203 research outputs found

    Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications

    Full text link
    [EN] Newer social multimedia applications, such as Social TV or networked multi-player games, enable independent groups (or clusters) of users to interact among themselves and share services within the context of simultaneous media content consumption. In such scenarios, concurrently synchronized playout points must be ensured so as not to degrade the user experience on such interaction. We refer to this process as Inter-Destination Multimedia Synchronization (IDMS). This paper presents the design, implementation and evaluation of an evolved version of an RTCP-based IDMS approach, including an Adaptive Media Playout (AMP) scheme that aims to dynamically and smoothly adjust the playout timing of each one of the geographically distributed consumers in a specific cluster if an allowable asynchrony threshold between their playout states is exceeded. For that purpose, we previously had also to develop a full implementation of RTP/RTCP protocols for NS-2, in which we included the IDMS approach as an optional functionality. Simulation results prove the feasibility of such IDMS and AMP proposals, by adopting several dynamic master reference selection policies, to maintain an overall synchronization status (within allowable limits) in each cluster of participants, while minimizing the occurrence of long-term playout discontinuities (such as skips/pauses) which are subjectively more annoying and less tolerable to users than small variations in the media playout rate.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10. Authors also would like to thank the anonymous reviewers that helped to significantly improve the quality of the paper with their constructive comments.Montagud, M.; Boronat, F. (2012). Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications. Computer Networks. 56(12):2912-2933. https://doi.org/10.1016/j.comnet.2012.05.00329122933561

    Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization

    Full text link
    Traditionally, the media consumption model has been a passive and isolated activity. However, the advent of media streaming technologies, interactive social applications, and synchronous communications, as well as the convergence between these three developments, point to an evolution towards dynamic shared media experiences. In this new model, geographically distributed groups of consumers, independently of their location and the nature of their end-devices, can be immersed in a common virtual networked environment in which they can share multimedia services, interact and collaborate in real-time within the context of simultaneous media content consumption. In most of these multimedia services and applications, apart from the well-known intra and inter-stream synchronization techniques that are important inside the consumers playout devices, also the synchronization of the playout processes between several distributed receivers, known as multipoint, group or Inter-destination multimedia synchronization (IDMS), becomes essential. Due to the increasing popularity of social networking, this type of multimedia synchronization has gained in popularity in recent years. Although Social TV is perhaps the most prominent use case in which IDMS is useful, in this paper we present up to 19 use cases for IDMS, each one having its own synchronization requirements. Different approaches used in the (recent) past by researchers to achieve IDMS are described and compared. As further proof of the significance of IDMS nowadays, relevant organizations (such as ETSI TISPAN and IETF AVTCORE Group) efforts on IDMS standardization (in which authors have been and are participating actively), defining architectures and protocols, are summarized.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10, and by TNO, under its Future Internet Use Research & Innovation Program. The authors also want to thank Kevin Gross for providing some of the use cases included in Sect. 1.2.Montagud, M.; Boronat Segui, F.; Stokking, H.; Van Brandenburg, R. (2012). Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization. Multimedia Systems. 18(6):459-482. https://doi.org/10.1007/s00530-012-0278-9S459482186Kernchen, R., Meissner, S., Moessner, K., Cesar, P., Vaishnavi, I., Boussard, M., Hesselman, C.: Intelligent multimedia presentation in ubiquitous multidevice scenarios. IEEE Multimedia 17(2), 52–63 (2010)Vaishnavi, I., Cesar, P., Bulterman, D., Friedrich, O., Gunkel, S., Geerts, D.: From IPTV to synchronous shared experiences challenges in design: distributed media synchronization. Signal Process Image Commun 26(7), 370–377 (2011)Geerts, D., Vaishnavi, I., Mekuria, R., Van Deventer, O., Cesar, P.: Are we in sync?: synchronization requirements for watching on-line video together, CHI ‘11, New York, USA (2011)Boronat, F., Lloret, J., García, M.: Multimedia group and inter-stream synchronization techniques: a comparative study. Inf. Syst. 34(1), 108–131 (2009)Chen, M.: A low-latency lip-synchronized videoconferencing system. In: SIGCHI Conference on Human Factors in Computing Systems, CHI’03, ACM, pp. 464–471, New York (2003)Ishibashi, Y., Tasaka, S., Ogawa, H.: Media synchronization quality of reactive control schemes. IEICE Trans. Commun. E86-B(10), 3103–3113 (2003)Ademoye, O.A., Ghinea, G.: Synchronization of olfaction-enhanced multimedia. IEEE Trans. Multimedia 11(3), 561–565 (2009)Cesar, P., Bulterman, D.C.A., Jansen, J., Geerts, D., Knoche, H., Seager, W.: Fragment, tag, enrich, and send: enhancing social sharing of video. ACM Trans. Multimedia Comput. Commun. Appl. 5(3), Article 19, 27 pages (2009)Van Deventer, M.O., Stokking, H., Niamut, O.A., Walraven, F.A., Klos, V.B.: Advanced Interactive Television Service Require Synchronization, IWSSIP 2008. Bratislava, June (2008)Premchaiswadi, W., Tungkasthan, A., Jongsawat, N.: Enhancing learning systems by using virtual interactive classrooms and web-based collaborative work. In: Proceedings of the IEEE Education Engineering Conference (EDUCON 2010), pp. 1531–1537. Madrid, Spain (2010)Diot, C., Gautier, L.: A distributed architecture for multiplayer interactive applications on the internet. IEEE Netw 13(4), 6–15 (1999)Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and timewarp: providing consistency for replicated continuous applications. IEEE Trans. Multimedia 6(1), 45–57 (2004)Hosoya, K., Ishibashi, Y., Sugawara, S., Psannis, K.E.: Group synchronization control considering difference of conversation roles. In: IEEE 13th International Symposium on Consumer Electronics, ISCE ‘09, pp. 948–952 (2009)Roccetti, M., Ferretti, S., Palazzi, C.: The brave new world of multiplayer online games: synchronization issues with smart solution. In: 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 587–592 (2008)Ott, D.E., Mayer-Patel, K.: An open architecture for transport-level protocol coordination in distributed multimedia applications. ACM Trans. Multimedia Comput. Commun. Appl. 3(3), 17 (2007)Boronat, F., Montagud, M., Guerri, J.C.: Multimedia group synchronization approach for one-way cluster-to-cluster applications. In: IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 177–184, Zürich (2009)Boronat, F., Montagud, M., Vidal, V.: Smooth control of adaptive media playout to acquire IDMS in cluster-based applications. In: IEEE LCN 2011, pp. 617–625, Bonn (2011)Huang, Z., Wu, W., Nahrstedt, K., Rivas, R., Arefin, A.: SyncCast: synchronized dissemination in multi-site interactive 3D tele-immersion. In: Proceedings of MMSys, USA (2011)Kim, S.