95 research outputs found

    Enhancing Usability and Security through Alternative Authentication Methods

    Get PDF
    With the expanding popularity of various Internet services, online users have be- come more vulnerable to malicious attacks as more of their private information is accessible on the Internet. The primary defense protecting private information is user authentication, which currently relies on less than ideal methods such as text passwords and PIN numbers. Alternative methods such as graphical passwords and behavioral biometrics have been proposed, but with too many limitations to replace current methods. However, with enhancements to overcome these limitations and harden existing methods, alternative authentications may become viable for future use. This dissertation aims to enhance the viability of alternative authentication systems. In particular, our research focuses on graphical passwords, biometrics that depend, directly or indirectly, on anthropometric data, and user authentication en- hancements using touch screen features on mobile devices. In the study of graphical passwords, we develop a new cued-recall graphical pass- word system called GridMap by exploring (1) the use of grids with variable input entered through the keyboard, and (2) the use of maps as background images. as a result, GridMap is able to achieve high key space and resistance to shoulder surfing attacks. to validate the efficacy of GridMap in practice, we conduct a user study with 50 participants. Our experimental results show that GridMap works well in domains in which a user logs in on a regular basis, and provides a memorability benefit if the chosen map has a personal significance to the user. In the study of anthropometric based biometrics through the use of mouse dy- namics, we present a method for choosing metrics based on empirical evidence of natural difference in the genders. In particular, we develop a novel gender classifi- cation model and evaluate the model’s accuracy based on the data collected from a group of 94 users. Temporal, spatial, and accuracy metrics are recorded from kine- matic and spatial analyses of 256 mouse movements performed by each user. The effectiveness of our model is validated through the use of binary logistic regressions. Finally, we propose enhanced authentication schemes through redesigned input, along with the use of anthropometric biometrics on mobile devices. We design a novel scheme called Triple Touch PIN (TTP) that improves traditional PIN number based authentication with highly enlarged keyspace. We evaluate TTP on a group of 25 participants. Our evaluation results show that TTP is robust against dictio- nary attacks and achieves usability at acceptable levels for users. We also assess anthropometric based biometrics by attempting to differentiate user fingers through the readings of the sensors in the touch screen. We validate the viability of this biometric approach on 33 users, and observe that it is feasible for distinguishing the fingers with the largest anthropometric differences, the thumb and pinkie fingers

    Exploiting behavioral biometrics for user security enhancements

    Get PDF
    As online business has been very popular in the past decade, the tasks of providing user authentication and verification have become more important than before to protect user sensitive information from malicious hands. The most common approach to user authentication and verification is the use of password. However, the dilemma users facing in traditional passwords becomes more and more evident: users tend to choose easy-to-remember passwords, which are often weak passwords that are easy to crack. Meanwhile, behavioral biometrics have promising potentials in meeting both security and usability demands, since they authenticate users by who you are , instead of what you have . In this dissertation, we first develop two such user verification applications based on behavioral biometrics: the first one is via mouse movements, and the second via tapping behaviors on smartphones; then we focus on modeling user web browsing behaviors by Fitts\u27 Law.;Specifically, we develop a user verification system by exploiting the uniqueness of people\u27s mouse movements. The key feature of our system lies in using much more fine-grained (point-by-point) angle-based metrics of mouse movements for user verification. These new metrics are relatively unique from person to person and independent of the computing platform. We conduct a series of experiments to show that the proposed system can verify a user in an accurate and timely manner, and induced system overhead is minor. Similar to mouse movements, the tapping behaviors of smartphone users on touchscreen also vary from person to person. We propose a non-intrusive user verification mechanism to substantiate whether an authenticating user is the true owner of the smartphone or an impostor who happens to know the passcode. The effectiveness of the proposed approach is validated through real experiments. to further understand user pointing behaviors, we attempt to stress-test Fitts\u27 law in the wild , namely, under natural web browsing environments, instead of restricted laboratory settings in previous studies. Our analysis shows that, while the averaged pointing times follow Fitts\u27 law very well, there is considerable deviations from Fitts\u27 law. We observe that, in natural browsing, a fast movement has a different error model from the other two movements. Therefore, a complete profiling on user pointing performance should be done in more details, for example, constructing different error models for slow and fast movements. as future works, we plan to exploit multiple-finger tappings for smartphone user verification, and evaluate user privacy issues in Amazon wish list

    Comprehensive Survey: Biometric User Authentication Application, Evaluation, and Discussion

    Full text link
    This paper conducts an extensive review of biometric user authentication literature, addressing three primary research questions: (1) commonly used biometric traits and their suitability for specific applications, (2) performance factors such as security, convenience, and robustness, and potential countermeasures against cyberattacks, and (3) factors affecting biometric system accuracy and po-tential improvements. Our analysis delves into physiological and behavioral traits, exploring their pros and cons. We discuss factors influencing biometric system effectiveness and highlight areas for enhancement. Our study differs from previous surveys by extensively examining biometric traits, exploring various application domains, and analyzing measures to mitigate cyberattacks. This paper aims to inform researchers and practitioners about the biometric authentication landscape and guide future advancements

