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MODEL-MODEL RANGKAIAN NEURAL BARU BERDASARKAN ART 

UNTUK PENGELASAN CORAK, PENGEKSTRAKAN PERATURAN DAN 

REGRESI DATA. 

 

 

ABSTRAK 

 

Tesis ini berkenaan dengan pembangunan model rangkaian neural baru untuk 

menangani masalah-masalah pengelasan corak, pengekstrakan peraturan dan regresi 

data. Penyelidikan ini memfokus kepada satu ciri termaju, iaitu kebolehan pembelajaran 

secara tokokan.  Kebolehan ini boleh ditakrifkan sebagai pembelajaran ilmu baru yang 

beterusan tanpa mengganggu pengkalan pengetahuan yang sedia ada, dan juga tanpa 

pengulangan set latihan. Model-model rangkaian Adaptive Resonance Theory (ART) dan 

Generalized Regression Neural Network (GRNN) bertindak sebagai tulang belakang 

dalam penyelidikan ini. Hasil model rangkain neural hibrid adalah GART yang berupaya 

menangani masalah-masalah pengelasan corak, pengekstrakan peraturan dan regresi 

data. Keupayaan GART juga telah ditingkatkan (dikenali sebagai EGART) dengan 

beberapa ciri tambahan, iaitu mengunakan fungsi kerugian dan kemungkinan dalam 

bentuk Laplacian, definasi baru fungsi kewaspadaan dan menggunakan mekanisme 

penjejakan padan . Satu teknik prapemproses pilihan, iaitu algoritma susunan untuk 

menentukan giliran penyampaian contoh-contoh latihan (dikenali sebagai O-EGART)  

adalah termasuk. Selepas itu, O-EGART telah ditingkatkan dengan siri pasca 

pemprosesan (dilambangkan sebagai O-EGART-PR), iaitu, pemangkasan rangkaian dan 

keupayaan bagi mengekstrakan peraturan dalam bentuk JIKA-MAKA. Prosedur-
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prosedur pemangkasan rangkaian memerlukan faktor keyakinan yang dapat dikira 

berdasarkan satu set pengesahan. Pemberat rangkaian  dengan faktor keyakinan yang 

rendah akan dibuang. Selepas itu, proses  pengkuantuman digunakan untuk menukar 

pemberat yang kekal kepada satu set peraturan dalam bentuk JIKA-MAKA. Sebagai 

tambahan, satu Sistem Inferensi Kabur (FIS ataupun Fuzzy Inference System) telah 

dibina (dikenali sebagai O-EGART-PR-FIS)  untuk tujuan penilai kualiti peraturan-

peraturan yang telah diekstrakkan. Prestasi model-model rangkaian neural yang 

dibangunkan telah dinilai dengan set data bandingan. Kaedah bootstrap digunakan 

sebagai penilai dan pembandingan dengan prestasi pendekatan-pendekatan lain.  Bagi 

tujuan menilai kebolehgunaan praktikal model rangkain neural ini, eksperimen-

eksperimen berdasarkan tujuh set data dikumpul dari dunia sebenar, yang gabungan tiga 

daripada sistem tenaga kuasa, tiga daripada kejuruteraan keselamatan kebakaran dan 

satu daripada applikasi perubatan, telah dijalankan. Sebagi contoh, kadar ketepatan 

adalah 98.92% bagi pengelasan arus harmonik dalam rangkaian pengagihan dan 97.20% 

bagi diagnosis untuk sistem air pengedaran dalam loji penjanaan kuasa, mencadangkan 

bahawa keupayan model-model rangkaian yang dibangunkan adalah setanding (jika 

tidak lebih baik) dengan pendekatan-pendekatan lain. 
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NOVEL ART-BASED NEURAL NETWORK MODELS FOR PATTERN 

CLASSIFICATION, RULE EXTRACTION, AND DATA REGRESSION. 

