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ABSTRACT: 

Real-time multimedia applications are time sensitive and require extra resources from the network, e.g. 

large bandwidth and big memory. However, Wireless Sensor Networks (WSNs) suffer from limited 

resources such as computational, storage, and bandwidth capabilities. Therefore, sending real-time 

multimedia applications over WSNs can be very challenging. For this reason, we propose an Adaptive 

Multi-flow Real-time Multimedia Transport Protocol (AdamRTP) that has the ability to ease the process 

of transmitting real-time multimedia over WSNs by splitting the multimedia source stream into smaller 

independent flows using an MDC-aware encoder, then sending each flow to the destination using 

joint/disjoint path. AdamRTP uses dynamic adaptation techniques, e.g. number of flows and rate 

adaptation. Simulations experiments demonstrate that AdamRTP enhances the Quality of Service (QoS) 

of transmission. Also, we showed that in an ideal WSN, using multi-flows consumes less power than 

using a single flow and extends the life-time of the network. 
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CHAPTER I 

INTRODUCTION 

1.0 General 

Recent advances in Internet technologies produce enormous varieties of applications that are used by an 

increasing number of users around the globe. Applications such as dynamic HTML, Animations, web-

based video sharing (e.g. YouTube) and Video conferencing are examples of many rich implementations. 

This chapter gives an overview of Multimedia Applications, their nature and requirements, 

followed by an introduction to real-time applications and why they are different from regular multimedia 

applications. A detailed overview of the Real-Time Transport Protocol (RTP) follows. A brief 

introduction to Quality of Services (QoS), Audio and Video Codecs, and Multiple Description Coding 

(MDC) is also included in this chapter. This chapter ends with our statement of research which explains 

the major problem that we are trying to solve, what are our goals, and an overview of our solution. 

1.1 Multimedia Applications 

Multimedia can be defined as a way of delivering information by using audio, video, pictures, and 

animations instead of just regular text. Multimedia applications such as Flash Animations, YouTube 

Video sharing, Video Conferencing, and RealPlayer Audio streaming are some of the applications that 

have been enjoyed by millions everyday around the world for many years. But what makes such 

applications different from regular HTML WebPages which usually contain text and some pictures only? 

Internet applications can be divided into two main groups in terms of packet loss sensitivity, and 

delay tolerance, as shown in table 1. Network applications which are based on text (such as HTML, E-

mail, and FTP) are delay tolerant, meaning they do not need to reach the destination right away, but, they 
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have to reach it in full, without any type of loss, even if it is a single byte! On the other hand, applications 

that use multimedia like digital audio and video (e.g. video conferencing) are delay sensitive. However, 

they can accept some packet loss, because multimedia applications have the ability to reconstruct or 

predict the missing packets then play back without (significant) disruption. 

Table 1: Requirements of network applications 

Applications 

Delay 

Packet Loss 

Bandwidth 

Protocol 

Traditional Network Applications 

Hyper-text, E-mail, FTP, File Sharing 

Delay-tolerant 

Loss-sensitive 

Small 

TCP 

Real-Time Multimedia Applications 

MM Streaming, Conferencing, VoIP 

Delay-sensitive 

Loss-Tolerant (not significant loss) 

Huge 

RTP 

Multimedia applications are usually huge in size. Multimedia files get even bigger if we want a 

better audio or video fidelity. For example, ten seconds of raw, uncompressed NTSC video (which is the 

standard for television) occupies as much as 300 MB of storage space. A multimedia file size is 

considered to be the main problem especially when transmitting over any type of network. It gets worse 

when sending multimedia over wireless network because of the extra limitations of such networks, e.g. 

bandwidth limitations and packet loss due to signal fading. 

The next subsections explain some of the techniques developed to ease and maintain an 

acceptable multimedia delivery over wired and wireless networks. But before that, a special type of 

multimedia applications that are time-sensitive is introduced. These applications are known as Real-time 

Multimedia applications. 
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1.2 Real-time Multimedia 

Real-time multimedia is usually a multimedia application that has one strict rule: play on time or it will be 

dropped. Real-time multimedia applications such as Video Conferencing and On-Demand Video require 

timely delivery of packets. But, unless we have a network that can give some sort of guarantees such as 

IntServ or DiffServ-enabled networks (details in section 1.3), running real-time multimedia applications 

over regular networks may suffer from delays based on network state and congestion. 

The Internet (TCP/IP model) is "best effort" by design, where the network does not provide any 

guarantees on timely packet delivery. This comes mainly from the inability of core routers to identify the 

type of packet they are routing. They do not differentiate between a packet that belongs to very low 

priority E-mail and a very important real-time packet that belongs to a video conference session. The 

network ability to classify packets is part of what is called Quality of Service (QoS), which will be 

discussed in the next section. 

Real-time Transport Protocol (RTP) is a widely-used real-time multimedia protocol that works 

mainly on UDP. It assists in delivering real-time multimedia packets by using timestamps and statistical 

feedback information generated by a Real-Time Control Protocol (RTCP) to achieve a better QoS. RTP 

and RTCP are discussed in more details in chapter 2. 

1.3 Quality of Service (QoS) 

Quality of Service (QoS) aims at providing better networking services over current technologies such as 

ATM, Ethernet, and others. The main three parameters for multimedia QoS delivery on the Internet are 

latency (delay), jitter, and loss. Delay is the total amount of time a network spends to deliver a frame of 

data from source to destination. Jitter is the variation of delay between two consecutive packets during a 

given period of time. Loss determines the maximum packet loss that a stream of data can tolerate to 

provide good quality. Each parameter has been investigated thoroughly in the literature and many 
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solutions are proposed such as forward error correction and interleaving [Kur03]. Other QoS parameters 

include reliability, network availability and bandwidth. 

Providing hard guarantees, as in Integrated Services (IntServ), or soft guarantees, as in 

Differentiated Services (DiffServ), are the two main approaches to QoS in the Internet. IntServ [Bra04] 

establishes a virtual dedicated link between source and destination. The Resource Reservation Protocol 

(RSVP) is a signaling protocol that is responsible for checking the network desired bandwidth and delay 

requirements. IntServ provides per-flow reservations. Therefore, every node on the path needs to maintain 

state information about every flow. As a result, IntServ suffers from a scalability problem. DiffServ 

[Nic08] offers different levels of service classes. It employs Differentiated Services Code Point (DSCP-6 

bits) field which exist in Type of Service (ToS) byte in the Internet Protocol (IP) header, to assign a 

different class to each flow. In turn, each network node treats every flow differently which is known as 

the per-hop behavior (PHB). Therefore, state information about every flow is not needed along the 

network path. A third model of QoS in the Internet is known as Adaptive Applications that adapt to 

network congestion based on QoS feedback, for example, sender can adjust the transmitting rate based on 

the level of network's congestion. Bolot [Bol94] has proposed a set of feedback mechanisms for use in 

adaptation of the output rate of video coders according to the state of the network, more in section 2.3.4. 

Extending QoS to wireless networks presents new challenges due to radio channel characteristics, 

mobility management [Gar03], higher packet loss ratio than wired network, battery power constrains, and 

low bandwidth [Mah99]. However, most current QoS protocols can be implemented in wireless local area 

networks (WLAN) with some modifications because the last hop is the only wireless stage in these 

networks. In wireless networks, like Ad hoc Wireless Networks (MANET) or the new emerging Wireless 

Sensor Networks (WSNs) which are totally wireless, a new set of QoS parameters, mechanisms, and 

protocols are needed. 
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1.4 Audio and Video Codecs 

As mentioned earlier, multimedia files are huge. Therefore, digital compression is essential to reduce the 

number of bytes needed to form a given media presentation. Compression and Decompression protocols 

are usually called CODECs. A CODEC usually takes advantage of the information redundancy in the data 

file. As a result of reducing the number of bytes used to represent a set of data, we reduce the physical 

space required to store it, thus reducing the bandwidth needed for transmitting the data over any type of 

network. 

Usually, digital audio and video are data intensive. Audio files are very large, up to 10 MB for ten 

minutes of plain speech. Multimedia files that contain music are larger. Whereas files that contain digital 

video can be very huge. For example, an uncompressed video file with lots of motion can be 1 Gigabyte 

for 5 minutes of video. As a result, compression is required basically to make computer handling of 

video possible [URI03]. 

There are two main types of CODECs: lossy and lossless. Lossy codecs cause a slight 

degradation in quality. But, lossy codecs are faster than lossless coding techniques and can produce 

smaller file size. A lossless codec keeps the original quality, but is slower to encode and decode. 

Examples of some widely-used audio codecs are: FLAC (Free Lossless Audio Codec) and MP3 (MPEG-1 

Audio Layer 3), while some video codecs are: WMV (Windows Media Video) and DivX (Digital Video 

Express). 

1.5 Multiple Description Coding (MDC) 

Multiple Description Coding (MDC) [GoyOl] is a coding technique that divides a single media stream 

into n independent sub streams ( n >= 2) referred to as descriptions. Generally, a multiple description 

(MD) coder generates two equal importance descriptions so that each description provides low but 

acceptable quality. Subsequently each description is routed over multiple joint or/and disjoint paths. 
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Therefore, the coder at the destination node can decode any arrived description independently, however, 

the quality of media improves with the number of descriptions received simultaneously. MDC provides 

error resiliency to media streams. Since an arbitrary subset of descriptions can be used to decode the 

original stream, network congestion or packet loss, will not interrupt the stream, but only cause a 

(temporary) loss of quality. MDC is gaining popularity because it can provide acceptable quality without 

the need for retransmission of lost packets (unless there is high packet loss). This can provide a better 

service for real-time applications where retransmissions of packets are not acceptable because it causes 

more delays. And it simplifies the design of network protocols where no need to employ feedback or 

retransmission mechanisms. MDC has many advantages such as: 

• Error resilience: any description can be used to produce an acceptable quality media without the 

need to retransmit the lost packets. 

• Less bandwidth and buffer requirements: the large source of media is divided to smaller flows 

that can fit in smaller buffer and require less bandwidth when transmitted over the network. 

• Reduction of network congestion: media transmission will be shared among more nodes, each will 

send smaller amount of packets, therefore, reducing the packet congestion per node which leads 

to less congestion throughout the network. 

• Load balancing: more intermediate nodes will participate in packet delivery causing distributed 

effort to deliver the data. 

• Save power: since more intermediate nodes are sending the data, number of data transmission per 

node is fewer leading to overall energy saving. 

• Security: in case of an attacker who is sniffing the network, mostly, he will get one description 

out of the whole data. 
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Figure 1: Multiple Descriptions Coding 

Figure 1 describes an MDC encoder that divides the main media source into 3 descriptions, and sends 

each description to the destination using a separate route (Nl, N2 and N3). If all descriptions arrive at the 

destination, the Decoder at the receiver will merge them into one stream again then play it back with best 

possible quality. But if one or two descriptions do not arrive, it will play the rest with degraded quality. 

1.6 Statement of Research 

In this section, we describe the problems encountered when sending multimedia over WSN. Why we do 

not use an existing protocol to do so? What are we trying to accomplish here? Then, we present a quick 

description of our proposed solution. At the end, we list our contributions. 

1.6.1 Problem Description 

There is an increasing demand for multimedia applications over all types of wireless networks. But with 

all of the limitations that WSN has naturally inherited from wireless networks, e.g. signal attenuation, 

sending multimedia data can add extra load greater than what a WSN is capable of, due to the fact that 

WSNs have limited processing power, limited energy source, and limited bandwidth. Multimedia 

applications require extra memory and cache. In addition, they require larger bandwidth for acceptable 

quality of media. 
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Currently, there is no real-time multimedia protocol solution available for multimedia delivery 

over WSNs. Such a protocol could facilitate multimedia availability and delivery to assist in some urgent 

situations e.g. natural disasters or war. Current solutions use mainly a single flow (path) to send 

multimedia data between sender and receiver. But, this can exhaust the intermediate nodes' buffer and 

power leading to degraded QoS. 

Although, current real-time multimedia protocols such as RTP [Sch96], are designed to send real­

time multimedia data, implementing such protocols directly over wireless sensor networks is not practical 

for the following reasons: 

1. The RTP protocol is not power-aware. It does not consider the amount of power any node has in the 

decision of joining or leaving a session or being a part of the path that forward the traffic. 

2. RTP was designed to work for IP based networks, such as the Internet, WLAN... etc. 

3. RTCP, the control protocol of RTP, specifies all five types of packets (Sender Report (SR), Receiver 

Report (RR), SDES, BYE and APP) to be fully functional. This could be inconvenient for limited-

resource networks such as WSNs. 

4. RTP, in some situations, requires a large amount of memory. Koistinen [KoiOO] stated that it may 

require up to 4 MB in certain cases. 

For all these reasons a new protocol that can overcome some, if not all of these problems is necessary. 

1.6.2 Objectives and Goal 

Our main goal is to send Real-time Multimedia over Wireless Sensor Networks while preserving good 

Quality of Service and extending the lifetime of the network. However, achieving good QoS comes at the 

price of network resources such as bandwidth and power. To enhance the QoS without consuming more 

network resources, we can use some adaptation techniques as discussed in the next subsection. 

In this thesis, we modify the RTP protocol to achieve good QoS over WSNs and to suite the 

limitations of these networks. 
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1.6.3 The Proposed Solution 

We assume that nodes in WSN are densely deployed. A WSN has limited resources, e.g. bandwidth and 

power. We use multi-flows over multi-paths. The sender divides a large stream of data into smaller ones 

and sends each portion over a separate path (if possible). By doing this, we can relieve intermediate nodes 

from the burden of transmitting a large amount of data. Also multimedia traffic is distributed over more 

nodes. Moreover, we use an adaptation technique to adjust transmitted media dynamically according to 

the current network state. 

By using both techniques, the proposed protocol AdamRTP helps alleviate congestion, provide 

better QoS, and provide a good distribution of power usage. 

1.6.4 Contributions 

Our contributions in this thesis are: 

• Modified RTP protocol that uses MDC coder to split a stream of multimedia into two or more 

flows. 

• Adaptive protocol that can provides dynamic adjustments e.g. number of flows and transmission 

rate, according to the state of the network. 

• A lighter version of RTP protocol where we eliminate some of its features e.g. Sender Report 

(SR), and Source Identification (SDES), that can overwhelm the WSN with extra unwanted 

packets, but enough to provide an acceptable QoS. 