-J., Kuester, F., Kim, K.: A global timestamp-based approach for enhanced data consistency and fairness in collaborative virtual environments. ACM/Springer Multimedia Syst. J. 10(3), 220–229 (2005)Schooler, E.: Distributed music: a foray into networked performance. In: International Network Music Festival, Santa Monica, CA (1993)Miyashita, Y., Ishibashi, Y., Fukushima, N., Sugawara, S., Psannis K.E.: QoE assessment of group synchronization in networked chorus with voice and video. In: Proceedings of IEEE TENCON’11, pp. 393–397 (2011)Hesselman, C., Abbadessa, D., Van Der Beek, W., et al.: Sharing enriched multimedia experiences across heterogeneous network infrastructures. IEEE Commun. Mag. 48(6), 54–65 (2010)Montpetit, M., Klym, N., Mirlacher, T.: The future of IPTV—Connected, mobile, personal and social. Multimedia Tools Appl J 53(3), 519–532 (2011)Cesar, P., Bulterman, D.C.A., Jansen, J.: Leveraging the user impact: an architecture for secondary screens usage in an interactive television environment. ACM/Springer Multimedia Syst. 15(3), 127–142 (2009)Lukosch, S.: Transparent latecomer support for synchronous groupware. In: Proceedings of 9th International Workshop on Groupware (CRIWG), Grenoble, France, pp. 26–41 (2003)Steinmetz, R.: Human perception of jitter and media synchronization. IEEE J. Sel. Areas Commun. 14(1), 61–72 (1996)Stokking, H., Van Deventer, M.O., Niamut, O.A., Walraven, F.A., Mekuria, R.N.: IPTV inter-destination synchronization: a network-based approach, ICIN’2010, Berlin (2010)Mekuria, R.N.: Inter-destination media synchronization for TV broadcasts, Master Thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Network architecture and Services, Delft University of Technology (2011)Pitt Ian, CS2511: Usability engineering lecture notes, localisation of sound sources. http://web.archive.org/web/20100410235208/http:/www.cs.ucc.ie/~ianp/CS2511/HAP.htmlNielsen, J.: Response times: the three important limits. http://www.useit.com/papers/responsetime.html (1994)ITU-T Rec G. 1010: End-User Multimedia QoS Categories. International Telecommunication Union, Geneva (2001)Biersack, E., Geyer, W.: Synchronized delivery and playout of distributed stored multimedia streams. ACM/Springer Multimedia Syst 7(1), 70–90 (1999)Xie, Y., Liu, C., Lee, M.J., Saadawi, T.N.: Adaptive multimedia synchronization in a teleconference system. ACM/Springer Multimedia Syst. 7(4), 326–337 (1999)Laoutaris, N., Stavrakakis, I.: Intrastream synchronization for continuous media streams: a survey of playout schedulers. IEEE Netw. Mag. 16(3), 30–40 (2002)Ishibashi, Y., Tsuji, A., Tasaka, S.: A group synchronization mechanism for stored media in multicast communications. In: Proceedings of the INFOCOM ‘97, Washington (1997)Ishibashi, Y., Tasaka, S.: A group synchronization mechanism for live media in multicast communications. IEEE GLOBECOM’97, pp. 746–752 (1997)Boronat, F., Guerri, J.C., Lloret, J.: An RTP/RTCP based approach for multimedia group and inter-stream synchronization. Multimedia Tools Appl. J. 40(2), 285–319 (2008)Ishibashi, I., Tasaka, S.: A distributed control scheme for group synchronization in multicast communications. In: Proceedings of International Symposium Communications, Kaohsiung, Taiwan, pp. 317–323 (1999)Lu, Y., Fallica, B., Kuipers, F.A., Kooij, R.E., Van Mieghem, P.: Assessing the quality of experience of SopCast. Int. J. Internet Protoc. Technol 4(1), 11–19 (2009)Shamma, D.A., Bastea-Forte, M., Joubert, N., Liu, Y.: Enhancing online personal connections through synchronized sharing of online video, ACM CHI’08 Extended Abstracts, Florence (2008)Ishibashi, Y., Tasaka, S.: A distributed control scheme for causality and media synchronization in networked multimedia games. In: Proceedings of 11th International Conference on Computer Communications and Networks, pp. 144–149, Miami, USA (2002)Ishibashi, Y., Tomaru, K., Tasaka, S., Inazumi, K.: Group synchronization in networked virtual environments. In: Proceedings of the 38th IEEE International Conference on Communications, pp. 885–890, Alaska, USA (2003)Tasaka, S., Ishibashi, Y., Hayashi, M.: Inter–destination synchronization quality in an integrated wired and wireless network with handover. IEEE GLOBECOM 2, 1560–1565 (2002)Kurokawa, Y., Ishibashi, Y., Asano, T.: Group synchronization control in a remote haptic drawing system. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 572–575, Beijing, China (2007)Hashimoto, T., Ishibashi, Y.: Group Synchronization Control over Haptic Media in a Networked Real-Time Game with Collaborative Work, Netgames’06, Singapore (2006)Nunome, T., Tasaka, S.: Inter-destination synchronization quality in a multicast mobile ad hoc network. In: Proceedings of IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1366–1370, Berlin, Germany (2005)Brandenburg, R., van Stokking, H., Van Deventer, M.O., Boronat, F., Montagud, M., Gross, K.: RTCP for inter-destination media synchronization, draft-brandenburg-avtcore-rtcp-for-idms-03.txt. In: IETF Audio/Video Transport Core Maintenance Working Group, Internet Draft, March 9 (2012)ETSI TS 181 016 V3.3.1 (2009-07) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Service Layer Requirements to integrate NGN Services and IPTVETSI TS 182 027 V3.5.1 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IPTV Architecture; IPTV functions supported by the IMS subsystemETSI TS 183 063 V3.5.2 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IMS-based IPTV stage 3 specificationBrandenburg van, R., et al.: RTCP XR Block Type for inter-destination media synchronization, draft-brandenburg-avt-rtcp-for-idms-00.txt. In: IETF Audio/Video Transport Working Group, Internet Draft, Sept 24, 2010Williams, A., et al.: RTP Clock Source Signalling, draft-williams-avtcore-clksrc-00. In: IETF Audio/Video Transport Working Group, Internet Draft, February 28, 201