 

 

ABSTRACT 

 

This thesis is concerned with the development of novel neural network models for 

tackling pattern classification, rule extraction, and data regression problems.  The 

research focuses on one of the advanced features of neural networks, i.e., the 

incremental learning ability.  This ability relates to continuous learning of new 

knowledge without disturbing the existing knowledge base and without re-iterating 

through the training samples.  The Adaptive Resonance Theory (ART) and Generalized 

Regression Neural Network (GRNN) models are employed as the backbone in this 

research.  The resulting hybrid neural network model (denoted as GART) is capable of 

handling pattern classification and data regression problems.  The capability of GART is 

further enhanced (denoted as EGART) with a number of features, which include the 

used of Laplacian loss and likelihood functions, a new definition of vigilance function, a 

match tracking mechanism.  In addition, a pre-processing technique, i.e., the ordering 

algorithm, for determining the presentation sequence of training samples is applied 

(denoted as O-EGART).  The O-EGART model is equipped with a series of post-

processing procedures (denoted as O-EGART-PR), i.e., network pruning and rule 

extraction.  Network pruning requires computation of the confidence factor of each 

protoptye node in O-EGART-PR based on a set of validation samples.  A quantization 

process is also applied to convert the prototype weights into a set of IF-THEN rules.  In 
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addition, a standard Fuzzy Inference System (FIS) is constructed (denoted as O-

EGART-PR-FIS) in order to evaluate the quality of the extracted rules.  The 

performances of the proposed ART-based models are compared with those from other 

approaches using benchmark data sets, and the bootstrap method is used to quantify the 

results. To evaluate the practical applicability of the proposed ART-based models, 

empirical experiments based on seven benchmark and real-world data sets, i.e., three 

from power systems, three from fire safety engineering, and one from medical 

application, are conducted.  These results show good performances, e.g., accuracy rates 

are 98.92% and 97.20% for classification of harmonic currents in distribution network 

and diagnosis of circulating water systems in power generation plant, respectively, hence 

justified the usefulness of the proposed ART-based models in undertaking pattern 

classification and data regression problems.  

 

 

 



CHAPTER 1 

INTRODUCTION 

 

 

1.1 Preliminaries 

For the last few decades, researches in both theoretical and experiments aspects for 

the human brain have received much attention.  The results indicate that the human 

brain has a massively parallel architecture composed of many individual simple 

processing elements (neurons) with intense interconnections (synapses).  Generally, 

early investigations into the human brain were conducted mainly by neurologists, 

psychologists, and physiologists who developed artificial models for biological 

nervous systems.  However, with the rapid advancements in computing technologies, 

researches on the artificial brain models, known as artificial neural networks (or 

simply neural networks), have become popular and have been conducted by 

researchers from various fields including mathematics, physics, and engineering. 

 

In general, there are two main research interests in neural networks: (i) 

mathematic modeling of biological nervous systems at the microscopic level of 

neurons and synapses; and (ii) development of machine learning algorithms that 

mimic the operation of the human brain at the macroscopic level, whereby the 

algorithms should be able to perform as intelligently as the human brain in certain 

aspects such as reasoning, processing information, and inferring decisions.  

 

From the perspective of classification and regression theories, many neural 

network models can be viewed as extensions of conventional statistical techniques 
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which have been developed over several decades for undertaking pattern 

classification and regression problems.  The statistical principles embedded in neural 

networks provide a strong theoretical foundation for the implementation of neural 

network models as a pattern classifier and/or a data regressor. 

 

Many other characteristics of neural networks have been extensively studied. 

However, one domain that receives less attention, and yet is important for genuinely 

intelligent learning systems, is the ability to learn new information continually and 

autonomously without corrupting or forgetting previously learned information.  This 

ability is often referred to as online learning, and it is an essential property for a 

learning system to operate in a non-stationary environment.  Note that throughout 

this thesis, the term online learning is used interchangeable with incremental 

learning and sequential learning.  The characteristics of this learning strategy are as 

follows (Huang et al., 2005; Liang et al., 2006; Andonie and Sasu, 2006). 

(i) ability to conduct one-pass learning through all data samples, with no re-

iteration through the training set. 