• Facilitating some techniques to overcome some of WSN limitations like power constrains and 

low bandwidth, this can be done by distributing the load of data delivery over more sensors, and 

generating smaller flows out of one large stream of multimedia to be sent over a low bandwidth 

network. 

• Offering enhanced QoS vehicle for real time multimedia applications over wireless sensor 

networks by employing multipath and adaptation techniques. 



• Developed a complete implementation (using C++ and oTCL programming languages) of 

AdamRTP using Network Simulation NS-2. 

1.7 Thesis Organization 

This thesis is organized as follows. Chapter 2 gives an overview of the Real-time Transport Protocol 

(RTP). The RTP protocol is used to send multimedia data with real time characteristics. Also, in Chapter 

2, we survey Wireless Sensor Networks (WSN) with discussion of related work. Chapter 3 is our main 

contribution. It discusses, in details, our Adaptive Multi-flow Real-time Multimedia Transport Protocol 

(AdamRTP) designed for WSN, starting with some definitions and design architecture, and then, it 

explains adaptation techniques used in AdamRTP protocol. Chapter 4 describes our simulation, starting 

with an introduction to the Network Simulator (NS), then, it explains the simulation environment that we 

used to test AdamRTP. Chapter 5 presents the conclusions and future work. 
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CHAPTER II 

LITERATURE REVIEW 

2.0 General 

This chapter presents a background of the Real-time Transport Protocol (RTP), which is used to send 

real-time multimedia applications over best-effort networks such as the Internet, followed by a 

presentation about RTP Control Protocol (RTCP). Then, it surveys the new emerging networks, Wireless 

Sensor Networks (WSNs), explaining some of their applications and limitations. Afterwards, some related 

work is presented with their limitations in delivering real-time multimedia over WSNs. 

2.1 RTP and RTCP protocols 

The Real-time Transport Protocol (RTP) provides end-to-end delivery services for data, such as 

interactive digital audio/video, with real-time characteristics. RTP is a standard specified in RFC 1889 

[Sch96]. More recent versions are RFC 3550 [Scf03] and RFC 3551 [Sch03]. 

RTP does not provide any mechanism to ensure timely delivery of packets or provide any sort of 

QoS guarantees. It relies on lower-layer services to do so. RTP does not guarantee delivery of packets or 

prevent out-of-order delivery. RTP protocol uses sequence numbers and timestamp for each packet that 

allows the receiver to determine the appropriate location of a packet for play out. 

According to RFC 3550 [Scf03], the RTP suite (RTP/RTCP) provides the following services: 

1. Payload-type identification: specifies the type of content being carried. 

2. Sequence numbering: sequence number of packets. 

3. Time stamping: used for synchronization and jitter calculations. 

4. Delivery monitoring. 
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Figure 2: RTP and RTCP 

As shown in Figure 2. The RTP suite consists of two closely-linked parts: 

1. The Real-time Transport Protocol (RTP): RTP data protocol is used to carry data that has real­

time characteristics. 

2. The RTP control protocol (RTCP): used to monitor the delivery to provide quality of service and 

used to collect statistical information about the participants in the session. 

2.1.1 The Real-time Transport Protocol (RTP) 

The RTP data protocol is used for real-time data transmission. The application layer at the sender 

partitions the data and adds its own header information. Then it forwards the packet to the lower layers, 

where each layer (transport, network, and data link layers) add their own header, until received by the 

receiver which strips out all extra headers until the application gets the original data back. RTP header 

information is discussed next. 

IP Header : UDP Header RTP Header RTPpayload 

Figure 3: RTP payload and header 
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RTP Payload forms the actual real-time multimedia data that is being transferred. RTP header 

contains information related to the payload e.g. payload type, sequence number, timestamp, etc. as shown 

in table 2. 

The RTP header has the following format: 

Table 2: RTP Protocol Structure [Sd'CB] 

2 

V 

1 

P 

1 

X 

4 

CSRC 
count 

1 

M 

7-bits 

Payload type 

16-hits 

Sequence number 

Timestamp 

Synchroni/^tion source (SSRC) 

Contributing source 

Version (V): 2 bits. Version of RTP. The newest version is 2. 

Padding (P): 1 bit. If this bit is set to 1, this means that this packet contains one or more additional 
padding at the end. 

Extension (X): 1 bit. If set, the fixed header is followed by one header extension. 

CSRC count (CC): 4 bits. The number of CSRC identifiers. This number is more than one if the payload 
of the RTP packet contains data from several sources. 

Marker (M): 1 bit. The marker is used to allow significant events such as frame boundaries to be marked 
in the packet stream. 

Payload type (PT): 7 bits. It identifies the format of the RTP payload. E.g. PCM, MPEG2 video, etc. 

Sequence number: 16 bits. Initially the sequence number is randomly set and then it will be incremented 
by one for each RTP data packet sent. It can be used to detect packet loss. 

Timestamp: 32 bits. It represents the time that the packet has been created. Timestamp can be used for 
synchronization and jitter calculations. 

SSRC: 32 bits. Each source will choose a unique random number to identify itself from the others. 

CSRC list: 0 to 15 items, 32 bits each. Contributing sources for the payload contained in this packet. The 
number of identifiers is given by the CC field. 
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2.1.2 RTP Control Protocol (RTCP) 

RTCP works in conjunction with RTP to monitor data delivery and to send periodical statistical 

information about each and every participant in the current session. Its main functions are: 

• QoS Monitoring: 

The main function of RTCP is to monitor data delivery and to convey identification information about the 

participants in the on-going session. The monitoring function if performed by employing feedback 

reports. RTCP uses two main reporting packets. The first called Sender Report (SR) and the other is the 

Receiver Report (RR). SR carries information about transmission and reception statistics from active 

senders. Whereas, RR carries information about reception statistics from active receivers. 

• Source Identification: 

RTCP Source DEScription (SDES) packet contains an identifier called canonical name or CNAME, 

something like user@host. It is used to identify a participant during the session in case of a conflict with 

synchronization source identifier (SSRC). SDES may contain also extra information about the 

participants like email, phone, location and notes. 

• Bandwidth & Transmission interval: 

RTCP control packets can overwhelm network resources if not managed properly, to prevent that, and to 

allow RTP to scale up to a large number of session participants, control traffic is limited to a maximum of 

5 percent of the overall session traffic, out of this 5 percent, RTCP allocate 75% to receivers and 25% to 

senders. This limitation is enforced by regulating the rate at which RTCP packets are transmitted. Each 

participant sends, via multicast, control packets to others, so they can keep track of the total number of 

participants and use this number to verify the rate at which to send RTCP packets. 

RTCP Packet types 

i carry a variety of information as 



1. Sender Report (SR): Issued by the data sender. It includes the synchronization source identifier 

(SSRC) of the creator of SR packet. Also SR contains the total number of packets and byte sent. 

2. Receiver Report (RR): Issued by the receiver. It contains information about: 

o Fraction lost (8 bits): fraction of packets lost since issuing previous RR. It is calculated as the 

number of packets lost during any given interval divided by the number of packets expected 

during the same interval, 

o Cumulative number of packets lost (24 bits): total number of packets lost since the beginning 

of the session. It is calculated as the number of packets expected minus the number of packets 

actually received since the beginning of the transmission. 

o The extended highest sequence number received (32 bits): A random number generated by 

the sender at the beginning of the session, then incremented by one for each generated RTP 

packet. 

o Interarrival jitter (32 bits): an estimate of the statistical variance of RTP data packets 

interarrival time (more in subsection 3.3.1). 

o Timestamp (32 bits): can be used to estimate the round-trip delay between a sender and the 

receiver. 

3. Source Description (SDES): contains the canonical name (CNAME) that identifies the source, more 

information in subsection 2.1.2. 

4. Goodbye (BYE): When a source is no longer active or decides to leave the session, it sends an RTCP 

BYE packet. The BYE notice can include the reason for leaving the session. 

5. Application-Defined (APP): provides a mechanism for applications to define and send new 

application definitions (not defined in the standard). 
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2.2 Wireless Sensor Networks (WSNs) 

The rapid advancement in Micro-Electro-Mechanical Systems (MEMS) and wireless communication 

technologies have enabled the integration of sensing, actuation, processing, and wireless communication 

capabilities into tiny sensor devices. This sub-section presents and surveys WSNs and their limitations. 

2.2.1 Introduction 

Wireless Sensor Networks (WSNs) are composed of many tiny, low-cost, low-power and scattered 

devices called sensor nodes. Each node integrates a processor, memory, transceiver, and power source in 

one small device that has the ability to observe, process, and send data about observed phenomenon to its 

neighboring nodes destined to a central processing unit sometimes referred to as a sink. A sensor node 

should have the ability to process as much information locally as possible instead of just disseminating 

raw data to save energy, because radio frequency (RF) communication is the key energy consumer 

[EstOl]. Usually the main source of energy in a sensor node is a battery. Therefore, the lifetime for any 

node depends on the lifetime of the battery itself. For these reasons, many Media Access Control (MAC) 

protocols have been proposed to turn radio communication on and off periodically instead of just listening 

to the channel all the time e.g. SMAC [YeW02]. Energy conservation is one of the main obstacles to any 

proposed protocol in sensor networks, while maintaining high QoS measurements is the main goal in 

traditional networks [Aky02]. 

Sensor nodes are densely and randomly deployed. This can provide better accuracy and more 

energy saving since nodes can use short-range communication. However, if not managed properly, data 

redundancy and collisions may occur. For example, in a forest, hundreds of nodes can be programmed to 

inform a central sink if the temperature exceeds 45° C. When the event occurs, many nodes may 

disseminate at once the same information to the sink, resulting in data redundancy and implosion at the 

sink. To solve this problem, while maintaining a degree of reliability, data aggregation techniques can be 

used to combine and summarize the data coming from different sources into one data stream [Mad02]. 
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2.2.2 Applications 

Wireless Sensor Networks enjoy a large variety of applications. Because the sensor network is wireless, it 

can be deployed almost anywhere and anytime. One sensor network cannot be designed to fit all type of 

applications. They are application-specific networks, which are capable of achieving specific set of 

operations like weather condition monitoring. For these reasons, Sensor Networks applications are 

categorized into five main categories [Aky05]: environmental applications, health, home, military and 

other commercial applications. 

1. Environmental: weather (temperature), natural disaster (flood), and natural species (animal and 

plants) 

2. Health: patients (monitor condition 24/7), doctor (locating), and drugs 

3. Home: home automation and security 

4. Military: track enemy movements 

5. Commercial: factories (track inventories), traffic (traffic control and safety) 

2.2.3 Communication Protocols of a WSN 

WSNs, like any other network architectures, share almost all OSI layers, but with slight differences. In 

this section, we discuss the two most important layers that concern us, application and network layers. 

2.2.3.1 Application Layer: 

QoS may be interpreted in two different perspectives [Chen04]. The first perspective defines QoS as 

quality perceived by the user or application. Another perspective defines QoS with respect to the network 

and how the network is able to provide QoS to users or applications. We can redefine the first type as a 

set of rules or parameters set by a user or an application to get the desired service from the network. For 

example, the user can ask the network to send the data in pairs to achieve higher reliability. 
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In a user/application perspective, many parameters can be defined by the user to achieve some QoS in 

WSNs: 

1. Fidelity: A user can instruct the network to send their queries back to the sink in pairs, or do not 

accept any event that has been seen by a number of nodes only. 

2. Update (Refresh): Sensors should send data to the sink every period of time, even if there are no 

events. 

3. Mode: A user/Application defines how the sink will interact with events. In general, four data 

delivery models are defined: event-driven, query-driven, continuous, and hybrid [Til02]. 

From a network perspective, providing QoS to an application or a user defines new QoS parameters: 

1. Query processing: It is the ability of a WSN to perform in-network processing instead of sending 

raw data to the sink. For example, a sink may send a query "What is the highest temperature in 

the forest?" In response to this query, each sensor node sends back the temperature to the sink 

which in turn calculates the highest temperature or let the nodes in the network find it out 

themselves and then send the result only. This can be accomplished with the help of aggregation 

mechanisms. A Tiny AGgregation Service (TAG) [Mad02] is one approach to combine related 

data sent by the nodes into one compact record based on a set of aggregation values specified by 

queries. 

2. Coverage: High coverage is a key factor to a robust sensor network and is considered one of the 

QoS measures [MegOl]. It discusses the ability to provide the largest area of coverage possible 

using the lowest number of sensor nodes. Generally, nodes are deployed either randomly or based 

on a predefined map. Random deployment usually suffers from lack of coverage. This can be 

solved by allocating some extra nodes manually during network runtime. 

Having good coverage algorithms can save power and improve sensor network connectivity. In 

an area that is covered by multiple sensors we can turn some sensors off (save power) or instruct 
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one or two sensors only to sense the environment (less redundant data). k-UC and k-NC are two 

algorithms proposed to determine how well each sensing area is covered [Hua03]. A related 

problem to coverage is exposure that measures the ability of a given network to observe an object 

over a period of time [MKQ01]. 

3. RTP (multimedia streaming over WSNs): The Real-time Transport Protocol (RTP) [Scf03] 

provides end-to-end delivery service for real-time audio or video. RTP adds timing and sequence 

information to every packet allowing the reassembly of packets so that it reproduces real-time 

audio or video. 

The Real-time Control Protocol (RTCP) is responsible to maintain, control, and provide QoS 

feedback in an RTP session. In addition, both senders and receivers send reports to each other to 

synchronize the delivery of packets. 

Implementing RTP as is in a WSN can suffer from some problems. First, it requires high caching 

capabilities to save state information at end sensors. Second, scalability can be another problem 

as a WSN may consist of hundreds or even thousands of nodes and it has scarce bandwidth. 

Sending "high quality" audio or video streams is usually not required in WSNs. However, some 

modifications to RTP are essential before implementing it in a WSN. More discussions about 

RTP limitations are in section 2.4.1. 

2.2.3.2 Network Layer: 

The network layer deals mainly with determining the route from source to destination and managing 

traffic problems. Generally, the network layer is responsible for end-to-end packet delivery, whereas the 

data link layer is responsible for node-to-node (hop-by-hop) packet delivery. Routing in sensor networks 

is different from routing in traditional network because each sensor does not necessarily have a global 

unique ID thus selecting the next hop node becomes harder. Moreover, in a WSN, each node acts as a 



sensing and routing node at the same time. Routing protocols in a WSN can be categorized as in [Akk05], 

as follow: 

1. Data-Centric: Data is disseminated among sensors without the need for global unique ID. It 

depends on the naming of desired data. 

