1,940 research outputs found

    Enhanced traffic simulation for improved realism in driving simulators

    Get PDF
    © 2018 ACM. The ability to monitor and detect potentially dangerous behaviour in surrounding traffic is vital for the development of intelligent vehicles. However, data collection for these kinds of scenarios is difficult in real-life, and a driving simulator therefore becomes an important substitute. In this paper we present an approach to enhance driving simulators. We experiment on an open source development platform, which is used to test real-life use cases within a simulated vehicle environment. We propose replacing pre-programmed traffic dynamics with real driving data recorded from human drivers in the same environment. This enhances the engagement of the host driver in the more realistically simulated traffic scenario. Signal lights and indicator sounds are also integrated to enrich the driver's sensation. Our preliminary quantitative and qualitative evaluation shows that our enhanced traffic simulation results in an improvement to the driver's perception of the realism of the driving simulator.JL

    Using Travel Simulation to Investigate Driver Response to In-Vehicle Route Guidance Systems,

    No full text
    A major application for developed satellite navigation systems is the in-vehicle route guidance market. As systems become cheaper to purchase and easier to install and indeed car manufacturers begin to fit the equipment as standard in new vehicles, the potential market for such systems in the developed world is massive. But what are the consequences of giving navigational assistance to car drivers? How will drivers respond to this information? Such information is liable to have a big impact upon driver route choice behaviour and is also subject to their interpretation of the guidance and action upon receiving it. This response may change under different travel circumstances. The impact of collective response to driver guidance is also of importance to traffic engineers and city planners, since routing through environmentally sensitive areas or heavily congested corridors should be avoided. The overall network effects are therefore of key importance to ensure efficient routing and minimal disruption to the road network. It is quite difficult to observe real-life behaviour on a consistent basis, since there are so many confounding variables in the real-world, traffic is never the same two days running, let alone hour by hour and a rigorous experimental environment is required, since control of experimental conditions is paramount to being able to confidently predict driver behaviour in response to navigational aids. Also the take up of guidance systems is still in its infancy, so far available only to a niche market of specialist professionals and those with disposable income. A need to test the common publics’ response to route guidance systems is therefore required. The development of travel simulation techniques, using portable computers and specialist software, gives robust experimental advantages. Although not totally realistic of the driving task, these techniques are sufficient in their realism of the decision element of route selection, enough to conduct experimental studies into drivers’ route choice behaviour under conditions of receiving simulated guidance advice. In this manner driver response to in-vehicle route guidance systems can be tested under a range of hypothetical journey making travel scenarios. This paper will outline the development of travel simulation techniques as a tool for in-vehicle route guidance research, including different methods and key simulation design requirements. The second half of the paper will report in detail on the findings from a recently conducted experiment investigating drivers’ response to route guidance when in familiar and unfamiliar road networks. The results will indicate the importance of providing meaningful information to drivers under these two real-life circumstances and report on how demands for route guidance information may vary by type of journey. Findings indicate that the guidance acceptance need not only depend on the optimum route choice criteria, it is also affected by network familiarity, quality and credibility of guidance advice and personal attributes of the drivers

    Motion cueing in driving simulators for research applications

    Get PDF
    This research investigated the perception of self-motion in driving simulation, focussing on the dynamic cues produced by a motion platform. The study was undertaken in three stages, evaluating various motion cueing techniques based on both subjective ratings of realism and objective measures of driver performance. Using a Just Noticeable Difference methodology, Stage 1 determined the maximum perceptible motion scaling for platform movement in both translation and tilt. Motion cues scaled by 90% or more could not be perceptibly differentiated from unscaled motion. This result was used in Stage 2‟s examination of the most appropriate point in space at which the platform translations and rotations should be centred (Motion Reference Point, MRP). Participants undertook two tracking tasks requiring both longitudinal (braking) and lateral (steering) vehicle control. Whilst drivers appeared unable to perceive a change in MRP from head level to a point 1.1m lower, the higher position (closer to the vestibular organs) did result in marginally smoother braking, corresponding to the given requirements of the longitudinal driving task. Stage 3 explored the perceptual trade-off between the specific force error and tilt rate error generated by the platform. Three independent experimental factors were manipulated: motion scale-factor, platform tilt rate and additional platform displacement afforded by a XY-table. For the longitudinal task, slow tilt that remained sub-threshold was perceived as the most realistic, especially when supplemented by the extra surge of the XY-table. However, braking task performance was superior when a more rapid tilt was experienced. For the lateral task, perceived realism was enhanced when motion cues were scaled by 50%, particularly with added XY-sway. This preference was also supported by improvements in task accuracy. Participants ratings were unmoved by changing tilt rate, although rapid tilt did result in more precise lane control. Several interactions were also observed, most notably between platform tilt rate and XY-table availability. When the XY-table was operational, driving task performance varied little between sub-threshold and more rapid tilt. However, while the XY-table was inactive, both driving tasks were better achieved in conditions of high tilt rate. An interpretation of these results suggests that without the benefit of significant extra translational capability, priority should be given to the minimisation of specific force error through motion cues presented at a perceptibly high tilt rate. However, XY-table availability affords the simulator engineer the luxury of attaining a slower tilt that provides both accurate driving task performance and accomplishes maximum perceived realism