(ii) ability to learn using only the newly arrived data sample, instead of all past 

samples, at any time of the training cycle. 

(iii) ability to learn new knowledge from the data samples on a one-by-one basis 

without disturbing the existing knowledge base. 

(iv) ability to predict the target output for a new (unlabeled) data sample at any 

time during the training cycle. 

 

The main aim of this research is to devise an online learning-based neural 

network model that is able to solve pattern classification and data regression 
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problems and, at the same time, to extract domain knowledge from the learned 

network model for explaining its predictions.  Two main aspects of neural networks 

are focused: (i) the online learning property; and (ii) the probabilistic property.  

Based upon existing neural network models, a number of novel neural network 

models that integrate the two properties into a common framework are proposed.  In 

order to evaluate the capabilities and applicability of the proposed models, numerous 

experimental studies using benchmark as well as real-world data sets from various 

application domains are conducted, with the results compared, analyzed, and 

discussed.  

 

In the following sections, a definition of and an introduction to neural 

networks and its applications to pattern recognition and knowledge extraction are 

provided.  A review of the current neural network models for pattern recognition is 

presented, and motivations for developing the new proposed neural network models 

are described.  Then, the research objectives and scopes are defined, and an overview 

of the organization of this thesis is included at the end of the chapter. 

 

1.2 Neural Networks 

The rapid development of computing technologies have encouraged and inspired 

advanced researches related to the human brain.  The availability of the digital 

computer as a research tool has tremendously accelerated scientific progresses in 

many research fields that are very important for understanding the human brain.  A 

conventional computer solves a problem by using an algorithmic method whereby 

the computer follows a set of instructions.  Such an approach requires the computer 

to know the specific steps to solve a problem.  On the other hand, a neural network, 



 4 

as inspired by biological nervous systems, works with a different paradigm as 

compared with the conventional computer.  The unique element of the neural 

network is that it comprises a large number of interconnected processing units 

(known as neurons) working in parallel to solve a specific problem.  Indeed, the 

neural network is a computational method that attempts to simulate (in a gross 

manner) the biological nervous system of the human brain with two important 

properties (Graupe, 1997): 

(i)  It has a self-organizing feature and a learning ability that allow it to solve a 

wide range of problems.  

(ii)  It uses simple computational operations to solve a complex, mathematically 

ill-defined, non-linear, and stochastic problem. 

These properties are very similar to the ability of the human brain in solving a 

problem.  A good definition of the neural network is provided by the DARPA (1988) 

study, as follows. 

“A neural network is a system composed of many simple processing elements 

operating in parallel whose function is determined by network structure, 

connection strengths, and the processing performed at computing elements or 

nodes.
…

Neural network architectures are inspired by the architecture of 

biological nervous systems, which use many simple processing elements 

operating in parallel to obtain high computation rates.” 

 

Several computational formalisms of neural network have been developed to 

handle real-world situations.  They are particularly useful in ill-defined and noisy 

situations.  Under these situations, the neural network is more effective and 

economical as compared with the traditional computational method.  For solving 
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problems arise from non-stationary environments, the learning properties of neural 

network should be made adaptive.  From the point of view of generalization, the 

neural network has the ability to deal with subsets of the problem domains that are 

yet to be fully encountered.  Otherwise, it is just similar to a mere look-up table that 

solves a problem based on hard-mapping. 

 

The first neuron model was developed by McCulloch and Pitts (1943 & 

1947) and further enhanced by Hebb (1949) with concept of adapting connections 

between nodes.  The Perceptrons model developed by Rosenblatt (1958) was the first 

artificial neuron model that is capable of performing learning and classification of 

patterns using simple connections called weights.  The Adaline model developed by 