2. Hierarchical: Sensors are controlled by a sensor (cluster-head) to aggregate data. A cluster-head 

is either a special (more powerful) node or an elected sensor in each cluster. 

3. Location-based: These protocols are location-aware usually by utilizing a GPS. The ability to 

find the location makes it easier to route data to a single and specific region instead of 

broadcasting traffic to all regions. 

4. QoS based: Protocols that ensure some QoS requirements such as minimum cost path: in terms of 

energy, low throughput, or delay. 

Our concern here is QoS based routing protocols. Relatively few protocols have been proposed. A recent 

survey [Akk05] identifies three protocols only as QoS-aware, as follows: 

1. Sequential Assignment Routing (SAR) [SohOO]: is a QoS routing protocol that builds a table of 

paths between the source and destination. SAR creates multiple trees each rooted from 1-hop 

neighbor node of the sink, it tries to avoid nodes with very low QoS and energy reserve. The 

table is used for multi-path, energy efficiency, and fault tolerance. But SAR suffers from the 

overhead of maintaining the tables and states of the network inside each sensor. When WSN 

becomes very large, there is a scalability problem. 

2. SPEED [HeT03]: This is a real-time communication protocol for a WSN that provides soft real­

time end-to-end guarantees. It uses location-based mechanisms to find the route to the sink. By 

employing location awareness, SPEED can calculate distance. Thus, it can find out the time it 

takes to deliver packets to a destination prior to admission (end-to end delay). In addition, it can 

handle congestion. SPEED maintains a table for immediate neighbors only. It does not maintain a 

routing table or per-destination state. Therefore, its memory requirements are minimal. It does 
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not provide any energy-awareness mechanisms other than spreading traffic uniformly through the 

• entire network. 

3. Energy-Aware QoS Routing Protocol [Akk03]: This protocol is concerned mainly with power. It 

finds a least cost and energy efficient path that meets certain end-to-end delay requirements 

during the connection. Additionally, a class-based queuing model is employed to support both 

best effort and real-time traffic simultaneously. The protocol captures the nodes' energy reserve, 

transmission energy, error rate, and other communication parameters to calculate the 

communication link cost. However, it is based on the concept of end-to-end applications, which 

may not be appropriate in some WSNs and it is too complex [Che04]. 

2.2.4 QoS in WSNs 

Regular wired networks send data between nodes mainly without the knowledge of the nature of the 

carried data (data transparency). They use the end-to-end communication model mainly. Therefore, 

parameters like delay, bandwidth, jitter, and loss can provide acceptable QoS if managed properly. 

However, in WSN, these parameters are not fully applicable because sensor nodes communicate mostly 

using non-end-to-end model. That is to say, each node communicates only with its neighboring nodes 

(hop-by-hop model). This means that no connection needs to be established between source and 

destination at the beginning of the transmission process. Another problem arises from the fact that 

intermediate sensor nodes have the ability to generate data in addition to routing it. Along with the most 

challenging problem which is energy consumption, all these factors generate new QoS parameters like 

coverage, exposure, energy cost, and network life time. 

The problem of coverage can happen when no sensor node observes and informs the sink about 

an event. This may happen because of noisy channels, deployment location, or network management 

[Che04]. Exposure is related to coverage that provides measures of how an object can be observed by a 

sensor over a period of time. Energy cost defines the process of finding the best route to destination 
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according to energy conservation, while network lifetime is the total time of a WSN until it is unable to 

satisfy user's needs. 

Implementing the two QoS models of the Internet on a WSN is not practical. IntServ [Bra04] 

depends mainly on reserving the bandwidth between source and destination while saving state 

information on each intermediate node (more discussion about Intserv can be found in 1.3). This is 

impractical in a WSN for three main reasons. The first reason is the complexity to achieve such service. 

The second reason is the limited memory capability in each sensor node that can't save per-flow state 

information. The third reason is because the route usually is not known between the source and 

destination at the beginning of the transmission process. Implementing DiffServ [Nic08] in a WSN faces 

another problem beside complexity. That is to say, the core ideas behind DiffServ is queuing and 

prioritizing packets based on a service priority level. Queuing requires large memory which normally a 

sensor node does not have. 

Reliability, as a QoS parameter in WSNs, refers to the ability to correctly sense events and to 

successfully deliver data from sensors to sink and vice versa. Reliability protocols are divided into two 

groups: Event-to-Sink and Sink-to-sensor. 

Event-to-Sink transport carries information usually about observed phenomena. In most cases it 

might be very critical data which needs to be reliably communicated to the sink. Several protocols have 

been proposed such as Reliable Multi-Segment Transport (RMST) [Sta03] and Event-to-Sink Reliable 

Transport (ESRT) [San03]. Sink-to-Sensor transport usually carries queries or update control information. 

A protocol such as Pump Slowly Fetch Quickly (PSFQ) [Wan02] is proposed for reliable transfer of tasks 

and reprogramming the WSN nodes. 

What makes QoS in WSN different? 

Sensor nodes are small in size. Therefore, each node is equipped with limited batteries, a processor, and a 

transceiver that leads to restricted power source, slower processing capabilities, and constrained 
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communication power. These limitations have caused new challenges that are discussed briefly as 

follows: 

1. Power: This is considered the most critical limitation. Therefore, almost every protocols proposed 

considers the energy problem. The main power consumer as discussed earlier is communications, 

so high compression and local data processing should be done on each node before dissemination. 

Achieving a better service (QoS) is always at the price of energy [You04]. 

2. Bandwidth: it is one of QoS parameters. The lack of bandwidth presents more difficulties in 

achieving QoS in WSNs. Using data compression and utilizing different bandwidth capabilities 

based on the nature of the stream are two approaches to overcome the scarce of bandwidth 

[Kim05]. 

3. Memory size: The limitation of memory (cache) size affects most proposals to enhance WSN 

networking capabilities. In some cases, local memory is not enough to load the whole operating 

system, and to implement extra QoS measures. 

4. Standardization: The lack of standardization in WSNs makes it hard to implement a QoS 

solution. ZigBee1 may be considered to be a first attempt. 

5. Lifetime: The nature of a WSN lifetime is limited because of the fact that most nodes operate on 

nonchargeable power sources like batteries. Another reason is the ease of node damage. 

6. Density: It leads to data redundancy. Although it may help to achieve reliability but it may add 

also overhead and consume power to aggregate traffic to the sink. In addition, it may add some 

sort of latency and complexity to QoS design [Che04]. 

7. Application diversity: A WSN is consider to be application specific rather than general purpose, 

carries hardware and software needed only for a certain application. The vast number of 

applications in a WSN offers different QoS requirements. 

ZigBee is a low-cost, low-power, wireless mesh networking standard (http://www.zigbee.org) 
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2.2.5 WSNs Limitations 

WSNs inherit almost all challenges from regular Wireless Local Area Networks (WLAN) and Mobile Ad 

hoc Networks (MANET) in addition to the following [EstOl] [Aky02]: 

1. Each sensor node suffers from a very limited power source, not like PDAs or laptops which are 

usually recharged. 

2. A sensor network topology faces frequent changes due to external forces like animals, vehicles, or 

humans. It faces also internal reasons like power or software failure. 

3. In most cases, a sensor node does not have a global ID, which makes most of the current network 

protocols inapplicable to a WSN. 

4. Sensor networks operate mainly without any human intervention and they should be self-

configurable. 

5. Sensor nodes are densely deployed. This increases redundancy and collisions. 

6. Sensors have the ability to know the nature of information they are carrying, unlike traditional 

networks where intermediate nodes only forward packets of data. 

7. Sensor nodes normally use the broadcast communication model, while traditional networks use 

point-to-point communication. 

For all of the above reasons, implementing QoS in Sensor Networks differs from regular QoS 

implementations in other types of networks. 

2.3 Adaptive Applications 

Adaptive applications are applications that can adapt to current network state (e.g. congestion and channel 

error) by changing some of its behaviors, e.g. encoding rate and/or media quality. 

Adaptations of multimedia applications can be implemented at a number of layers of the network 

stack. For example, at the physical layer, an adaptive power control is used to equalize the received power 
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for all nodes in the wireless network. This problem is caused by the attenuations that a signal transmitted 

through radio channels may face, such as path loss due to the long distance, and shadowing caused by a 

shielding obstacle. 

At the data link layer, error control protocols are used to recover from wireless channel error. Two 

main error recovery mechanisms are used: Automatic Repeat Request (ARQ), and Forward Error 

Correction (FEC). ARQ used to retransmit the lost packets while FEC transmits some redundant data with 

the original packet. In most cases, the use of hybrid ARQ/FEC protocol improves the performance of 

error control schemes for wireless links. An adaptive combination of both protocols helps the network to 

send adjustable amount of redundant information according to channel error rate. However, in fixed 

coding scheme, a high waste of bandwidth may occur during normal behavior of the network since the 

frequent redundant information is not necessary due to the low bit error rate of the channel. 

At the network layer, a routing protocol can adapt either to network's needs or user's needs. That is to 

say, if a network is suffering from limited energy source, in this case an adaptive power-aware routing 

protocol is necessary to avoid draining nodes with limited power. Moreover, if a network is suffering 

from high error rate, so according to the level of the error rate, a routing protocol can duplicate sending 

messages to ensure reliability. At the user level, a user can choose between different levels of reliabilities. 

Accordingly, the routing protocol can send more than one copy of the packet from source to destination to 

ensure a sort of reliable service. 

At the transport layer, current transport protocols, e.g. TCP, do not provide smooth congestion control 

for multimedia applications. Thus, the need for an adaptive congestion control that suits both the 

networking and video coding communities is necessary. The need for an adaptive congestion control that 

understands and differentiates between different applications and user needs and adjusts sending rate 

accordingly to deliver maximum congestion-free throughput. As an example, the Reception Control 

Protocol (ReCP) [Kyu05] which is a TCP clone in its general behavior. It uses an adaptive congestion 

control algorithm that monitors the wireless random loss rate and delay dynamically, then adjusts its 
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congestion control adaptation parameters to compensate the loss rate and delay components introduced by 

the wireless link. 

At the application layer, the application can adapt to changes in the network state by several 

techniques such as media encoding, compression, media quality, or rate shaping. Our main concern in this 

survey is about adaptive applications. Therefore, a detailed discussion about each technique is to follow. 

2.3.1 Encoding 

Multimedia encoding is a process of digitizing a sample of any media presentation such as audio, video, 

and graphics. As discussed earlier in section 1.4, an encoder usually compresses the media file. The media 

file is decompressed by a decoder. Encoders have the ability to produce different quality samples out of 

one media presentation. 

Adaptation to network condition changes can be accomplished by a number of techniques at the 

compression level (encoder) such as layered encoding [Cha03]. In layered encoding, the encoder divides 

the media into several layers. The base layer carries the most important data beside some critical timing 

information, while the higher layers add progressive level of quality to the original media file. Therefore, 

the receiver can get an acceptable quality when receiving only the base layer. But quality improves with 

the reception of more packets that belong to higher layers. In adaptive multi-layered media encoding, the 

encoder at the sender node can add or drop layers based on network feedback. 

2.3.2 Compression 

Multimedia files are generally huge. That's why we need to compress these files to reduce storage and 

transmission requirements. There are several aspects of the compression techniques that can be used for 

adaptations. For example a technique that can be used for adaptation is using different quantization levels 

and encoding rate. Quantization is a digital signal processing method used to convert discrete signal into 

digital signal. The encoding rate is the rate at which the original media file is sampled in order to create 
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the digital file. A higher sampling rate produces higher quality media files. For example, in a compact 

disc (CD), an analog recording is converted to a digital signal sampled at 44,100 Hz (44 KHz) and 

quantized with 16-bits (2 bytes) of data per sample. 

Another technique that can be used for adaptation is by using different levels of Discrete Cosine 

Transform (DCT) [Ahm74] methods. DCT helps separate the media file into parts (or layers) of different 

importance (priority). The base layer carries the most important media information and additional layers 

improve the quality. In the event of congestion, lower priority layers can be dropped to reduce the sending 

rate. 

Compression techniques are categorized into two groups: Lossly and lossless compression. Lossy 

compression methods produce a much smaller compressed file than lossless methods but with less media 

quality. A user or encoder can decide which compression method to use and how much data loss to 

introduce and make a trade-off between file size and image quality. 

2.3.3 Media Quality 

Multimedia files consist usually of audio or video or a combination of both. In a media file that consists 

of both audio and video media, an encoder encodes usually each media separately. Humans are more 

sensitive to audio than video, therefore, choosing a lossless compression method to encode audio while 

using a lossy compression for video can help produce a better quality multimedia files while preserving a 

smaller file size. The quality of media file is represented by a number of bits that are used to sample a unit 

of time. An encoder that uses a lower bit rate produces a lower media quality file and therefore creates 

lower file size. However, a higher bit rate produces higher quality and bigger file size, e.g. "An MP3 file 

that is created using the mid-range bit rate setting of 128 kbit/s will result in a file that is typically about 

l/10th the size of the CD file created from the original audio source"2. 

http ://en. wikipedia. org/wiki/Mp3 
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Therefore, adaptation of quality can be done by reducing the bit rate when the network suffers from 

congestion resulting in lower quality until the network state goes back to normal where it increases the bit 

rate to produce a better quality. 

2.3.4 Rate Shaping 

Encoders can encode media file using Constant Bit Rate (CBR) and Variable Bit Rate (VBR) [Lak98]. In 

CBR, the encoder uses the same speed rate to encode the whole media file. This can be simpler but may 

waste some space when encoding simple sections (e.g. audio pause segments). In VBR, the encoder uses 

different encoding speed rate for different segments of the same media file. The advantage of VBR is that 

it produces a better quality-to-space ratio when compared to a CBR-based file of the same size. 

Rate shaping techniques try to adjust the rate of traffic generated by the encoder according to the 

current network conditions. A rate control mechanism for video in the Internet [Bol94] was developed to 

provide a simple feedback control mechanism that can be used to prevent video sources from swamping 

the resources of the Internet. The rate shaping is achieved by adjusting some parameters of the video 

encoder, specifically the refresh rate, the quantizer, and movement detection threshold. 

Feedback 

Video source w 

Figure 4: Network feedback control 

Receivers send feedback information (e.g. packet loss rate) to the sender's coder periodically, see 

figure 4. The coder computes the average loss rate to estimate the network load and selects a maximal 

output rate value according to it. 

