM EKF methods puts a much greater tasking emphasis on geostationary

satellites as the satellites near maneuvering point have their higher estimate covari-

ance increased to the point where it is the dominant factor in tasking, reducing the

emphasis on targeting the closest satellites. The inclusion of probability directly in

the tasking method helps ensure more regular tasking of the LEO Satellite 11 during

the first maneuver as it raises the tasking priority to be consistently above that of

Satellite 10 as can be seen in Figure A.2. Effectively this is a design trade-off between

tracking satellites that are expected to change and satellites that are the easiest to

observe for that particular sensor. Based on the particular requirements of the track-

ing and tasking method this shift in target priority can be adjusted to get the desired

results.
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B. ADDITIONAL SIMULATION CONFIGURATION

B.1 Alternate Simulation Configuration

In an attempt to illustrate the need for different coefficients for different satel-

lite types in future research a set of alternative simulations are formulated. The

motivating configuration change is a much lower state error covariance.

Q1 =



102m2 0 0 0 0 0

0 102m2 0 0 0 0

0 0 102m2 0 0 0

0 0 0 (0.1m
s
)2 0 0

0 0 0 0 (0.1m
s
)2 0

0 0 0 0 0 (0.1m
s
)2


(B.1)

To achieve good tracking results with both the single EKF method and the IMM EKF

method certain other modifications need to be made to account for this lower error

covariance. The lower α is due to the decreased value of the tr(P̂ i) values as is also

the reason for the higher β value. The much reduced Υ is due to significant tracking

errors that resulted in over valuing potentially maneuvering satellites. Additionally

the Σ value for the GEO satellites is reduced to 0.75 to generate better tracking

performance in the later part of the simulation period where several GEO satellites

are near maneuvering.

To illustrate the positive effects of altering the tracking and tasking methods

for different satellite types an additional simulation is done with the maneuvering

mode state error covariance of the GEO satellites altered such that it is much lower.

This substantially reduces the extra error seen in the later portions of the simulation
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Symbol Value

α 0.25

β 30

Υ 0.05

Table B.1. Alternative tasking coefficients

without this modification. This alteration only effects the two IMM EKF methods

so the single EKF results are the same.

Q2 = 10Q1 (B.2)

B.1.1 Single EKF Tasking

An obvious difference of these changes with the single EKF method is that there

is a very substantial position error in Figure B.3 around the Satellite 11 maneuvers.

The mitigation of errors of this type is one of the goals of the IMM EKF methods and

that can be better seen with this lower state error covariance simulation. The velocity

error from certain GEO satellite maneuvers is also visible. The overall accuracy is

better but the spikes in error seen are much larger indicating that these results would

not be acceptable when compared to the non maneuvering error.
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Figure B.1. RMS position error for all satellites averaged over 100 sim-
ulations using Fisher information and covariance based sensor tasking
with a single EKF estimator
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Figure B.2. RMS velocity error for all satellites’ except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking with a single EKF estimator
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Figure B.3. Satellite 11 RMS position error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
with a single EKF estimator
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Figure B.4. Satellite 11 RMS velocity error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
with a single EKF estimator
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B.1.2 Fisher and Covariance Tasking

The massive position error seen in Satellite 11 is negated when using the IMM

EKF tracking methods (Figure B.8). The position error spikes (Figure B.5) in other

satellites are still present and the overall error maximums are roughly comparable

to the single EKF. The larger position and velocity errors in the later portions of

the simulation are evident as the result of potentially maneuvering GEO satellites.

The reduction in the large state error during maneuvers of Satellite 11 is the most

significant improvement in this method.
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Figure B.5. RMS position error for all satellites except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking
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Figure B.6. RMS velocity error for all satellites except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking
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Figure B.7. Satellite 11 RMS velocity error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
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Figure B.8. Satellite 11 RMS position error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
around the first LEO maneuver

B.1.3 Fisher and Covariance Tasking with altered GEO maneuvering

mode

With the altered GEO maneuvering mode state error the large errors in the later

portion of the satellite tracking are minimized while maintaining the good tracking

of the Satellite 11 maneuver. There is also a clear reduction in the magnitude of

position error spikes of the GEO satellites compared to both the single EKF and

Fisher and Covariance tasking without the altered GEO maneuvering mode. Because

of this satellite specific variable tuning, tracking improvements for all satellites can

be seen over previous methods.
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Figure B.9. RMS position error for all satellites except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking with an altered GEO maneuvering mode
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Figure B.10. RMS velocity error for all satellites except Satellite 11
averaged over 100 simulations using Fisher information and covariance
based sensor tasking with an altered GEO maneuvering mode
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Figure B.11. Satellite 11 RMS velocity error averaged over 100 simu-
lations using Fisher information and covariance based sensor tasking
with an altered GEO maneuvering mode
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B.1.4 Fisher, Probability and Covariance Tasking