Widrow and Hoff (1960) has a similar concept as that of Perceptrons, but with the 

ability to handle data regression tasks.  Then, a series of important developments in 

the area of neural network models has arisen, i.e., the discovery of associative 

memory (Taylor, 1956), model of self-organization of feature detectors (von der 

Malsburg, 1973), and ordered neural connections (Willshaw and von der Malsburg, 

1976).  Later, a number of pioneering studies concerning various properties of 

different neural network models have been published.  These include the Hopfield 

Network (Hopfield, 1982), the Self Organizing Map (Kohonen, 1982), field theory of 

self-organizing neural nets (Amari, 1983), back-propagation learning (Rumelhart et 

al., 1986), and Adaptive Resonance Theory (Carpenter and Grossberg, 1987a, 

1987b).  All these models have provided a more refined depiction of the brain 

function than what was anticipated a few decades ago.  
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Researches in neural network models have found promising results, and these 

models have been used as a tool for solving problems in various disciplines of 

science and engineering in the last two decades.  In power systems, neural network 

models have been wide used in many applications, e.g., short-term power load 

forecasting (Peng et al., 1992; Hippert et al., 2001; Amjady 2007), long-term power 

load forecasting (Kandil et al., 2002; Carpinteiro et al., 2007), electricity price 

forecasting (Nogales, 2002; Catalão, 2007), fault diagnosis of power transformer 

(Zhang et al., 1996; Huang, 2003; Castro and Miranda, 2005), and power system 

stabilization (He and Malik, 1997; Segal, 2000; Mishra, 2006).  In medical 

applications, neural networks have been used for classification of medical 

information and diagnosis of diseases (Gletsos et al., 2003; Wei et al., 2005; Lisboa 

and Taktak, 2006; Serpen, 2008; Erol, 2008; Oǧulata et al., 2009).  In financial and 

business, application of neural networks covers credit risk assessment (Jagielska and 

Jaworski, 1996; Lee and Chen, 2005; Tsai et al., 2009) and forecasting of financial 

series (Saad, 1988; Koulouriotis et al., 2005; Ghazali et al., 2008).  In systems 

engineering, neural networks have been used for advanced modeling and control, 

e.g., in aircraft operations (Suzuki et al., 2006; Mori et al., 2007). 

 

1.3 Pattern Recognition 

Pattern recognition is an activity that humans perform daily without much conscious 

efforts.  Humans receive patterns (e.g. in visual and audio forms) via sensing organs, 

whereby the patterns acquired is processed by the brain to form useful information, 

and subsequently a decision for action to be taken for the patterns is made (Duda et 

al., 2002).  However, this task is not a trivial one for a computerized system.  In 

order to tackle pattern recognition problems, it is necessary for a computerized 
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system to have techniques and algorithms that are able to process and recognize 

patterns from data and/or information supplied to the system.  Indeed, researches in 

pattern recognition are conducted by researchers from many disciplines owing to its 

cross-fertilization nature, which include engineering, computer science, physics, 

mathematics, and cognitive science. 

 

In general, the task of pattern recognition can be divided into two stages, as 

shown in Figure 1.1 (Fu, 1968; Tou and Gonzalez, 1974; Young and Calvert, 1974; 

Duda et al., 2002): 

(i) feature extraction–finding and extracting a set of significant feature from an 

input pattern, and then transforming the input features by using some arbitrary 

function so as to provide informative measurements for the input pattern; 

(ii) classification–designing a procedure for discriminating the measurements 

taken from the extracted features, and then assigning it to one of the target 

classes (classification) or to produce an estimate value (regression) by 

applying some decision rule. 

 

This research is focused primarily on the second stage of the recognition 

process–the classification module.  The fundamental problem is to develop a 

supervised learning procedure which is applicable to a set of data samples (extracted 

feature measurements) in such a way that each sample is assigned to one of a set of 

Figure 1.1 A pattern recognition system comprises a feature extractor 

and a recognizer 
 

Feature 

Extractor 
Input 

Pattern 

Features 

Measurements 

 

Recognizer Decision M
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pre-defined classes (pattern classification) or each sample produces an estimated 

output value (data regression).  