^ / i d e o output 
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2.4 Related work and comparison 

Sending real-time multimedia over wireless sensor networks is a new topic that has not yet been fully 

explored. So, the process of finding a closely related work to AdamRTP was hard. Many approaches are 

available for sending real-time multimedia over wired or wireless network e.g. Ad hoc network. These 

approaches are concerned mainly on number of methods such as modifying the coder, either by using 

adaptation techniques [AtiOl] or by using Multi-Layer and Multiple Description Coding techniques 

[Wan05], or a combination of both [Dur08]. Other methods are by using a real-time transport or routing 

protocol e.g. RTP [Scf03] and SPEED [HeT03]. Further proposals take the Cross-layer approach e.g. 

FireFly [Man07]. In this section we will discuss in details some approaches than uses a combination of 

these approaches to facilitate sending real-time multimedia over wireless network and if possible WSN. 

One protocol which is somewhat close to AdamRTP is called (MRTP) which stands for Multi-flow Real­

time Transport Protocol for Ad Hoc Networks [Mao06] (subsection 2.4.1), it uses a combination of an 

MDC and transport protocol techniques to operate over ad-hoc networks. Another protocol is SPEED 

(subsection 2.4.2) which is a routing protocol that helps with real-time data delivery over WSN. Other 

protocol called Adaptive Multiple Description Coding for Internet Video (subsection 2.4.3) that uses 

adaptation and MDC coder to help in sending video over the Internet. 

2.4.1 MRTP: Multi-flow Real-time Transport Protocol for Ad Hoc Networks 

MRTP [Mao06] is designed to allow real-time application the ability to send real-time data over Ad hoc 

networks. It uses an MDC encoder and decoder to split a stream of data into several flows then sends each 

flow on a separate path. MRTP is a transport protocol that could be implemented in the user space of the 

host's operating system. "Given multiple paths maintained by an underlying multipath routing protocol, 

MRTP and its companion control protocol, the Multi-flow Real-time Transport Control Protocol 

(MRTCP), provide essential support for multiple path real-time transport. This includes session and flow 

management, data partitioning, traffic dispersion, timestamping, sequence numbering, and Quality of 

Service (QoS) reporting" [Mao06]. 
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MRTP protocol is a session-oriented protocol, this means a session needs to be established prior 

to any data transmission. A three-way handshaking is initiated from the source node (either sender or 

receiver) using HelloSession and ACKHelloSession messages, this gives both parties an opportunity to 

agree on some parameters such as number of flow to be used. During the session, some flows may be 

unavailable, due to node failure or severe congestions, in this case, the receiver sends a DeleteFlow 

message to the sender, the sender in return delete the affected flow and redistribute the assigned 

remaining packets over other active flows. When a new path is found, the routing protocol informs MRTP 

protocol about this new path, accordingly, a new flow can be added to the session by initiating an 

AddFlow message. MRTP generate a periodical QoS reports using Sender Report (SR) and Receiver 

Report (RR) that carries both per-flow and per-session statistics. When packets of different flows arrive at 

the destination, the receiver stores these packets in a buffer for reordering (according to sequence number 

and timestamp found in the header) and jitter compensation. 

AdamRTP looks similar to the MRTP. However, AdamRTP is designed for real-time multimedia 

applications while MRTP is for any real-time application. AdamRTP eliminates many of the RTP 

functionalities to simplify the process of delivery, while MRTP uses the whole RTP suite besides adding 

some extra features such as flow splitting and flow managements. Moreover, MRTP is designed for Ad 

hoc networks, not Wireless Sensor Networks, and, as we discussed in section 2.2.5, a WSN has extra new 

requirements that any new proposed protocol should consider. Furthermore, MRTP is a session-oriented 

protocol, although we believe in multimedia streaming this is not necessary. Finally, MRTP does not 

consider power consumption at all. 

2.4.2 SPEED: Stateless Protocol for Real-Time Communication in Sensor Networks 

SPEED [HeT03] is a location-aware and QoS routing protocol that is designed for real-time 

communication in WSNs. SPEED provides soft-realtime end-to-end guarantees. The protocol requires 

each node to maintain information about its neighbors and uses geographic forwarding to find paths. The 

core component of SPEED protocol is The Stateless Non-deterministic Geographic Forwarding algorithm 
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(SNGF) which is responsible for collecting information about neighboring nodes, such as location, fast 

and slow neighbors, and delay estimation. Based on this information, SPEED can decide the path between 

the source and destination. Delay estimation is calculated by counting the time elapsed when a node 

receive an ACK packet in response to a previous transmitted packet. Accordingly, SNGF selects the next 

hop node based on this delay value. SPEED performs better in terms of end-to-end delay when compared 

to other Ad hoc routing protocols such as Dynamic Source Routing (DSR) and Ad-hoc On-Demand 

Vector routing (AODV). Moreover, SPEED claims that by selecting the shortest path between the source 

and destination in terms of number of hops, it can reduce the energy consumed for transmission. SPEED 

provides adaptations only at the MAC layer by locally dropping or buffering packets at congested areas. 

SPEED is not a multi-path aware protocol. It does not have timestamping and packet sequencing 

capabilities. A newer version of SPEED that supports multipath is called MM-SPEED [Fel06]. 

2.4.3 Adaptive Multiple Description Coding for Internet Video 

Adaptive Multiple Description Coding for Internet Video [Lot03] is an adaptive scheme that uses 

Multiple Description Coding (MDC) techniques to send video over the Internet. The main feature of this 

scheme is to alternate between two simple MDC schemes depending on the network state and the 

underlying visual content. The video content can change from low to moderate or high motion scene. 

Therefore, it is important to design an MDC scheme that intelligently adjusts the coding scheme 

according to visual contents in addition to network conditions. 

The two simple MDC schemes used are temporal sub-sampling and spatial sub-sampling. The concept of 

sub-sampling is often used in image or video compression where information is sampled at lower 

sampling frequency to reduce the amount of data to be stored [Won06]. Temporal sub-sampling used in 

this scheme splits the original video sequence into even and odd frames with equal quality. On the other 

hand, spatial sub-sampling constructs even and odd lines of the video image with different quality. Then, 

each stream could be decoded independently using two separate codecs or serially using a single codec. 

After transmitting these descriptions over packet lossy networks, some descriptions or part of it may be 
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lost. Therefore, a state recovery algorithm that has access to both descriptions at the receiver tries to 

reconstruct the best quality video out of the received descriptions. 

This scheme is mainly designed for video transmission over the Internet. Furthermore, it does not 

consider real-time multimedia transmission or address the special requirement of WSNs. 

2.5 Summary 

In this chapter, we surveyed the most important topics that we think are related to our proposed protocol. 

Starting with a detailed study about the Real-time Transport Protocol (RTP) which provides a set of 

mechanisms for delivering multimedia data with real-time characteristics such as online conferencing. 

Moreover, we discussed Wireless Sensor Networks (WSNs) with details about their architectures, 

applications, and limitations, emphasizing on techniques that have been developed to achieve QoS over 

such limited networks. Also, a study about Adaptive Applications is presented discussing some of the 

limitations that current proposed solutions are facing when delivering real-time multimedia applications 

over WSNs. Finally, some related works are presented such as MRTP, SPEED, and Adaptive Multiple 

Description Coding for Internet Video with comparison against AdamRTP 
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CHAPTER III 

ADAPTIVE MULTI-FLOW REAL-TIME MULTIMEDIA TRANSPORT PROTOCOL FOR 

WSNs: A D A M R T P 

3.0 General 

This chapter describes our main contribution. We start with an overview, then provide detailed 

description of AdamRTP and its design architecture. Then, the adaptation techniques are presented. At the 

end is our summary. 

3.1 Overview 

Consider an area that is covered by many sensors that are equipped with audio and video capabilities. 

Generally, when an event occurs, the sensor that sensed the event generates a media representation of the 

event and divides the stream into many flows using an MDC encoder. Then, it forwards these flows to the 

sink over multiple paths. The sink merges the media, then decodes the media by a decoder and makes it 

available to the user directly or probably over the Internet, as shown in figure 5. 

To accomplish that, we assume that each sensor has a fair size of internal cache which can be 

used to store continuous multimedia (audio/video) files of the surrounding environment. The sensors do 

not send continuous streams of data to the sink unless an event triggers the source/sender sensor to do so. 

This prolongs the life of each sensor node. For example, a triggered event could be the hearing of the 

word "HELP" or the detection of a waiving sign. The sender sensor is equipped with a coder that is 

capable of generating multiple flows out of one stream called Multiple Description Coding (MDC). 

A flow consists of data packets transferred from the sender to the receiver using a certain path, 

while a session consists of one or more flow which carry a single real-time multimedia stream between 
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sender and receiver and necessary control packets. A path/route is the physical route that a flow uses to 

reach the destination. 

user 

DilHi! 

I|t Sensor nodes 
IP A 

Figure 5: AcJamRTP, sender generates media presentation of an event and sends it to user using multi-flows 

Each flow routes to the sink using a different path (if possible). We can always start with one or 

two flows, then increase the number of flows (up to n flows) until something wrong happens, e.g. severe 

packet loss or failure of an intermediate sensor on the path used. AdamRTP may function over any 

multipath routing protocol such as the Highly-Resilient, Energy-Efficient Multipath Routing in WSNs 

[Gan01]orSEER[Nas07]. 

The receiver generates a Receiver Report (RR) packet every time unit e.g. every one second, 

combining statistical information about all previously received flows in the current interval. Interval is the 

time between issuing the previous RR from the sink and the current RR. Based on the RR feedback, the 

sender tries either to increase the number of flows if network state is uncongested or minimizes the 
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number of flows or lowers its transmission rate if there is congestion until the network state goes back to 

normal. Detailed discussion about network adaptation is given in section 3.4. 

3.2 AdamRTP Description 

AdamRTP employs no connection establishment mechanism between the sender and the receiver at the 

beginning of the session. The sender simply sends the real-time multimedia data to the sink as soon it 

detects something. In general, the multimedia stream goes through the following 5 stages: (AdamRTP 

implements stages 1, 4, and 5) 

1) Encoding and partitioning: sensors are equipped with a small and moderate quality camera. For 

example, a camera which can capture video of resolution 640x480 pixels at 30 frames-per-second 

can be considered acceptable, adequate, and small to fit in one small sensor node. Moreover, this 

camera is enough to fulfill the job of delivering a good quality of video. The stream of video 

generated by the camera passes into a coder that compresses it and divides it into n flows using an 

MDC aware coder. AdamRTP has the ability to compress and partition the video stream using 

some partitioning methodologies such as thinning and striping [Bus02]. Once partitioned, each 

portion is assigned a flow number and a sequence number, then the flow is sent to the sink by a 

separate route (if possible). 
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Figure 6: Thinning a media stream into two flows 



In thinning way of partitioning, given in figure 6, a media file is divided into equal-size blocks, each 

block contains a number of multimedia frames (audio or video). Then, each block is assigned to a 

path in a round-robin scheme. Each flow contains less number of flow than the original media file, 

this relieves the nodes on each flow from exhausting its bandwidth, power, and computational 

resources. Additionally, the pauses found between blocks on each flow, can give intermediate nodes 

more time to receive, queue, then transmit packets that belong to certain block of media. 

Original 
media file 0 

so 

1 2 3 4 

S 1 

5 6 7 8 9 10 11 ... 

r~ 
B 

Flow 1 

Flow 2 

Flow 3 

Flow 4 

SO, BO S3.B1 S2,B2 S1,B3 

S1,B0 S0,B1 S3,B2 S2.B3 

S2,B0 S1,B1 S0,B2 S3,B3 

S3,B0 S2,B1 S1,B2 S0,B3 

Figure 7: Stripping media file into 4 flows 

Whereas stripping divides the main media files into equal size blocks (B), then according to the 

number of the flow to be used (S), the coder fills each flow with blocks (B) from different substreams 

in interleaved fashion. Interleaving is a process of rearranging blocks of a stream in non-adjacent 

manner to increase performance and mitigate the effect of packet loss. However, it increases latency 

because blocks that belong to a certain multimedia frame will not arrive at the same time [Kur03]. In 

Figure 7, an original media stream is divided into a number of blocks of size (B). Since the number of 

flows to use is 4, we arrange every 4 blocks into stripped substream (S). The coder then chooses first 

block from the first 4 stripped substream (SO, SI, S2, and S4) and sends each block to the destination 

on a separate flow. 



2) Path Selection and assignment: usually finding the best route to the sink is the job of the routing 

protocol. AdamRTP assigns only its own header information (such as flow id, session id, 

sequence number, and a time stamp), then passes this information to the lower layer. 

3) Packet routing: It is preferable to find disjoint paths back to the sink, so we can distribute the 

stream of data into flows all over the WSN, thus saving more power and facing less congestion. 

But, this requires a huge amount of overhead trying to find totally disjoint paths from source to 

destination resulting in a waste of bandwidth and memory. 

4) QoS feedback: AdamRTP generates periodical statistical QoS reports summarizing the quality 

received by all previous flows since the last QoS report. However, unlike RTP, where the sender 

and receiver must generate these reports, in AdamRTP only the receiver generates the report. This 

will free the network for more data. The receiver report (RR) is almost similar to RR in RTP, 

where it has information about the fraction of packets lost in the current interval, accumulation of 

packets lost since the beginning of the session, highest sequence number received, the interarrival 

jitter, and some other values as shown in figure 8. Based on these RRs, the sender acts 

accordingly. That is to say, it may increase or decrease quality of media and number of flows. 

RR report arrived at 23.034 $econd(s) 
1: Flow ID - 1, Session ID - ! 