    On the use of adaptive media playout for inter-destination synchronization

    Full text link
    [EN] Inter-Destination Multimedia Synchronization (IDMS) is essential in most of the emerging social multimedia applications. In this paper we present a novel Adaptive Media Playout (AMP) scheme that aims to acquire an overall synchronization status between distributed receivers by means of smoothly adjusting their playout timing. Simulation results show that the proposed solution minimizes long-term playout discontinuities (skips and/or pauses) which are subjectively more annoying to users than small variations in the media playout rate.This work was supported by the Universitat Politecnica de Valencia (UPV), under its R&D Support Program in the PAID-01-10 Project, and by Generalitat Valenciana, under its R&D Support Program in the GV 2010/009 Project.Montagud, M.; Boronat, F. (2011). On the use of adaptive media playout for inter-destination synchronization. IEEE Communications Letters. 15(9):863-865. https://doi.org/10.1109/LCOMM.2011.061611.110072S86386515

    Design, Development and Assessment of Control Schemes for IDMS in a Standardized RTCP-based Solution

    Full text link
    [EN] Currently, several media sharing applications that allow social interactions between distributed users are gaining momentum. In these networked scenarios, synchronized playout between the involved participants must be provided to enable truly interactive and coherent shared media experiences. This research topic is known as Inter-Destination Media Synchronization (IDMS). This paper presents the design and development of an advanced IDMS solution, which is based on extending the capabilities of RTP/RTCP standard protocols. Particularly, novel RTCP extensions, in combination with several control algorithms and adjustment techniques, have been specified to enable an adaptive, highly accurate and standard compliant IDMS solution. Moreover, as different control or architectural schemes for IDMS exist, and each one is best suited for specific use cases, the IDMS solution has been extended to be able to adopt each one of them. Simulation results prove the satisfactory responsiveness of our IDMS solution in a small scale scenario, as well as its consistent behavior, when using each one of the deployed architectural schemes.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-01-10. TNO's work has been partially funded by European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. ICT-2011-8-318343 (STEER Project). CWI's work has been partially funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. ICT-2011-7-287723 (REVERIE Project).Montagud Aguar, M.; Boronat Segui, F.; Stokking, H.; Cesar, P. (2014). Design, Development and Assessment of Control Schemes for IDMS in a Standardized RTCP-based Solution. Computer Networks. 70:240-259. https://doi.org/10.1016/j.comnet.2014.06.004S2402597