    USER AUTHENTICATION ACROSS DEVICES, MODALITIES AND REPRESENTATION: BEHAVIORAL BIOMETRIC METHODS

    Get PDF
    Biometrics eliminate the need for a person to remember and reproduce complex secretive information or carry additional hardware in order to authenticate oneself. Behavioral biometrics is a branch of biometrics that focuses on using a person’s behavior or way of doing a task as means of authentication. These tasks can be any common, day to day tasks like walking, sleeping, talking, typing and so on. As interactions with computers and other smart-devices like phones and tablets have become an essential part of modern life, a person’s style of interaction with them can be used as a powerful means of behavioral biometrics. In this dissertation, we present insights from the analysis of our proposed set of contextsensitive or word-specific keystroke features on desktop, tablet and phone. We show that the conventional features are not highly discriminatory on desktops and are only marginally better on hand-held devices for user identification. By using information of the context, our proposed word-specific features offer superior discrimination among users on all devices. Classifiers, built using our proposed features, perform user identification with high accuracies in range of 90% to 97%, average precision and recall values of 0.914 and 0.901 respectively. Analysis of the word-based impact factors reveal that four or five character words, words with about 50% vowels, and those that are ranked higher on the frequency lists might give better results for the extraction and use of the proposed features for user identification. We also examine a large umbrella of behavioral biometric data such as; keystroke latencies, gait and swipe data on desktop, phone and tablet for the assumption of an underlying normal distribution, which is common in many research works. Using suitable nonparametric normality tests (Lilliefors test and Shapiro-Wilk test) we show that a majority of the features from all activities and all devices, do not follow a normal distribution. In most cases less than 25% of the samples that were tested had p values \u3e 0.05. We discuss alternate solutions to address the non-normality in behavioral biometric data. Openly available datasets did not provide the wide range of modalities and activities required for our research. Therefore, we have collected and shared an open access, large benchmark dataset for behavioral biometrics on IEEEDataport. We describe the collection and analysis of our Syracuse University and Assured Information Security - Behavioral Biometrics Multi-device and multi -Activity data from Same users (SU-AIS BB-MAS) Dataset. Which is an open access dataset on IEEEdataport, with data from 117 subjects for typing (both fixed and free text), gait (walking, upstairs and downstairs) and touch on Desktop, Tablet and Phone. The dataset consists a total of about: 3.5 million keystroke events; 57.1 million data-points for accelerometer and gyroscope each; 1.7 million datapoints for swipes and is listed as one of the most popular datasets on the portal (through IEEE emails to all members on 05/13/2020 and 07/21/2020). We also show that keystroke dynamics (KD) on a desktop can be used to classify the type of activity, either benign or adversarial, that a text sample originates from. We show the inefficiencies of popular temporal features for this task. With our proposed set of 14 features we achieve high accuracies (93% to 97%) and low Type 1 and Type 2 errors (3% to 8%) in classifying text samples of different sizes. We also present exploratory research in (a) authenticating users through musical notes generated by mapping their keystroke latencies to music and (b) authenticating users through the relationship between their keystroke latencies on multiple devices

    Activity-Based User Authentication Using Smartwatches

    Get PDF
    Smartwatches, which contain an accelerometer and gyroscope, have recently been used to implement gait and gesture- based biometrics; however, the prior studies have long-established drawbacks. For example, data for both training and evaluation was captured from single sessions (which is not realistic and can lead to overly optimistic performance results), and in cases when the multi-day scenario was considered, the evaluation was often either done improperly or the results are very poor (i.e., greater than 20% of EER). Moreover, limited activities were considered (i.e., gait or gestures), and data captured within a controlled environment which tends to be far less realistic for real world applications. Therefore, this study remedies these past problems by training and evaluating the smartwatch-based biometric system on data from different days, using large dataset that involved the participation of 60 users, and considering different activities (i.e., normal walking (NW), fast walking (FW), typing on a PC keyboard (TypePC), playing mobile game (GameM), and texting on mobile (TypeM)). Unlike the prior art that focussed on simply laboratory controlled data, a more realistic dataset, which was captured within un-constrained environment, is used to evaluate the performance of the proposed system. Two principal experiments were carried out focusing upon constrained and un-constrained environments. The first experiment included a comprehensive analysis of the aforementioned activities and tested under two different scenarios (i.e., same and cross day). By using all the extracted features (i.e., 88 features) and the same day evaluation, EERs of the acceleration readings were 0.15%, 0.31%, 1.43%, 1.52%, and 1.33% for the NW, FW, TypeM, TypePC, and GameM respectively. The EERs were increased to 0.93%, 3.90%, 5.69%, 6.02%, and 5.61% when the cross-day data was utilized. For comparison, a more selective set of features was used and significantly maximize the system performance under the cross day scenario, at best EERs of 0.29%, 1.31%, 2.66%, 3.83%, and 2.3% for the aforementioned activities respectively. A realistic methodology was used in the second experiment by using data collected within unconstrained environment. A light activity detection approach was developed to divide the raw signals into gait (i.e., NW and FW) and stationary activities. Competitive results were reported with EERs of 0.60%, 0% and 3.37% for the NW, FW, and stationary activities respectively. The findings suggest that the nature of the signals captured are sufficiently discriminative to be useful in performing transparent and continuous user authentication.University of Kuf

    Privacy-Protecting Techniques for Behavioral Data: A Survey

    Get PDF
    Our behavior (the way we talk, walk, or think) is unique and can be used as a biometric trait. It also correlates with sensitive attributes like emotions. Hence, techniques to protect individuals privacy against unwanted inferences are required. To consolidate knowledge in this area, we systematically reviewed applicable anonymization techniques. We taxonomize and compare existing solutions regarding privacy goals, conceptual operation, advantages, and limitations. Our analysis shows that some behavioral traits (e.g., voice) have received much attention, while others (e.g., eye-gaze, brainwaves) are mostly neglected. We also find that the evaluation methodology of behavioral anonymization techniques can be further improved
    corecore