Packet received - 8 
Fraction of Lost • 0.000000 
Cumulative number of lost packets -13 
Extended Highest sequence number received • 251 
Estimated interarrival time jitter «• 0.00038? 
Average energy level for all node* in this flow « 993.105655 

2: Flow ID - I, Session ID - 1 
Packet received * 22 
Fraction of Lost« 0.000000 
Cumulative number of lost packets » 0 
Extended Highest sequence number received • 477 
Estimated interarrival time jitter« 0.000171 
Average energy level for oil nodes in this flow « 989.020833 

3: Flow ID « 3. Session ID « 1 
Packet received » 22 
Fraction of Lost» Q.000000 
Cumulative number of tost packets » 0 
Extended Highest sequence number received » 478 
Estimated interarrival time jitter» O.O0O2H0 
Average energy level for all nodes in this flow » 389.813000 

Active Flow(s) during this period » Z 3 
Transmission rate tor all flows during this period » 70400 bps 

Figure 8: AdamRTP Receiver Report (RR) including QoS summary about 3-flows 
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5) Reassembling at the sink: Once the sink receives a packet, it extracts the session and flow id from 

its header and queues it until a complete set of packets received up to a certain time threshold 

called the playout delay. Then, the sink decodes the received stream back to its original 

multimedia file. We assume the sink is more powerful and has more computational capabilities in 

terms of processor, memory, and storage. Thus, the decoder is more complex than a coder in 

normal sensor nodes. Because we can have more than one flow in one media session, each may 

take a different route, this can generate two types of jitter. The first type is jitter between two 

consecutive packets in the same flow and the second type of jitter is across the flows. This is 

caused when different flows arrive at different times. So, we need to have a large buffer to store 

the received packets and then wait some time before we play the media back. 

3.3 AdamRTP Architecture 

Unlike network architectures in almost all other type of networks, e.g. the Internet, the OSI model of 

layers in WSNs is mixed up. Recently, a cross-layer design for WSNs [Aky06], where two or more layers 

are merged has been proposed. The supporters of the cross-layering think that sensor nodes are designed 

usually for specific tasks, as we explained earlier in section 2.2. Because sensors are small in size, they 

think it will be more convenient to unify layers to simplify the design. However, it is not practical to 

implement the whole seven OSI layers in a single sensor that is only tasked to sense 

the temperature! 

For these reasons, we somehow tried to implement AdamRTP to operate 

over the network layer directly. Although it is not considered to be a pure transport 

layer or an application layer, it tries to unify the tasks of both layers (See figure 9). 

Figure 9 AdamRTP Layer 

AdamRTP 

Network 

MAC 

Physical 
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Normally, a transport layer is responsible for four main tasks: 

1. Segmentation/Reassembly 

2. Error Recovery (using checksum) 

3. Reliable transport service 

4. And in case of Internet layer model, TCP provides congestion control 

AdamRTP is a connectionless, non-reliable protocol that fragments, then reassembles packets. Large 

datagrams are broken into small ones to fit the frame size of AdamRTP, which is 200 bytes. When these 

datagrams arrive at the receiver, the receiver reassembles them and merges back to the original packet 

format. AdamRTP can (optionally) provide a simple error recovery mechanism using checksum but we 

did not implement it. By using adaptation techniques, AdamRTP can avoid congested or dead 

intermediate sensors and it can adjust the sending rate which can be considered as a simple form of 

congestion control. 

3.3.1 AdamRTP Packet Format 

AdamRTP adds its own header information to the "payload data" to be sent. Then, network protocol adds 

in turn its own header information, as shown in figure 10. 

Mac Header I Network header AdamRTP Header I AdamRTP Payload data 

Figure 10 AdamRTP Pavload and Header 



AdamRTP Header Format: 

t [ I 1 i | 3 | 4 1 i | 8 | 7 | » I » | 10 I II 1 12 I 13 I 14 } » [ X | 17 | W | W | 10 1 21 1 B I P I 24 I 35 | 26 T 27 128 1 29 I 30 t ?1 

V PT Session ID Flow ID 

Node's counter 

Energy level 

Extended Sequence Number 

Timestamp 

Figure 11: AdamRTP header format 

V: AdamRTP version. 2 bits 
AdamRTP version number. It is set to 1. 

PT: Payload Type. 7 bits 
Specifies the format of the AdamRTP payload. This field contains the standard audio/video 
encoding used, e.g. JPEG, H261. 

Session ID. 16 bits 
A random number specifying the session used to carry all the multimedia flows belonging to the 
steams in the session for a specific event. This can be useful if we have more than one source of 
AdamRTP traffic. 

Flow ID. 7 bits 
A number specifying the flow number which is used to carry the payload from source to 
destination, e.g. if the current number of the flows in the session is 3, then the Flow ID can be 
either 1, 2, or 3. 

Node's Counter. 32 bits 
Sender initializes this field with 0. Then, each node forwarding an AdamRTP packet along the 
path between the sender and the receiver increments this by 1. When the packet arrives at the 
sink, it will divide the total energy level stored in the next field by the node's counter resulting in 
a value that estimates the average energy level of all nodes participating in delivering this packet. 

Energy level. 32 bits 
Each node along the path between the source and the destination adds its own energy level to the 
value of this field. 

Extended Sequence Number. 32 bits 
The extended sequence number is incremented by 1 for each n flows. For example, if we are 
using 3 flows in the session, then the extended sequence number is incremented by one after the 
transmission of every 3 packets, each belonging to a different flow. More details in section 4.3. 
Sequence number can be used to arrange out-of-order packets arrived at the destination. 

Timestamp. 32 bits 
Used for synchronization and calculation of delayed packets and jitter. 



RR Header Format: 
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Figure 12: RR header format 

V: AdamRTP version. 2 bits 
AdamRTP version number, set to 1. 

RR Count. 10 bits 
Sequential Number for number of RRs that have been sent. 

Packet Type. 8 bits 
A field specifies the type of reporting packet. So far, we have one type as we are using RR only. 

Sequence Number. 8 bits 
Specifies a general sequence number for the whole session. 

Number of Flows. 4 bits 
How many flows are active and used during the current session. This can help determine number 
of blocks required. 

Session ID. 16 bits 
A number specifying the session used to carry all the multimedia flows belonging to one stream 
for a specific event. 

Flow ID. 16 bits 
A number specifying the Flow number which is used to carry the payload from source to 
destination, e.g. if we use 3 flows, Flow ED will be 0, 1, or 2. 

Fraction Lost. 8 bits 
A percentage of packets lost since last RR issued by the receiver. 
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number of packets lost 
fraction tost 

number of packets expected 
Where: 

number of packet lost = number of packet expected — numer of packet received 

number of packets expected = (specific hightest sequence number received — base_seq_no + 
1—preinoiis value of expected value in previous RR 

Cumulative number of lost packets. 24 bits 
Total number of packets lost since the beginning of the session. 

Average Energy. 32 bits 
The average energy level of all nodes in a particular flow delivered on a path calculated by the 
sink. 

Extended highest sequence number received. 32 bits 
This field indicates the highest sequence number received using a specific flow. 

Estimate inter-arrival time jitter. 32 bits 
Jitter estimation for a specific flow. 

jitter = | (rect- rec^^-isenti- sent^^) | 
where i denotes current packet 

sefiti - setiti-x 

Sender A A , y — ^ *v 
\:Perfect Delivery K ""•Delay-jitter:; 

Receiver . m fc 

rec, •- rec. 

Figure 13: jitter calculations 

Figure 13 illustrates how jitter can be occurs. In a perfect network, packets arrive at the receiver in a 

timely fashion, where the difference between the arrival time of previous packet and the arrival time of 

current packet is equal between all delivered packets. But in congested network, some packet may arrive 

late than others causing a jitter. Jitter can vary from time to time according to receiving packet time. 

42 



3.4 Adaptations 

The other main building block of the AdamRTP protocol is the adaptation mechanism. AdamRTP 

provides a number of adaptation mechanisms to enhance QoS and to extend the life time of the WSN. 

Statistical QoS feedback information helps the protocol acquire information about the state of the 

network, then allows it to act accordingly on time using adaptation mechanisms. 

AdamRTP provides three different adaptation mechanisms: 

1. Number of flows: the sender adjusts the number of flows dynamically to suite the current WSN state. 

When the receivers detect that a certain active flow is delivering late real-time multimedia packets 

(which we consider lost), or no packets at all, the receiver informs the sender about this incident in 

the next RR. When the sender receives the RR, it deletes this flow. The sender adds another flow 

only to maintain a minimum number of flows. Moreover, AdamRTP adds a new flow even if there is 

no packets loss at all. This happens if the network is uncongested. That is to say, it adds a new flow 

if the number of flows is less than the maximum allowed. More details about changing number of 

flow according to network state are to follow. 

2. Rate adjustment: adjusting the sending rate can ease the delivery of packets when the network is 

facing congestion. If the network state is congested and deleting an affected flow does not help 

alleviating congestion, AdamRTP will decrease the sending rate i.e. decrease media quality. By 

decreasing the media quality, we decrease the number of packets that represent the number of frames 

used to play that media. However, if the network reports no significant congestion (according to the 

value of fraction of lost that each individual flow is reporting) for 3 consecutive RRs, AdamRTP 

increases sending rate up to a threshold. 

In the NS simulator, RTP's default transmission interval rate is 3.75 ms. This means every 3.75 ms a 

new RTP packet will be issued by the sender. Since RTP's packet size, in default NS 

implementation, is 210 bytes, this means RTP default transmission rate is 448 kbps. Experiments 
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showed that this transmission rate is not achievable on multi-hop wireless networks. The best we can 

achieve using our grid topology was around 65Kbps. Therefore, we set the default transmission rate 

to this value and define two rate thresholds, the upper-bound rate threshold MAX_RATE set to a 

certain value, e.g. 70 kbps, and the lower-bound rate threshold MIN_RATE, set to another static 

value, e.g. 60 kbps. Therefore, according to the network state, we increase or decrease the 

transmission rate by a small value, e.g. 0.1 until reaching either threshold or network state changes. 

More details can be found in the pseudo code below (see page 46). 

3. Power: AdamRTP checks continuously for cumulative power used by each path separately. If power 

is draining fast from a certain path used by a flow, AdamRTP instructs the sender about this 

incident. Sender sensor, in turn, instructs routing protocol to use different path if possible. Each node 

along the path adds its own energy level to a field in the header and increment another field that act 

as a node's counter. When the sink receives this packet it divides the total number of energy level 

over number of node's count to get the average of power level for all nodes that participate in the 

process of forwarding the packet from the source to the destination. The receiver sends the average 

power value to the sender in the next RR for each flow. 

It is important to mention that AdamRTP does not adapt the power level, but it reacts upon the level 

of power of all nodes along the path and accordingly instruct routing protocol to change the path for 

a newer one to distribute power usage over more sensors before exhausting the power of all the 

nodes. 

Our adaptation algorithm, at the sender, checks continuously for RRs that have been issued 

periodically from the receiver, and examine each flow separately. It calculates the fraction of packets lost 

for each flow found in the RR received. If the loss is less than the minimum threshold (MIN_TH), it will 

mark the network as "GOOD". When receiver receives two RRs stating that network state is good for every 

individual flow, then rate adjustment adaptation algorithm will increment the sending rate by a small value, 

e.g. 0.1, until reaching a maximum sending rate threshold (MAX_RATE). On the other hand, if the loss is 
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greater than minimum but less than maximum loss threshold (MAX_TH), it will consider the network as 

"ACCEPTABLE". Checking for packet loss between minimum and maximum threshold allows the sender 

not to change the number of flows right away (to prevent oscillations). However, if the network loss is 

greater than the maximum loss threshold (MAX_TH), the network will be marked as "BAD" and actions 

should be taken. The number of flows is decreased until reaching a single flow. But, before deleting a flow, 

AdamRTP checks for current active number of flows, if number of flows is greater than one, it will delete 

the affected flow right away. But, if the number of flow is equal to one, AdamRTP cannot delete the 

affected flow right away otherwise we will end up with no active flow at all. Therefore, AdamRTP adds a 

new flow and instructs the routing protocol to find a new path for the new flow. Once successful, 

AdamRTP deletes the affected flow. As well, when network is marked as "BAD", the sending rate is 

decreased until reaching a minimum sending rate threshold (MIN_RATE). 

The following adaptation algorithm shows a pseudo code for the "number of flows" and "rate adjustment" 

adaptation techniques. 
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1. numFlows = MIN_FLOWS 

2. FOREVER 

3. Wait for new RR summarizing quality from different flows in the current interval 

4. /*note that RR contains statistics about each flow*/ 

5. Calculate PktLossfor all active flows individually /*calc. average of fraction of packet loss for each flow*/ 

6. /* Derive current network state */ 

/*if PktLoss for each flow is less than minimum threshold*/ 

/*if PktLoss > MIN_TH, but < MAX_TH*/ 

/* network state is acceptable*/ 

/* increase transmission rate if Network was good 

for more than specific number ofRR intervals and 

current transmission rate is less than MAX_RATE */ 

7. For all current flows 

8. IF[flow[numF!ows].PktLoss < MIN_TH) { 

9. network_state = GOOD 

10. }ELSE{ 

11. IF (flow[numFIows].PktLoss < MAX_TH) 

12. network_state= ACCEPT 

13. }ELSE{ 

14. network_state = BAD } 

15. IF(network_state = GOOD) { 

16. IF (previous_network_state = GOOD) { 

17. IF (transmission_rate < MAX_RATE) { 

18. Transmission_rate+= 0.1} 

19. } 

20. IF (numFlows < MAX_FLOWS) { 

21. numFlows++ 

22. Instruct routing protocol to make a new path for the new flow 

23. } 

24. ELSE 

25. IF (network_state = BAD) { 

26. IF (transmission_rate >MIN_RATE) { 

27. Transmission_rate -- 0.1 

28. } 

29. IF (numFlows > MIN_FLOWS) { 

30. Delete flow with largest pktLoss and free its path 

31. numFlows-- /*delete most suffering flow and redistribute remaining packets on remaining flows*/ 

32. } ELSE { 

33. /* We have to add a new flow first so we do not go below the value ofMIN_FLOW/* 

34. Add a new flow; numFlows++ 

35. Delete affected flow; numFlows-

36. } 

37. } /* end of network_state = BAD */ 

38. END LOOP 

/* if network state is BAD, decrease transmission rate 

delete the affected flow */ 
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3.5 Summary 

AdamRTP is a real-time multimedia transport protocol for wireless sensor networks. It uses two 

techniques to achieve good performance and to enhance quality of service. The first technique is the 

multi-flow technique that works by dividing one stream of multimedia into two or more flows and then 

sending each flow on a separate path/route to the sink, if possible. The Multi-flows technique takes 

advantage of the fact that WSNs are usually densely deployed creating many routes between any source 

and destination. The second technique is the adaptation technique to alleviate congestion. AdamRTP 

provides three different adaptation techniques: number of flows, rate adjustments, and power adaptation. 

AdamRTP provides the following advantages: 

1. Distributes the load of multimedia traffic over many sensor nodes instead of a specific set of 

nodes. 