    Inter-destination Multimedia Synchronization: A Contemporary Survey

    Get PDF
    The advent of social networking applications, media streaming technologies, and synchronous communications has created an evolution towards dynamic shared media experiences. In this new model, geographically distributed groups of users can be immersed in a common virtual networked environment in which they can interact and collaborate in real- time within the context of simultaneous media content consumption. In this environment, intra-stream and inter-stream synchronization techniques are used inside the consumers’ playout devices, while synchronization of media streams across multiple separated locations is required. This synchronization is nown as multipoint, group or Inter-Destination Multimedia Synchronization (IDMS) and is needed in many applications such as social TV and synchronous e-learning. This survey paper discusses intraand inter-stream synchronization issues, but it mainly focuses on the most well-known IDMS techniques that can be used in emerging distributed multimedia applications. In addition, it provides some research directions for future work

    AdamRTP: Adaptive multi-flow real-time multimedia transport protocol for Wireless Sensor Networks

    Get PDF
    Real-time multimedia applications are time sensitive and require extra resources from the network, e.g. large bandwidth and big memory. However, Wireless Sensor Networks (WSNs) suffer from limited resources such as computational, storage, and bandwidth capabilities. Therefore, sending real-time multimedia applications over WSNs can be very challenging. For this reason, we propose an Adaptive Multi-flow Real-time Multimedia Transport Protocol (AdamRTP) that has the ability to ease the process of transmitting real-time multimedia over WSNs by splitting the multimedia source stream into smaller independent flows using an MDC-aware encoder, then sending each flow to the destination using joint/disjoint path. AdamRTP uses dynamic adaptation techniques, e.g. number of flows and rate adaptation. Simulations experiments demonstrate that AdamRTP enhances the Quality of Service (QoS) of transmission. Also, we showed that in an ideal WSN, using multi-flows consumes less power than using a single flow and extends the life-time of the network

    IDMS solution for hybrid broadcast broadband delivery within the context of HbbTV standard

    Full text link
    "© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] Inter-destination media synchronization (IDMS) is a key requirement to enable successful networked shared media experiences between remote users. This paper presents an adaptive, accurate and standard-compliant IDMS solution for hybrid broadcast and broadband delivery. Apart from providing multi- and cross-technology support, the presented IDMS solution is able to accomplish synchronization when different formats/versions of the same, or even related, contents are being played out in a shared session. It is also able to independently manage the playout processes of different groups of users. The IDMS solution has been integrated within an end-to-end platform, which is compatible with the hybrid broadcast broadband TV standard. It has been applied to digital video broadcasting-terrestrial technology and tested for a Social TV scenario, by also including an ad-hoc chat tool as an interaction channel. The results of the conducted (objective and subjective) evaluations prove the statisfactory behavior and performance of the IDMS solution and platform as well as in terms of the perceived quality of experience.This work was supported by Generalitat Valenciana, Investigacion competitiva proyectos, through the Research and Development Program "Grants for research groups to be consolidated, AICO/2017," under Grant AICO/2017/059.Marfil-Reguero, D.; Boronat, F.; Montagud, M.; Sapena Piera, A. (2019). IDMS solution for hybrid broadcast broadband delivery within the context of HbbTV standard. IEEE Transactions on Broadcasting. 65(4):645-663. https://doi.org/10.1109/TBC.2018.2878285S64566365

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Enhanced QoS for real-time multimedia delivery over the wireless link using RFID technology.

    Get PDF
    This thesis presents a Sensor Guided Wireless Adaptation Scheme (SGWAS) that works in a micromobility domain. SGWAS infers the reason of high packet loss in a realtime multimedia flow received by a mobile node in a wireless cell. Determining the reason of packet loss relies on information obtained from wireless sensors, specifically RFID devices scattered in the cell, to detect the location of the mobile node. If packet loss is due to wireless link congestion, then local rate adaptation is applied in the cell. However, if it is due to handoff or signal propagation effects, e.g. obstruction or attenuation, then rate adaptation is not performed. The source adapts its transmission rate if congestion occurs in the wired network. SGWAS helps improve the quality of service and avoids unnecessary rate adaptation. Simulation results demonstrate that SGWAS identifies the reason of high packet loss and performs rate adaptation only when needed.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .E58. Source: Masters Abstracts International, Volume: 45-01, page: 0352. Thesis (M.Sc.)--University of Windsor (Canada), 2006
    • …
    corecore