With this particular simulation configuration there is minimal improvement gained

by introducing probability based tasking. While probability could potentially be a

valuable tool in tuning for other satellite configurations finding an effective method

would require future research. Probability elements in the tasking are primarily valu-

able in dealing with issues where continuous observation, which is less important with

the much reduced state error covariances.
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Figure B.12. RMS position error for all satellites averaged over
100 simulations using probability, Fisher information, and covariance
based sensor tasking
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Figure B.13. RMS velocity error for all satellites except Satellite 11
averaged over 100 simulations using probability, Fisher information,
and covariance based sensor tasking
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Figure B.14. Satellite 11 RMS velocity error averaged over 100 sim-
ulations using probability, Fisher information, and covariance based
sensor tasking



92

B.1.5 Fisher, Probability and Covariance Tasking with altered GEO ma-

neuvering mode

The performance seen here is again nearly identical to the results of the method

without probability that made use of the altered GEO maneuvering mode. Indicating

that the probability component is not needed in this instance.
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Figure B.15. RMS position error for all satellites averaged over
100 simulations using probability, Fisher information, and covariance
based sensor tasking with an altered GEO maneuvering mode
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Figure B.16. RMS velocity error for all satellites except Satellite 11
averaged over 100 simulations using probability, Fisher information,
and covariance based sensor tasking with an altered GEO maneuver-
ing mode
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Figure B.17. Satellite 11 RMS velocity error averaged over 100 sim-
ulations using probability, Fisher information, and covariance based
sensor tasking with an altered GEO maneuvering mode
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B.1.6 Method Comparisons

The method comparison demonstrates that the non-maneuvering error values of

this configuration are lower than what is seen in the main body of the paper. But

there is a substantial increase in error of the IMM EKF methods in certain periods

where the GEO satellites are potentially maneuvering (Figure B.18) that is mitigated

by altering the tracking behavior of those satellites while preserving the improvements

in tracking performance (Figure B.19). The improvement due to IMM EKF methods

in position error during the Satellite 11 maneuvers is even more pronounced in these

simulations and is on the order of kilometers B.3 which is very substantial on the scale

of GEO satellites [1]. The improvements with GEO satellite state error covariance

does illustrate that using the same coefficients and tasking model for all satellites in

varied systems is not always viable for all tracked satellites. Dynamically developing

tasking coefficients for different satellite types would be a promising area of future

work to mitigate these issues. As can be seen in Table B.2 the overall performance of

the method employing probability and satellite specific tracking method demonstrates

the best overall performance of all methods in this paper. However, The differences

between the IMM tasking methods was much less pronounced in this configuration as

probability based tasking was not required. As a result the difference seen between

the IMM EKF methods are primarily the result of simulation variance. This lack of

difference indicates that while probability as a tasking component can be a valuable

tool, as the main body of this paper illustrated, it is not useful to all tracking and

tasking problems.
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Method Error Metric Value Standard

Deviation

Single EKF Mean Position Error 51.9613m 6.5992m

Max Position Error 1155.5850m −

Mean Velocity Error 1.6096m
s

0.5792m
s

Max Velocity Error 120.64531m
s

−

IMM Fisher and Covariance Mean Position Error 51.7569m 3.3127m

Max Position Error 193.8295m −

Mean Velocity Error 1.5855m
s

0.3772m
s

Max Velocity Error 111.0706m
s

−

IMM Fisher, Covariance, Mean Position Error 51.6725m 3.3175m

and Probability Max Position Error 156.1986m −

Mean Velocity Error 1.5844m
s

0.3772m
s

Max Velocity Error 111.08617m
s

−

Table B.2. Alternate Simulation method error comparison from
700500s to 730000s with variable Q2
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Figure B.18. Average of all satellites’ position error over 100 simula-
tions for all tasking methods
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Figure B.19. Average of all satellites’ position error over 100 sim-
ulations for all tasking methods with an altered GEO maneuvering
mode
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Figure B.20. Average of all satellites’ velocity error over 100 simula-
tions for all tasking methods
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Figure B.21. Average of all satellites’ velocity error over 100 sim-
ulations for all tasking methods with an altered GEO maneuvering
mode
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Figure B.22. Average of all satellites’ position error over 100 simula-
tions for all tasking methods near the first LEO maneuver
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Figure B.23. Average of all satellites’ position error over 100 simu-
lations for all tasking methods near the first LEO maneuver with an
altered GEO maneuvering mode
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Figure B.24. Average of all satellites’ velocity error over 100 simula-
tions for all tasking methods near the first LEO maneuver
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Figure B.25. Average of all satellites’ velocity error over 100 simu-
lations for all tasking methods near the first LEO maneuver with an
altered GEO maneuvering mode
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Figure B.26. Average of all satellites’ position error over 100 simula-
tions for all tasking methods near the second LEO maneuver
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Figure B.27. Average of all satellites’ position error over 100 simula-
tions for all tasking methods near the second LEO maneuver with an
altered GEO maneuvering mode
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Figure B.28. Average of all satellites’ velocity error over 100 simula-
tions for all tasking methods near the second LEO maneuver
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Figure B.29. Average of all satellites’ velocity error over 100 simu-
lations for all tasking methods near the second LEO maneuver with
altered an GEO maneuvering mode
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