2. Helps increase the lifetime of the whole WSN. 

3. Reduces packet loss (congestion). 

4. Provides set of adaptation techniques to reduce congestion and save energy. 

5. Using multi-flow (with multiple paths) adds additional benefits such as: 

• Error resiliency: if one flow does not arrive, we can construct the media from the other 

received flow(s). 

• Requires less bandwidth and buffer due to the fact that we divide the large stream into 

smaller flows. 
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CHAPTER IV 

SIMULATIONS 

4.0 General 

Simulations were conducted with the well-known, open source Network Simulator (NS) [NS2]. This 

chapter starts with an introduction of NS and lists some of its limitations. This is followed by a 

description of our simulation environment and configuration. Afterwards, different simulation 

experiments are described. We concluded with a summary. 

4.1 Network Simulator (NS) overview 

NS [NS2] is a discrete event simulator designed for networking research. NS provides essential support 

for simulation of TCP, routing, and multicast protocols over wired and wireless (local and satellite) 

networks. NS is a free network simulation application that can be downloaded from the web [ISIUSC]. 

NS is compatible with many operating systems e.g. MS Windows, and UNIX. NS has an open 

architecture that allows users to edit existing or to add new functionality. 

NS is an object-oriented network simulator that uses two programming languages, C++ and 

oTCL. C++ is used for programming the core functionalities of NS, like nodes, protocols, links, queues, 

etc. The other language is oTCL (TCL 'Tool Command Language" + O.O. "Object Oriented" = oTCL) 

which is considered to be an easy and flexible scripting language. This separation has created a more 

powerful and faster core functionally, while enjoying flexible topology script writing. 

The functionalities of a TCL script are to: 

1. Define a network topology, e.g. create two nodes and links them with 10 kbps bi-directional link. 

2. Define a traffic pattern, e.g. when a certain FTP session starts and stops. 
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3. Collect statistics and output the results of the simulation. Results are usually written to files, 

including files for NAM (Network AniMator) [NS2], which is a free animation tool that comes 

with NS. 

NS is a basic non-graphical tool. The output NS provides is very detailed. It gives per packet information 

at MAC, agent, and router levels. 

4.1.1 Wireless in NS 

Wireless implementation in NS was first developed by the CMU/Monarch (Mobile Networking 

Architecture) [MNRCH]. The wireless model consists basically of the mobile node at the core, with 

additional supporting features that allow simulations of multi-hop ad-hoc networks, wireless LANs etc. A 

mobile node is thus the fundamental node object with added functionalities of wireless and mobile node 

such as ability to move within a given topology, ability to receive and transmit signals to and from a 

wireless channel, etc. The difference between wired and wireless node is that a mobile node is not 

connected by means of links to other nodes or mobile nodes but instead it uses Radio Frequency (RF) for 

communication. 

The Wireless model in NS has many features such as: 

1. Complete implementation of the IEEE 802.11 MAC protocol. 

2. Complete implementation of the Address Resolution Protocol (ARP). 

3. Implementations of the following multi-hop ad hoc network routing protocols: 

• Dynamic Source Routing (DSR). 

• Destination Sequenced Distance Vector (DSDV). 

• Temporally Ordered Routing Algorithm (TORA). 

• Ad hoc On-demand Distance Vector (AODV). 
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4. Wireless network interface modeling the Lucent WaveLAN DSSS radio. 

5. Modeling of signal attenuation, collision, and capture. 

6. Two Ray Ground Reflection radio propagation model. 

The Radio Propagation Model is considered to be one of the main factors that evaluates the accuracy of 

the simulator. CMU's NS radio models are implemented better than other wireless simulators but still fail 

to represent many aspects of realistic radio networks, including hills, obstacles, link asymmetries, and 

unpredictable fading [Kot03]. 

4.1.2 WSN in NS 

Up till now, the current implementation of NS does not support the simulation of wireless sensor 

networks. It requires an extension to enable the special features of WSNs. One of the most used 

extensions is MannaSim [ManSim]. MannaSim's goal is to develop a detailed simulation framework, 

which can accurately model different sensor nodes and applications while providing a versatile testbed for 

algorithms and protocols. 

NS with current extensions does not scale well for wireless sensor networks. A recent study 

[Xue07] showed that simulating a WSN with around 80 nodes using AODV routing protocol can result in 

huge number of packet drop. Some possible improvements are needed to work well in wireless sensor 

network environments [Xue07]. 

4.1.3 RTP in NS 

RTP implementations in NS are poor. Officially, the RTP model is barely updated since early releases. 

The implementation of RTP in NS consists of three classes, Agent/RTP, Agent/RTCP and Session/RTP. 

Agent/RTP is responsible for sending RTP data among participants' nodes. The data sending rate by 

default is 3.75ms. Agent/RTCP is used to deliver the RTCP feedback and SDES packets every interval of 
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time (default interval value is 1000ms). The Session/RTP class is used to control the session, compute 

most of the statistical data about the ongoing session, and insert this data in the header of RTCP packets. 

There are hardly any current contributions for RTP under NS. So far, we could find only two 

improvement codes. The first was developed by El-Marakby [E1M01] using ns-2.1. Since then, the 

standard header information of packet.h has changed drastically. The current NS version is ns-2.33. El-

Marakby's enhanced RTP code has provided functionalities like RTCP report packet structure, RTCP 

SRs and RRs. Moreover, El-Marakby corrected major errors with original NS implementations, i.e. 

creation of independent RTCP header instead of using RTP header for RTCP communications, correction 

of severe memory leakage, correction related to RTCP bandwidth fraction and many more. The other 

RTP contributed improvement was developed by Research Unit 6 (RU6) which is part of the R&D 

Department of the Computer Technology Institute [ResU6]. They have extended the functionality of the 

RTP and RTCP code in NS2 to include: 

1. Most of its feedback functions described in RFC 3550. 

2. TCP friendly behavior, i.e. the transmitted flow will consume no more bandwidth than a TCP 

connection. 

One more limitation in the current RTP implementation in NS is that it does not support multiple RTP 

streams running in one network node. Another point, for RTP in NS to be fully functional, it has to be a 

member of a multicast group. However, AdamRTP requires a unicast connection between one sender and 

one receiver only. 

4.1.4 Summary 

NS was developed to assist researchers, students, and industry professionals to simulate and test an 

existing or newly developed network protocol. Currently, NS is considered to be the most popular 

network simulator, for many reasons, such as: 
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1. It supports wide range of topologies and protocols. 

2. It is open source. 

3. Compared to other simulators, it has the largest and most active community. 

4. It is easily extensible by users who are familiar with the software. 

On the other hand, NS has some disadvantages such as: 

1. It is very hard and time consuming to learn. 

2. Hard to troubleshoot. 

3. Not enough detailed documentation. 

4. Hard to get support. 

5. Versions compatibility problem. 

6. Some parts are left without update for a long time such as RTP implementations. 

In conclusion, it is fair to mention other simulators that have the ability to simulate WSN and/or RTP, 

such as OPNET3, OMNET++4, and SensorSim5. 

4.2 Simulation Environment and Configuration 

We used the Network Simulator (NS-2) version ns-2.31. NS was installed on two types of system. First 

system is Ubuntu Linux version 7.10 installed on Sun dual AMD Optron 64-bits workstation. The other 

system is a Sun Fire V880 with Solaris version 5.10. This system is equipped with 8 processors and 16 

GB of memory size. 

AdamRTP requires a multipath routing protocol. NS-2 does not have any built-in wireless 

multipath routing protocol. Therefore, we found one external extension called "Ad hoc On-demand 

Multipath Distance Vector routing" (AOMDV) [Yua05]. The NS implementation of AOMDV was 

http://www.opnet.com/ 
http ://www.omnetpp. org/ 
http://nesl.ee.ucla.edu/projects/seesorsiin/ 
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developed at the Computer Science Department at Stony Brook University. Unfortunately, this code is 

fairly old and does not compile well with recent NS releases. So, we had to create a number of predefined 

paths between source and destination instead of developing a whole new multipath routing protocol that 

works with the new releases of NS. Instead, we used a protocol called DumpAgent. This protocol uses a 

broadcast technique to get an answer from a desired destination. For example, if many nodes are close to 

each other and we want two nodes to communicate, the source will send a broadcast Address Resolution 

Protocol (APR) message to all of its neighbors. Only the desired destination will answer back with 

another APR message before packet transmission begins. If the destination is not within the source's 

range of communication, the source node will get no answer. So, actually this is not a real routing 

protocol because we have to instruct each node individually where to send the next packet. 

This limitation in NS has affected our ability to conduct a real simulation of multipath technique 

and therefore ruled out obtaining highly accurate results. But, we believe the percentage of error is very 

small because we used DumpAgent to simulate all different scenarios and therefore every situation has 

been treated the same way. 

NS-2 supports many wireless Medium Access Control (MAC) protocols such as IEEE 802.11, 

SimpleMAC and sMAC. We used IEEE 802.11 as it is the dominant MAC protocol for wireless 

networks. By default, the feature of CTS/RTS6 is disabled, as research has shown that exchanging 

RTS/CTS packets will degrade the performance when the hidden terminal7 is not an issue because most 

data traffic goes into one direction, as well, it will consume more energy. 

6 RTS/CTS (Request to Send / Clear to Send) is a mechanism used by the 802.11 wireless networking protocol prior 

of exchanging any message, mainly developed to solve the hidden terminal problem. 

7 The hidden node problem occurs when two nodes (a and b) want to communicate with another node (c) but both 

nodes (a and b) are not visible to each other. 
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Another building block for the wireless model in NS is the Radio Propagation Model that is used 

to predict the received signal power of the packet. That is to say, each wireless node has a receiving 

threshold at its physical layer. If the signal power of the received packet is below the receiving threshold, 

it will be marked as error and dropped by the MAC layer. NS-2 implements three different propagation 

models: free space model, two-ray ground model, and the shadowing model [YeW]. In our simulation, we 

used the TwoRayGround model which considers both the direct path (clear line-of-sight path) and a 

ground reflection path. This model gives more accurate prediction at a long distance than the free space 

model. 

4.3 Implementations 

Creating an AdamRTP implementation using NS-2 consists mainly of two parts: creating the C++ core 

functionality of the protocol and designing the network topology using oTCL. We would like to take a 

top-down approach in explaining how AdamRTP works, starting from creating the network topology, 

how many sensors in our network, which node initiates the stream (source), and which node is the 

destination. Also, the oTCL script defines the different paths that data and AdamRTCP packets use. 

We created a 10 by 10 grid of sensor nodes (total 100 nodes) as shown in figure 14. Each node is 

about 50 meters apart. We changed the values of RXThresh_ (Receiving Threshold) and Pt_ (Power 

Transmit) which control the transmitting power. Because, by default, these values were set as if the nodes 

are 250 meters apart. While creating the nodes, we assigned both AdamRTP and AdamRTCP agents to 

every created node in the topology. By doing this, each sensor node can act as a stream generator and a 

packet forwarder when necessary. 
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Figure 14: Network of 10 x 10 sensor node. The arrows show 6 different paths 

Node 50 is the source of traffic, while node 59 is the destination (sink). We created 6 equal (in terms of 

number of hops) predefined paths between these two nodes, as follows: 

• Path 1: 50-61-62-63-64-65-66-67-68-59 

• Path 2: 50-51-52-53-54-55-56-57-58-59 

• Path 3: 50-41-42-43-44-45-46-47-48-59 

• Path 4: 50-61-72-83-84-85-86-77-68-59 



• Path 5: 50-41-32-23-24-25-26-37-48-59 

• Path 6: 50-51-52-43-44-55-66-67-58-59 

When we instruct our oTCL script to start sending packets, the script is responsible for defining 

which path to use (as we are trying to emulate a routing protocol), it will use path 1 for single flow and 

use path 1 and path 2 for 2 flows and so on. 

The session id, flow id, and sequence number are generated by the oTCL script depending on the 

number of flows used and send all these values to the AdamRTP C++ program by bind linkage method 

that NS-2 is equipped with. For example, if we are using 3 flows, the sequence number will be 

incremented by one every 3 generated packets, as shown in figure 15. 

Seqno 1 Seqno 2 Seqno 3 Seqno 4 Seqno n 

Figure 15: Flow II) mid Sequence Number assignment 

Throughout the path to the destination, each intermediate node adds its own energy level value and 

computes the average power value. This value will be calculated for each flow individually and when the 

receiver sends its own RR packet, it adds the average power value in the RR and sends it back to the 

source. 

The C++ implementation part of AdamRTP consists of three major files: adamrtp.h, adamrtp.ee, and 

adamrtcp.ee. The header file adamrtp.h contains the C++ declarations, classes, and variables used for 

AdamRTP implementations. We defined 4 major parts here: 1) AdamRTP and AdamRTCP header 

structure, 2) AdamRTPStats which holds most of the statistical information about the session, 3) 
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AdamRTPAgent which is responsible for all AdamRTP functionalities, and last, 4) AdamRTCPAgent 

which is responsible for AdamRTCP tasks. Both agents are implemented on the sender node and the sink 

(destination). 

The file adamrtp.cc manages all packet transmission details and computes statistical information 

about data packet transmission for each individual flow. Once the oTCL script instructs adamrtp.cc to 

send a packet using a specific path, the AdamRTP agent at the sender, stores the sessionid, flowid, 

sequence number, and the timestamp in the adamrtp_header and then sends it to the destination. Once 

received, the AdamRTP agent, at the destination, extracts sessionid, flowid, sequence number, and the 

timestamp from the header and starts computing statistical information such as: 

1. Number of packets received: a counter that is incremented by one for every received packet. 

Note that a different counter is required for every different flow. 

2. Extended Highest Sequence Number Received (ehsnr): stores the sequence number received 

for each separate flow. 

3. Transit time: is the time required by one packet transmitted from the source to the 

destination. At the destination, it is calculated as follows: 

transit time = recv. time — sent, time 

sent.time is extracted from timestamp field found in the received AdamRTP packet. 

recv.time indicates the current time the packet is received. 

4. Jitter: is the variation of packet delay between current transit time and previous transit time 

for each individual flow. It is calculated at the destination as follows: 

instantaneous jitter (d) = | transit timecurrent — transit time-
previous i 

]ittercurrent — jitterprev + ( —— ) 



These values (in previous bullets 1, 2, 3, and 4) are stored in the AdamRTPStats class and are updated 

every time a packet is received. AdamRTPStats stores information such as: flow id (flowid), extended 

heighted sequence number (ehsr), packet sent (pktsend), packet received (pktrecv), transit time (transit), 

and jitter. 