 

1.4 Rule Extraction 

One of the common criticisms of neural network models is that the decision making 

process is difficult to be understood.  In a trained neural network, the knowledge 

obtained during the training cycle has been parallelly distributed and stored in the 

network weights.  Since the mapping between the input and output spaces learned by 

the neural network can be nonlinear and non-monotonic (Krishnan et al., 1999), it is 

obvious that without some form of explanation capability to justify the prediction, 

the full potential of a trained neural network cannot be realized.  Hence, it is useful 

and important that an explanation capability becomes an integral part of the 

functionalities of a trained neural network such that its predictions can be explained 

and justified to the users.  This inevitably leads to a higher degree of user acceptance 

towards the neural network, and to enhance the overall usability of the neural 

network as a learning and decision making tool.  Other than explaining the results, 

rule extraction of a trained neural network is useful for data exploration and feature 

revelation, and is able to assist an experienced user to look into a set of conditions 

under which generalization failure occurs (Quteishat and Lim, 2008). 

 

1.5 Problems and Motivations 

The main thrust of researches in classification has been in the use of feedforward 

neural networks, such as the Multi-Layer Perceptron (MLP) network trained with 

error back propagation, or other gradient based algorithms (Rumelhart et al., 1986; 

Gori, and Maggini, 1996; Fine and Mukherjee, 1999; Wu et. al., 2005; Zhang et al., 
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2008) and the Radial Basis Function (RBF) network (Broomhead and Lowe, 1988; 

Moody and Darken, 1989, Plat, 1991; Chng et al., 1996; Schilling et al., 2001;  

Karayiannis and Randolph-Gips, 2003; Huang et al., 2006a & 2006b; Pedrycz et al., 

2008), as pattern recognition and data regression tools.  There are a number of 

attractive properties of such networks for undertaking classification and regression 

tasks.  Cybenko (1989), Barron (1993), Chen and Chao (2009) argue that network 

architectures using logistic functions are able to approximate any smooth function, 

under some mild conditions, to an arbitrary degree of accuracy.  A similar finding is 

also concluded for RBF networks where it can approximate any multivariate 

continuous functions when given a sufficient number of radial basis function units 

(Poggio and Girosi, 1990; Light, 1992; Huang et al., 2006b & 200c; Huang and 

Chen, 2008). 

 

From the above arguments, it seems that feedforward networks are useful 

tools for developing pattern classification and data regression systems.  In many 

aspects, they are.  Although theoretical results indicate the capabilities of these 

networks, there are a number of practical difficulties owing to the network 

configuration and learning methodology.  A problem that often arises is how to 

determine the optimal number of nodes in the hidden layer(s) (Fujita, 1992; Wu et. 

al., 2005; Liang et al., 2006).  Normally, without any prior information pertaining to 

the underlying statistics of the data environment, one often has to resort to empirical 

methods, such as trial-and-error (Wu et. al., 2005; Liang et al., 2006), to obtain a 

good network configuration for a particular task.  Then, some validation test is 

performed to assess the generalization capability or performance of the trained 

network.  This approach is time-consuming and laborious. 
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Other than the issue relating to the optimal number of nodes in the hidden 

layer, the MLP network trained with error back-propagation (Rumelhart et al., 1986) 

suffers from the problem of local minima (Lippmann, 1987).  Generally, the learning 

rule of error back-propagation uses an optimization process with respect to a cost 

function.  During learning, the network adjusts its weights according to the 

cumulated errors between the actual and predicted outputs in an attempt to minimize 

the cost function.  The landscape of the error-weight space often consists of a global 

minimum and some local minima.  Thus, it is possible for the learning process to be 

trapped in a local minimum instead of the desired global minimum.  If this happens, 

the performance and accuracy of the trained network is compromised.  

 

Methods for selecting an optimal or suboptimal network structure for the 

MLP and RBF networks have been introduced (Baum and Haussler, 1989; Kung and 

Hu, 1991; Odri et al., 1993; Billings and Zheng, 1995a, 1995b; Liu et al., 2002; Lee 

and Hou, 2002; Huang et al., 2004 & 2005; Ma and Khorasani, 2005; Peng et al., 

2006).  In addition, many researchers have proposed techniques to avoid local 

minima (Baba, 1988; Gori and Tesi, 1992; Kappen and Heskes, 1992; Masters, 1993, 

1995; Yiu et al., 2001; Fukuoka et al., 1998; Wang et al., 2004; Behera et al., 2006).  