    A Testing and Experimenting Environment for Microscopic Traffic Simulation Utilizing Virtual Reality and Augmented Reality

    Get PDF
    Microscopic traffic simulation (MTS) is the emulation of real-world traffic movements in a virtual environment with various traffic entities. Typically, the movements of the vehicles in MTS follow some predefined algorithms, e.g., car-following models, lane changing models, etc. Moreover, existing MTS models only provide a limited capability of two- and/or three-dimensional displays that often restrict the user’s viewpoint to a flat screen. Their downscaled scenes neither provide a realistic representation of the environment nor allow different users to simultaneously experience or interact with the simulation model from different perspectives. These limitations neither allow the traffic engineers to effectively disseminate their ideas to various stakeholders of different backgrounds nor allow the analysts to have realistic data about the vehicle or pedestrian movements. This dissertation intends to alleviate those issues by creating a framework and a prototype for a testing environment where MTS can have inputs from user-controlled vehicles and pedestrians to improve their traffic entity movement algorithms as well as have an immersive M3 (multi-mode, multi-perspective, multi-user) visualization of the simulation using Virtual Reality (VR) and Augmented Reality (AR) technologies. VR environments are created using highly realistic 3D models and environments. With modern game engines and hardware available on the market, these VR applications can provide a highly realistic and immersive experience for a user. Different experiments performed by real users in this study prove that utilizing VR technology for different traffic related experiments generated much more favorable results than the traditional displays. Moreover, using AR technologies for pedestrian studies is a novel approach that allows a user to walk in the real world and the simulation world at a one-to-one scale. This capability opens a whole new avenue of user experiment possibilities. On top of that, the in-environment communication chat system will allow researchers to perform different Advanced Driver Assistance System (ADAS) studies without ever needing to leave the simulation environment. Last but not least, the distributed nature of the framework enables users to participate from different geographic locations with their choice of display device (desktop, smartphone, VR, or AR). The prototype developed for this dissertation is readily available on a test webpage, and a user can easily download the prototype application without needing to install anything. The user also can run the remote MTS server and then connect their client application to the server

    A Survey of Driving Research Simulators Around the World.

    Get PDF
    The literature review is part of the EPSRC funded project "Driver performance in the EPSRC driving simulator: a validation study". The aim of the project is to validate this simulator, located at the Department of Psychology, University of Leeds, and thereby to indicate the strengths and weaknesses of the existing configuration. It will provide guidance on how the simulator can be modified and overcome any deficiencies that are detected and also provide "benchmarks" against which other simulators can be compared. The literature review will describe the technical characteristics of the most well-known driving simulators around the world, their special features and their application areas until today. The simulators will be described and compared according to their cost (low, medium and high) and also contact addresses and photographs of the simulators will be provided by the end of the paper. In the process of gathering this information, it became apparent that there are mainly two types of papers published - either in journals or in proceedings from conferences: those describing only the technical characteristics of a specific simulator and those referring only to the applications of a specific simulator. For the first type of papers, the level of detail, format and content varies significantly where for the second one it has been proven extremely difficult to find any information about the technical characteristics of the simulator where the study had been carried out. A number of details provided in this paper are part of personal communication, or personal visits to those particular driving simulator centres or from the World Wide Web. It should also be noted here that most of the researchers contacted here offered very detail technical characteristics and application areas of their driving simulators and the author is grateful to them
    • …
    corecore