After an interval of time (by default 1000ms), the AdamRTCP agent, implemented in the sink, starts 

building the RR packet and sends it to the sender. Building the RR packet requires AdamRTCP to access 

the information that is stored in the AdamRTPStats class to compute the following: 

1) receivedjnterval = AdamRTPstats.pktrecv - previous_pkt_recv /* Total number of 

packets received during the current interval is the difference between current number of packets received 

and previous value of number of packet received stored from previous RR */ 

2) expected = AdamRTPstats.ehsr - base_seqno +1 /* The number of packets expected is 

computed by the receiver as the difference between the highest sequence number received and the first 

sequence number received */ 

3) expectedjnterval = expected - previous_expected /* Difference between current and 

previous expected value. If this value equals to 0, this means all packets expected have arrived */ 

4) cumulative_pkt_lost = previous_cum_pkt_lost + (expected - AdamRTPstats.pktrecv) /* the 

cumulative number of packets lost calculated by adding the previous lost value and the difference 

between what is expected and the actually received packets */ 

5) lost_interval = expected_interval - received_interval /* the lost value in the current 

interval equals to the difference between the number of packets expected in the current interval and the 

number of packets received during the same interval. In a healthy network, this value is negative, where 

expectedjnterval equals to 0 and received interval equals to a value > 0 */ 
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6) Then compute fraction of packets lost, as follows; 

/* if the fraction of packet loss during the interval is 0 or negative (meaning no packet loss) or number of 

packets expected during the interval equals to 0 (meaning no expected packets had arrived in this 

interval), then, fraction of packet loss equals to Zero */ 

if (lost_interval <= 0 || expected_interval == 0 ) { 

fraction = 0 

/* but if lost interval is greater than 0 (packet loss occurred) and expected interval does not equal to zero 

(not all expected packets had arrived), in this case the value of fraction of packets lost equals to the 

division of lost interval by expected interval */ 

} else { fraction = lost_interval / expectedjnterval } 

After getting these results, AdamRTCP agent stores them in the adamrtcp_header of the RR packet 

then, sends the RR packet to the sender. Figure 16 shows a result of RR packet summarizing a session of 

3 flows. 
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— -- m report arrived at 7.942 secwd(s)-
1: Flow ID * 1, Session ID * 1 

Packet received = 14 
fraction of Lost = 9.««§» 
Ctiaulative number of lost packets » e 
Extended: Highest sequence number received = lfll 
Estineted in te ra r r i va l t i n * j i t t e r = $,$9*2:42 
Average energy level for a l l nades In th is flow = 99?.2S3iB8 

1 ; flow IB = 2, Session IP = 1 
Jacket received = ? 
Fraction of Lost * 8.33088S 
Cunulatwe lumber of lost packets- - 138 
fxtended Highest sequence nyisber received = 83 
Estimated i r i terar r iva l time J i t t e r = 8.486226 
Average energy level for a l l nodes in th is flow = 996.944SM 

3;: flow 10 = 3, Session 10 = 1 
Packet received ~ i 
f ract ion of Lost = S.iSi88i 
Cuisulative nunber of lost packets = 1? 
isrtentted Highest sequence nuisber received = 7fl 
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Average energy level for a l l nodes in th is flew = §§€,141123 

Active Flow(s) during this period = 1 2 3 
Transmission rate for a l l flows during th is period =• 6S866 bps 

Figure 16: AdainRTCP's RR packet 

The sender reviews the result of each flow separately and judges whether to add or to remove a 

certain flow. The decision is made based on the value of Fraction of Lost. The value of Fraction of Lost 

for each flow is monitored individually. If this value, for all current active flows, is less than a MIN_TH 

value, i.e. network state is good, and the current number of flows is less than MAX_FLOWS, the sender 

adds a new flow after at least two RRs confirming this. By doing so, the sender makes sure that the WSN 

is free of congestions for some time before throttling the network with another new flow. If the Fraction 

of Lost value, for any given active flow, is greater than MIN_TH but less than MAXJTH, the sender 

marks the network as ACCEPTABLE and no action is taken so far. But, if the value of Fraction of Lost, 

for any given active flow, is greater than MAXJTH, even if the value of Fraction of Lost for all other 

flows is less than MIN_TH, then the affected flow is deleted unless the current number of flows is equal 

to MESLFLOWS. If number of current flows is equal to MTN_FLOWS, then the sender adds another flow 

before deleting the bad one. Because if we delete the current flow first, then the current number of active 

flows will go below the value of MIN_FLOWS. That is why we need to add a new flow first. 
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4.4 Experiments 

The AdamRTP script can simulate packet streaming based on a period of time or specific number of 

packets. For example, we can instruct the AdamRTP script to send a stream of packets for 10 minutes or 

we can tell the script to send 1000 packets only. As a result, we'll have a variety of simulations' options 

to estimate the results accurately. Each node is initialized with 1000 (Joules) as a source of power. 

Sending a packet consumes usually double the receiving power. A WSN could suffer from node failure 

and some external traffic that belongs to other streams or users. We randomized the node failure and the 

sources of external traffic. We have 3 different sources of external traffic, as shown in figure 17: 

1. External traffic number 1 = from node(20) to node(29) 

2. External traffic number 2 = from node(4) to node(94) 

3. External traffic number 3 = from node(80) to node(89) 

Four different types of simulation experiments were conducted. The first compares regular RTP 

behavior with AdamRTP. The second experiment compares single-flow with multi-flows performance. 

The third experiment compares AdamRTP with and without adaptations. Finally, the performance of 

AdamRTP in terms of energy consumption is evaluated. 

Before experimentation, some terms need to be clarified. A congested network means a network 

that has an external source of traffic. As shown above, there are three external sources of traffic, one 

source of external traffic will be active at any time. Network with node failure is a network that suffers 

from some node failure. Node failures takes a uniform random probability of nodes to die for a random 

short duration, e.g. 2 seconds, starting from node 11 up to node 88 (excluding edge nodes). AdamRTP 

default packet size is 200 bytes. Transmission rate that we mostly start our script with is around 65 kbps. 

This means the sender sends a packet every 24.5 ms8. 

ms stands for millisecond, 1 second = 1000 ms 
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Figure 17: A .100 node topology with some sources of external traffic 

4.4.1 RTP vs. AdamRTP 

A new oTCL script was created for RTP with exactly the same topology and environment. We sent 1000 

packets from node 50 to node 59 as shown in figure 14. The path was determined by the Ad hoc On-

Demand Distance Vector (AODV) [Per03] routing protocol which is a single path routing protocol that is 

designed for Ad hoc networks. We simulated two scenarios, a healthy WSN network, where there is no 

node failure at all and no external traffic and a WSN with some node failure but no external traffic. 



When running both scripts, AdamRTP and RTP, over a healthy network, we received all the 

packets sent in both scenarios. The average remaining power for the whole WSN resulted by both scripts 

is summarized in table 3: 

Table 3: Power consumption comparison between RTP vs. AdamRTP 

Minimum Node Power (J) 
Average Node Power (J) 

RTP 
972.02 
981.82 

AdamRTP with 5 flows 
985.06 
993.23 

We calculated the average remaining power of the whole WSN, not only the sensor nodes that 

were involved in the transmission process because in wireless networks when one sensor sends any 

packet it will affect all surrounding nodes, even if this packet is destined for one node only. For example, 

in Figure 17, if node number 57 wants to communicate with node number 58, all nodes surrounding node 

57 (which are node numbers 46, 47, 48, 56, 58, 66, 67, and 68) will consume some power receiving the 

ARP message that is generated by node 57 (the source) but only node 58 (the destination) will answer 

back with another ARP message telling the source that I'm here. This is part of the IEEE 802.11 MAC 

protocol specifications. Therefore, we felt the need to find out what is the effect of using many flows on 

the power usage of the whole WSN not only the nodes that were actively forwarding the packets between 

the source and the destination. 

From Table 3, it is clear that AdamRTP consumed less power than RTP to send the same number of 

packets. However, when we instruct one node to fail for some time at a specific point of time on both 

scripts, then calculate the bandwidth9 and the average power, we obtained the following results (shown in 

figure 18 and 19). 

Bandwidth calculated by multiplying number of packets received per second x packet size x 8 
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Bandwidth of AdamRTP vs. RTP 
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Figure 18: Bandwidth AdamRTP vs. RTP with node failure at the 8th second for I second duration 

In Figure 18, when the node failed at the 8th second for about 1 second, AdamRTP was able to send 

packets using other flows. Only one flow was affected by the node failure, while in RTP, it took 

sometime to discover the failure before the routing protocol (AODV) could act upon this and rediscover 

another path to avoid the path that it is currently using which contains the dead node. Moreover, the 

sending rate in AdamRTP increases by time (up to a threshold) as long there is no packet loss as part of 

its adaptation technique. More rate adaptations are explained in Section 3.4. 

The average power that remains in the whole WSN after sending 1000 packets over a network 

that has node failure is illustrated in Figure 19. Table 3 shows that in a healthy network the power 

consumed for AdamRTP with 5 flows is 1000 - 993.23 = 6.77 J, while Figure 19 shows that the power 

consumed in a network with node failure is 1000 - 993.15 = 6.85 J. AdamRTP with node failure 

consumed less power than when it ran in a healthy network because when the node failed for one second, 

the remaining nodes on the path to destination did not send any packets, thus saving power. 
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Figure 19: Average power RTP vs. AdamRTP over a network with node failure 

4.4.2 AdamRTP single-flow vs. AdamRTP multi-flows 

In this experiment, we compare the performance of AdamRTP in terms of the number of flows. We 

noticed that in a healthy network, where there is no node failure and no external traffic, the performance 

in terms of the number of packets received (received bandwidth) does not improve much because the 

transmission rate of the sender is the same in all cases whether it is using single or multi-flows. However, 

the average power consumption improves because the load of packet transmission is shared among more 

sensors. 

The sender sends a stream of packets over a congested network, where we have randomly failing 

nodes and random external source of traffic (one source of external traffic at a time) as illustrated in 

Figure 17. The sender sends many packets for a duration of 60 seconds. The sender's transmission rate 

average is 70 Kbps, using one to five flows, each case we add one flow and run the script for 100 times 

each (the total running time equals 60 seconds x 5 (experiments) x 100 (times) = 3000 seconds (500 
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hours)). We computed the average packets received and the average power consumed for each case. Table 

4 shows statistical results regarding the number of packets received when running the AdamRTP script, 

implemented in the sender, using one-flow and three-concurrent-flows respectively for 100 times each. 

When using 3-flows, we were able to perform better in terms of number of packets received. Note that the 

minimum value when sending 3-flows is higher than the minimum in 1-flow. This clearly indicates that 

multi-flows is capable of delivering more packets even in worst case scenario e.g. congestion. 

Table 4: Packets received statistics of AdamRTP using one-How vs. three-flows 

AdamRTP 

Mean 

Standard Error 

Median 

Mode 

Standard Deviation 

Minimum 

Maximum 

using 

95% Confidence Interval 

Iflow 
2292 

13.26 

2279 

2409 

133 

1980 

2516 

2292±26 

AdamRTP 

Mean 

Standard Error 

Median 

Mode 

Standard Deviation 

Minimum 

Maximum 

using 

95% Confidence Interval 

3 flows 

2380 

11.59 

2390 

2472 

116 

2057 

2631 

2380±23 

In order to test whether the data indicates differences between the two scenarios in terms of 

number of packet received, we carried out an independent two-sample t-test. The mean and standard 

deviation of the total number of packet received in the multi-flows scenario were 2380 and 116, 

respectively, whereas for the single-flow scenario, these quantities were 2292 and 133, respectively. Since 

the standard deviations were comparable, we used two-sample t-test with the assumption of equal 

variances. The statistic value obtained was 4.954754, which, when compared to a t-distribution with 198 

degrees of freedom, gives a one-sided p-value of 7.75E-07. This is a strong indication that the average 

number of packet received by the multi-flow is statistically significantly higher than that of the single-

flow. 

Figure 20 shows a comparison regarding the average of number of packets received when running 

AdamRTP for 60 seconds over a congested and node failure network for 100 times. 
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Figure 20: Comparison of AdamRTP using a single-How and multi-flows over a congested network with node failure 

There were 5 major experiments that were conducted to produce Figure 20. They are AdamRTP with 1-

flow, 2-flows, ... , up to 5-flows. In all experiments, we instruct AdamRTP script to send packets from 

node 50 to node 59 (see Figure 14). The script ran for 60 seconds over a congested network, where one 

random source of external traffic was active at a time and with some node failure. One random node 

failure on the path between source and destination was active at a time. In our simulation, node failure 

selection takes uniform random probability from node 11 to node 88 (excluding edge nodes), although, 

we believe in real WSNs, number of node failures will not be very large. 

AdamRTP starts always with one flow. If network state is good, AdamRTP will increment number of 

flows until reaching the MAX_FLOWS threshold. The MAX_FLOWS threshold value is fed by the 

script as an argument. Number of flow adaptation technique allows AdamRTP to increment active 

number of flows until maximum threshold is reached or network state goes to BAD where it will delete 

the affected flow and try to find a new alternative path right away. Rate adjustment adaptation technique 



increments the sending rate of the sender up to a threshold (MAX_RATE) until network reports that some 

congestion is occurring, where the sender will decrement the sending rate back to normal but not below 

another minimum threshold (MEN_RATE). 

When a node fails on the path between the sender and the receiver, the receiver detects that there is no 

packet arriving on that flow (path). Therefore, in the next RR interval, the receiver informs the sender 

about this incident. In case the sender has MESf_FLOWS (default value is one), it instructs the routing 

protocol to change the affected path and look for another one. Once the routing protocol locates a new 

path, then the sender starts using this path to send the remaining packets over the new path. If the sender 

is sending more than one flow (multi-flows) and one of the nodes failed on one of the paths, the affected 

flow will be deleted (number of current flows will be decremented by one) and the other current flows 

will continue transmitting packets without interruption. 

From figure 20, it is clearly illustrated that the performance improves when the number of flows 

increases, i.e. when used with adaptations. 