Even though the issues pertaining to the optimal network configuration and the 

global minimum have been solved to a certain degree, the applicability of 

feedforward networks, as well as many other types of learning systems, is still 

constrained by their learning methodology. 

 

The learning procedure in most neural networks is essentially an off-line 

process that consists of a training cycle and a test cycle using some data samples.  
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This approach is useful only when the data environment is stationary, and provided 

that the training samples are sufficiently representative.  This is because during 

training cycle, information provided by the training samples collected from the 

environment is encoded by the adjustment (learning) of the network weights.  After 

validating the network performance, the network is put into operation, and no further 

weight adaptation (or learning) takes place.  When the network is presented with an 

unseen sample, a built-in mechanism for the network to recognize the novelty is not 

available.  In order to learn new information, the network needs to be re-trained 

using the new sample, together with all previous samples.  This is a major drawback 

in most neural network models, and it arises from the so-called stability-plasticity 

dilemma (Grossberg, 1980; Carpenter and Grossberg 1987a).  The dilemma underlies 

a series of questions, i.e., how a learning system is able to remain plastic or adaptive 

in response to significant events, and yet remain stable in response to irrelevant ones; 

how a learning system is able to adapt to new information without corrupting or 

forgetting previously learned information (Carpenter and Grossberg 1987a, 1988). 

 

This stability-plasticity dilemma has also been termed as the sequential 

learning problem (McCloskey and Cohen, 1989; Ratcliff, 1990).  Using the 

sequential learning approach whereby training is completed for one sample before a 

new sample is introduced, it is found that a phenomenon known as catastrophic 

forgetting occurs in networks with backpropagation learning.  When it happens, 

newly learned information catastrophically interferes with, and overwrites, 

previously learned information (McCloskey and Cohen, 1989; Ratcliff, 1990; 

French, 1991, 1992; Sharkey and Sharkey, 1995).  For instance, in an attempt to train 

a network with backpropagation to perform the arithmetic problem of “add +1”, 
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McCloskey and Cohen (1989) discovered that after training the same network to 

perform “add +2”, it had forgotten how to “add +1”.  Similar interference problems 

were also experienced by Ratcliff (1990) in simulations to model how the process of 

recognition works in humans. For instance, when many items were trained 

sequentially, only the final item was retained in the memory. 

 

In order to overcome the stability-plasticity dilemma, researchers have 

proposed new neural network architectures as well as learning algorithms (a review 

of these neural network models is presented in Chapter 2).  Among them, Carpenter, 

Grossberg, and co-workers have developed a family of neural network architectures 

called Adaptive Resonance Theory (ART) (Carpenter and Grossberg 1987a, 1987b, 

1990).  There are a variety of ART models for unsupervised as well as supervised 

learning.  Unsupervised ART models include ART1 (Carpenter and Grossberg, 

1987a), ART2 (Carpenter and Grossberg, 1987b), ART3 (Carpenter and Grossberg, 

1990), Fuzzy ART (Carpenter et al., 1991b), and supervised ART models include 

ARTMAP (Carpenter et al., 1991a), Fuzzy ARTMAP (Carpenter et al., 1992; 

Carpenter and Grossberg, 1994). The family of ART models is an example of 

incremental learning neural networks that self-organize and self-stabilize in response 

to an arbitrary sequence of data samples in both stationary (time-invariant) and non-

stationary (time-varying) environments.  Each ART network includes a novelty 

detector that measures against a threshold of the similarity between the prototype 

patterns stored in the network and the current input sample.  When the match 

criterion is not satisfied, a new node (neuron) is created with the input sample coded 

as its prototype.  As a result, the number of nodes grows with time, subject to a 

novelty criterion.  Since different tasks demand different capabilities from the 
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network, this dynamic network architecture and incremental learning methodology 

avoid the need to have a pre-defined static network size, or to re-train the network 

with the entire data samples in non-stationary environments. 

