63 research outputs found

    Vision-based Crack Identification on the Concrete Slab Surface using Fuzzy Reasoning Rules and Self-Organizing

    Get PDF
    Identifying cracks on the surface of concrete slab structure is important for structure stability maintenance. In order to avoid subjective visual inspection, it is necessary to develop an automated identification and measuring system by vision based method. Although there have been some intelligent computerized inspection methods, they are sensitive to noise due to the brightness contrast and objects such as forms and joints of certain size often falsely classified as cracks. In this paper, we propose a new fuzzy logic based image processing method that extracts cracks from concrete slab structure including small cracks that were often neglected as noise. We extract candidate crack areas by applying fuzzy method with three color channel values of concrete slab structure. Then further refinement processes are performed with Self Organizing Map algorithm and density based noise removal process to obtain basic crack characteristic attributes for further analysis. Experimental result verifies that the proposed method is sufficiently identified cracks with various sizes with high accuracy (97.3%) among 1319 ground truth cracks from 30 images

    Fuzzy ART Neural Network Algorithm for Classifying the Power System Faults

    Full text link

    Final Report: Autonomous and Intelligent Neurofuzzy Decision Maker for Smart Drilling Systems, September 2, 1998 - March 17, 1999

    Full text link

    Automated Pattern-Based System for Real-Time Process Monitoring

    Get PDF

    Novel Art-Based Neural Network Models For Pattern Classification, Rule Extraction And Data Regression

    Get PDF
    This thesis is concerned with the development of novel neural network models for tackling pattern classification, rule extraction, and data regression problems. The research focuses on one of the advanced features of neural networks, i.e., the incremental learning ability. This ability relates to continuous learning of new knowledge without disturbing the existing knowledge base and without re-iterating through the training samples. The Adaptive Resonance Theory (ART) and Generalized Regression Neural Network (GRNN) models are employed as the backbone in this research

    How to improve performance of Neural Network in the hardened password mechanism

    Get PDF
    A wide variety of systems, ubiquitous in our dailyactivities, require personal identification schemes that verify theidentity of individual requesting their services. A non exhaustivelist of such application includes secure access to buildings,computer systems, cellular phones, ATMs, crossing of nationalborders, boarding of planes among others. In the absence ofrobust schemes, these systems are vulnerable to the wiles of animpostor. Current systems are based on the three vertex of theauthentication triangle which are, possession of the token,knowledge of a secret and possessing the required biometric. Dueto weaknesses of the de facto password scheme, inclusion of itsinherent keystroke rhythms, have been proposed and systems thatimplement such security measures are also on the market. Thiscorrespondence investigates possibility and ways for optimisingperformance of hardened password mechanism using the widelyaccepted Neural Network classifier. It represents continuation ofa previous work in that direction

    Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Get PDF
    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function

    Efficient Mapping of Neural Network Models on a Class of Parallel Architectures.

    Get PDF
    This dissertation develops a formal and systematic methodology for efficient mapping of several contemporary artificial neural network (ANN) models on k-ary n-cube parallel architectures (KNC\u27s). We apply the general mapping to several important ANN models including feedforward ANN\u27s trained with backpropagation algorithm, radial basis function networks, cascade correlation learning, and adaptive resonance theory networks. Our approach utilizes a parallel task graph representing concurrent operations of the ANN model during training. The mapping of the ANN is performed in two steps. First, the parallel task graph of the ANN is mapped to a virtual KNC of compatible dimensionality. This involves decomposing each operation into its atomic tasks. Second, the dimensionality of the virtual KNC architecture is recursively reduced through a sequence of transformations until a desired metric is optimized. We refer to this process as folding the virtual architecture. The optimization criteria we consider in this dissertation are defined in terms of the iteration time of the algorithm on the folded architecture. If necessary, the mapping scheme may utilize a subset of the processors of a given KNC architecture if it results in the most efficient simulation. A unique feature of our mapping is that it systematically selects an appropriate degree of parallelism leading to a highly efficient realization of the ANN model on KNC architectures. A novel feature of our work is its ability to efficiently map unit-allocating ANN\u27s. These networks possess a dynamic structure which grows during training. We present a highly efficient scheme for simulating such networks on existing KNC parallel architectures. We assume an upper bound on size of the neural network We perform the folding such that the iteration time of the largest network is minimized. We show that our mapping leads to near-optimal simulation of smaller instances of the neural network. In addition, based on our mapping no data migration or task rescheduling is needed as the size of network grows

    Machine Learning in Tribology

    Get PDF
    Tribology has been and continues to be one of the most relevant fields, being present in almost all aspects of our lives. The understanding of tribology provides us with solutions for future technical challenges. At the root of all advances made so far are multitudes of precise experiments and an increasing number of advanced computer simulations across different scales and multiple physical disciplines. Based upon this sound and data-rich foundation, advanced data handling, analysis and learning methods can be developed and employed to expand existing knowledge. Therefore, modern machine learning (ML) or artificial intelligence (AI) methods provide opportunities to explore the complex processes in tribological systems and to classify or quantify their behavior in an efficient or even real-time way. Thus, their potential also goes beyond purely academic aspects into actual industrial applications. To help pave the way, this article collection aimed to present the latest research on ML or AI approaches for solving tribology-related issues generating true added value beyond just buzzwords. In this sense, this Special Issue can support researchers in identifying initial selections and best practice solutions for ML in tribology
    corecore