Figure 21 shows a comparison between 1-flow and 5-flows in terms of bandwidth recorded every 1 

second at the sink. 
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Figure 21: Bandwidth used in single-flow and bandwidth used in multi-flows over congested with node failure network 

Figure 21 shows two different simulations. One simulation uses a single-flow AdamRTP, while the other 

simulation uses multi-flows AdamRTP. In case of multi-flows AdamRTP, it starts with single-flow at the 

beginning, then increases the number of flows gradually. In congested with node failure network, 

AdamRTP with multi-flows (5-flows) always maintains bandwidth over 30 kbps except at the beginning 

when the number of flows is minimum. Hence, we can always have some packets delivered even in the 

severe network conditions. However, when running the script for a single-flow, the bandwidth dropped to 

3 kbps at the 28th seconds. Note that this is considered to be very low compared to the behavior of 

AdamRTP with multi-flows. 

Figure 21 shows that the performance of multi-flows AdamRTP fluctuates over time. Because we have a 

network that experiences severe congestion at random times and where the nodes fail randomly, then 

AdamRTP adapts to alleviate these severe network conditions. Note that the chance to use a path that 

suffers from node failure increases when there are multi-flows, where one of the flows can be using a path 

with node failure. 



4.4.3 AdamRTP without Adaptation vs. AdamRTP with Adaptation 

The adaptation techniques in AdamRTP provide flexible reactions to frequent changes in the WSN. Once 

again, the script ran 100 times and the average number of packet received in the four scenarios was 

recorded as follows: when using one flow with and without adaptations, and when using 3 flows with and 

without adaptations. Figure 22 shows the results. 
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Figure 22: AdamRTP adaptation vs. no adaptation 

AdamRTP starts usually with one flow, like slow start phase in TCP. Then, if RR reports a 

congestion-free and no node failure network, AdamRTP will increase number of flows by one until 

MAX_FLOWS threshold is reached. The MAX_FLOWS threshold number is fed to the script as a 

parameter, e.g adamrtp.tcl 5 1000. That is to say, this script sends 1000 packets using up to a maximum 

of 5 flows. 

Two adaptation techniques are applied here: number of flows and rate adjustment. When 

AdamRTP protocol uses single flow only, the sender does not increase the number of flows during the 

transmission. It is always one flow. When using adaptation, AdamRTP may instruct the routing protocol 
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to change the path if packets arrive late, which are considered lost. However, in case of one flow without 

the adaptation scenario, late packets are dropped without the ability to change that affected flow (path). 

In Figure 22, it is clear that AdamRTP acts poorly when using 3 flows with no adaptations 

compared to the behavior of AdamRTP with single-flow and no adaptation. That is because the 

probability of having more node failures on the three paths carrying the three flows is higher compared to 

node failure on a single path carrying a single flow. 

Next figure shows the performance of number of flows adaptation over time when instructing 

AdamRTP to send 3000 packets over congested with node failure network. The transmission time was 69 

seconds. Number of flows was recorded every 1 second. Figure 23 shows the result. 

AdamRTP performance in terms of number of 
flows over a congested with node failure network 
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Figure 23: Change of number of flows over congested wish node failure network 

Figure 23 illustrates the number of flow adaptation technique that AdamRTP is using over time. 

AdamRTP starts with one flow always and after at least 2 RRs confirming that the network is good, it 

increments number of flows by 1 until reaching the MAX_FLOWS threshold, which is 5 in this case. It 

stays with 5 flows until the network reports congestion or node failure, as shown in the 19th second, where 

the number of flows dropped to 3. Next graph is a comparison with Figure 23 where AdamRTP is 

transmitting over a congested network with no node failure. 
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Figure 24: Change of number of flows over a congested network with HO node failure 

Figure 24 shows a better performance than Figure 23. In this case, we instruct AdamRTP to send 3000 

packets over a congested network with no node failure. It is clear that the performance is better compared 

to Figure 23 where the adaptation technique was able to increase the number of flows to reach the 

maximum threshold value most of the time during the simulation period. 

4.4.4 Energy consumption 

Initially, each node in the network is configured with 1000 Joules as a source of power. When a node 

wants to transmit a packet, it consumes twice the amount of power compared to receiving a packet. As a 

result, when we have nodes with limited source of power, a WSN is able to send a little more when using 

multi-flows compared to single flow. That is to say, each intermediate node in the multi-flows scenario 

sends fewer packets, thus saving more power per node. 

We compare two situations here. The first situation is, sending 1000 packets over a healthy WSN, 

where each node has 1000 Joules as source of power, while the second situation when each node has a 

limited source of power (e.g. 50 Joules). We choose a healthy network because in a network with node 

failure, if packet loss occurs on the path to receiver due to node failure, the remaining sensor nodes on the 
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path will not send any packets. Therefore, they consume no power, which is not a fair comparison with a 

situation where we have more node failure. 

Table 5 shows a comparison of the minimum power remaining among all sensors in the WSN and 

the average remaining power for the whole WSN when sending 1000 packets over a healthy network in 

single and multi flows scenarios. See page 63 for an explanation of why all sensor nodes are used for 

power calculation and not just the sensors on the paths carrying the data flows. 

Table 5: Power comparison between single and multi-flows 

Node's Minimum Power (J) -: 
Average Power (J) •;'...•. 

Single-Flow 
983.67 
992.68 

Multi-Flows (5-flows) 
985.75 
993.31 

When comparing Table 3 and Table 5, we noticed that the performance of RTP and AdamRTP 

with single flow in terms of power consumption is different. We think the reason why RTP was 

consuming more power is due to the nature of the AODV routing protocol that RTP was functioning over. 

The AODV routing protocol requires initialization and may refresh the routing table several times during 

the transmission period especially if there is a node failure in the route to destination. This results in 

power consumption greater than AdamRTP which is using a static routing table so there is no need to 

refresh the routing table in the intermediate nodes. Besides that, RTP uses the complete RTCP protocol 

with its complete suite of packet collections such as RR, SR, SDES, BYE and APP. But, AdamRTP is 

using only RR packet which makes AdamRTP simpler and lighter to operate over WSN, therefore, saves 

more power. 

We can derive the following from table 5: Transmitting 1000 packets, using multi-flows, will 

consume (1000 - 993.3053) = 6.6947 (J). Hypothetically, total number of packet that can be sent until the 

WSN dies (1000 x 1000 / 6.6947) = 149,372 packets. While in a single-flow, it is (1000 x 1000 / (1000 -

992.6814)) = 136,638 packets. This means a WSN which has 1000 J as source of power can deliver 

(149,372 - 136,638) = 12,734 packets more by using multi-flows. This is equal to (12,734 x 200 (packet 
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size in byte)) = 2,546,837 Bytes, which is equivalent to about 2.225 minutes of extra video feed when 

using a camera with resolution of 320x240 (QVGA) and MPEG4 compression 10. 

When limiting the source of power to a smaller value (less than 1000 J), AdamRTP with multi-

flows was able to receive more packets than with a single-flow. Because AdamRTP is able to distribute 

the traffic load over more sensors, so each intermediate sensor in case of multi-flows will send fewer 

packets compared to a single-flow scenario. Table 6 shows a comparison between a single-flow and 

multi-flows performance when each node has low source of power. Note that fewer packets are received 

compared to our hypothetical estimate because of the low battery source. According to NS-2 

documentation, a sensor will check for the remaining power level in its own battery. If the value of the 

remaining power is less than the Pt_ (power transmit value), which is the amount of power used to 

transmit the packet, then the sensor will not be able to send anymore packets although it has some small 

amount of power remaining resulting in a node failure. 

Table 6; WSN performance in terms of number of packet received when nodes have limited source of power 

Power=10J 
Power - 3 0 J 
Power = 50 J 
Power = 75 J 
Power =100 J 
Power = 200 J 
Power =1000 J 

Number of packets received 
using Single-Flow 

645 
1936 
3226 
4838 
6451 
12903 
64768 

Number of packets; 
received using Multi-
Flows 
807 
2335 
4048 
6074 
8098 
16196 
83194 

Enhanced 
delivery rate 

25% 
21% 
25% 
26% 
26% 
26% 
28% 

From Table 6, to calculate the percentage change between the two columns (single-flow and 

multi-flows) we need to divide the absolute value of the difference of the second and the first numbers by 

the first number. For example ABS(4838-6074) / (4838) = 26%. This indicates that when using multi-

flows, we can enhance the delivery rate by 26% more than a single-flow method of delivery. 

10 We use "IP Camera Bandwidth & Disk Space Calculator v 2.0" for calculations. Downloaded from 
http://www.video-home-sur%feillance.com/ipcameracalc 
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Figure 23 shows that we were able to extend the life-time of the whole WSN by using a multi-

flow technique and we were able to receive more packets at their expected times, thus enhancing QoS. 

AdamRTP performance over a Network with 
limited source of power 
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Figure 25: AdamRTP performance over a network with limited source of power 

4.5 Summary 

We used the Network Simulator NS-2 for conducting our simulation experiments. In this chapter, we 

explained the simulation environment and configuration followed by a detailed description of 

implementation scenarios. 

We conducted four types of experiments. The first was a simulation comparing our proposed 

protocol, AdamRTP, with original RTP. Second, we showed the advantages of using more than one flow. 

Third, we considered how adaptations, by changing number of flow, could enhance the delivery rate. 

Finally, we compared the energy consumption between AdamRTP and regular protocols that uses single 

flow. 
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The experiments provided evidence that AdamRTP performed better than regular RTP when sending 

multimedia streams over a WSN. Also AdamRTP with its multi-flows and adaptation techniques has 

improved performance in terms of QoS. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 Conclusions 

The need for real-time multimedia applications is increasing. Real-time multimedia applications are 

known to be resource hungry. This affects the capabilities of such applications to operate without some 

limitations over Wireless Sensor Networks which normally suffer from computational and memory 

constrains. Real-time multimedia applications normally require more computational and storage 

capabilities than regular network applications e.g. HTML WebPages and E-mail, beside the need for more 

bandwidth for transmission. The main obstacle to any proposed WSN protocol is power consumption. 

Achieving a good Quality of Service (QoS) is always at the expense of network resources such as power. 

Therefore, we need to achieve a balance between QoS and power consumption. WSNs are usually 

densely deployed. This creates many paths between any two sensors. Therefore, we can utilize this feature 

and divide the large multimedia files into smaller ones and then send each small portion over a separate 

path. This can ease the burden of delivering the multimedia stream from fewer nodes and share it among 

many others. This inspired us to propose Adaptive Multi-flow Real-time Multimedia Transport Protocol 

for Wireless Sensor Networks (AdamRTP), which divides one multimedia stream into many flows using 

an MDC coder, then sends each flow over a separate path (if possible) back to the destination. In addition 

to the multi-flow technique, AdamRTP employs some adaptation techniques that act like congestion 

control. AdamRTP uses three different adaptation techniques: number of flow, rate adaptation, and 

energy. 

Our simulation results show that AdamRTP has enhanced the delivery, specially when the WSN 

is suffering from congestion due to node failure or external source of traffic, It was also able to reduce the 

power consumption and deliver more packets if the nodes have limited power source. We simulated four 

different scenarios. First, we compared AdamRTP with Real-time Transport Protocol (RTP) and the 
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results showed that AdamRTP was able to perform better than RTP in terms of delivery rate and energy 

consumptions. Second, simulation studies confirmed that using more than one flow of transmission 

enhances the packet receiving rate compared to using only one flow in the presence of network 

congestion. Third, simulation experiments are about adaptation techniques. The results showed that using 

adaptation techniques such as number of flow and rate adjustment enhanced the packet delivery rate. Last 

scenario is about energy consumption, AdamRTP was able to transmit more packets when nodes suffer 

from limited source of power compared to single-flow technique. Therefore, AdamRTP successfully 

extends the life time of the WSN. 

5.1 Recommendations 

Some enhancements can be added to AdamRTP for further improvements. In our 

implementations, the coder divides the stream creating multiple flows of approximately equal importance 

(symmetric coding). A different, non-symmetric coding, could divide the media into two different frames: 

Intra-frame (I-frame) that contains all of the information to construct a whole media and Intra-frame (B-

frame) that contains less data than I-frames, and is generated by looking at the difference between the 

present frame and the previous one. B-Frame can be used to enhance the quality of the received I-frame 

and correct errors caused by transmissions. By employing this feature, we could instruct AdamRTP to 

use the most efficient flow to send the packets that belong to the I-frame and another flow to send the 

packets that hold the B-frame. In figure 16, flow number 1 is an example that shows some flows are better 

than others in term of power consumption and packet loss. 

Another possible modification is related to the interval between issuing two feedback received 

reports (RRs). Usually the RR helps the sender to have advanced knowledge about the state of the 

network especially when there is congestion. However, in reality, congestion and node failures are not 

very common, so we can modify the interval of sending the RR and ask the receiver to send its own 

reports only when it detect congestion. By this, we could free the network's bandwidth for sending actual 

data, therefore, saving more power. 
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APPENDICES 

Appendix A 

Terminology 

Name 

Adaptation 

Bandwidth 

Codec 

Disjoint path 

Encoding 

Flow 

Jitter 

Joint path 

Multimedia 

Multiple Description Coding 

Quality of Service (QoS) 

Definition 

Autonomic changes in network state designed to maintain best possible 

communication performance. 

The amount of data that can be transferred over a network connection in a 

given period of time. Bandwidth is usually measure in bits per second. 

Mathematical algorithms used to compress and reduce the number of bytes 

that represent any given multimedia file. 

Two or more paths those are not joint by any intermediate node. 

A process of transforming text, picture, audio and video to a digital format 

using mathematical algorithms for the purpose streaming or downloading. 

Data packets transferred from the sender to the receiver using certain path. 

The unwanted variation in the time between arriving packets, caused by 

network congestion or route changes. 

Two or more paths which are sharing one or more intermediate node 

Presentation of information using audio, video, pictures, and animations 

instead of regular text 

A technique to fragment a single multimedia stream into 2 or more sub-

streams. 

The network ability to provide the end user with maximum availability and 

minimum delay. 

I 
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Real-time multimedia 

Session 

Sink 

Thinning and Striping 

Throughput 

Digital Audio/Video that is considered obsolete if not delivered on certain 

time (deadline). 

One or more flows which carry a single real-time multimedia stream 

between sender and receiver and necessary control packets. 

A more powerful node in terms of power, memory, and computational 

capabilities that other sensors in the WSN usually send data to. 

Traffic shaping technique used to create a new media stream by picking some of 

the elements of the original stream in specific order. 

A rate which a computer or node are using to send or receive data through 

a channel of communication link 
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