 

There are some practical advantages of using incremental (or online, or 

sequential) learning systems in real-world applications.  Many tasks often require 

system portability and adaptability owing to local differences or the non-stationary 

nature of the operating environments, such as policy changes, geographical or 

demographical variations, and advances in new technologies.  This means that a 

static learning system trained on data from a previous site is unlikely to perform 

optimally using data from a new site due to variations in local conditions.  Thus, it is 

desirable if such a system can be adapted to its changed operating conditions by 

performing incremental learning of cases from the new site. 

 

From the computational point of view, an incremental learning system offers 

an extra benefit, i.e., learning can be achieved on the fly in a one-pass process, i.e., 

each data sample is presented to the network only once.  This approach reduces the 

computational time as the learning system does not need to go through the training 

samples repeatedly.  In addition, the storage demand is eased as the approach does 

not need to keep all the samples in the memory of the computer. 

 

As compared with an expert system, a neural network is poor in terms of 

explaining its reasoning process.  A definition of rule extraction from a trained neural 

network as given by Craven and Shavlik (1994) is: “given a trained neural and the 

examples used to train it, produce a concise and accurate description of the network”.  
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To a certain extent, the work on devising an autonomous neural network with a rule 

extraction capability conducted in this research is inspired and motivated by this 

definition.  Indeed, the explanation facility of a neural network is an attractive 

property for the end user.  Therefore, it is essential to equip the neural network with a 

rule extraction capability in order to provide explanation for its reasoning and 

predictions. In this context, the supervised ARTMAP network (Carpenter et al., 

1991b) has been endowed with such a capability, based on its knowledge 

representation.  The rules extracted from ARTMAP are “soft”, i.e., exact matching 

between input samples and the weights is not necessary; instead, a reasonably close 

fit suffices.   

 

1.6 Research Scopes and Objectives 

The incremental learning methodology of ART (as well as other online learning 

neural network models) constitutes the backbone of the research in this thesis, and 

motivates the development of new network architectures and the associated learning 

algorithms in an attempt to address the stability-plasticity dilemma.  In essence, the 

scope of this research focuses on two areas: 

(i)  development of neural network-based learning systems that are capable of 

acquiring knowledge incrementally in both stationary and non-stationary 

environments with as little supervision as possible;  

(ii)  development of effective strategies for application of such learning systems 

coupled with the rule extraction capability to pattern classification and data 

regression tasks. 
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A specific supervised ART network, namely Fuzzy ARTMAP (FAM) 

(Carpenter et al., 1992), is extensively studied in this research.  In addition to its 

growing architecture, FAM offers an extra feature as it is a hybrid network 

combining the advantages of a neural network and fuzzy logic.  This integration 

brings the low-level processing and learning of a neural network and the high-level 

reasoning of fuzzy logic into a common framework.  However, similar to any other 

systems, FAM is not free from limitations.  One phenomenon of the human learning 

behaviors is that experience gained at the early stage lays a foundation for the 

knowledge accumulation process in the long run.  The same principle applies to 

incremental learning systems, i.e., the long term performance depends on the 

sequence or order of training samples.  Different sequences of data samples result in 

different knowledge bases in an incremental learning system, hence different 

performance scores (Carpenter et al., 1992).  Further investigation is needed to make 

the performance of FAM less sensitive towards the order of data presentation. 

 

 In addition to FAM, another supervised ART model, namely Gaussian 

ARTMAP (GAM) (Williamson, 1995), is employed in this research.  GAM is a 

synthesis of an ART network and a Bayesian classifier (Williamson, 1995).  The 

learning algorithm of GAM is similar to FAM, but fuzzy logic equations deployed in 

FAM are replaced with Gaussian Bayesian equations.  Indeed, the learning algorithm 

of FAM is deterministic in nature.  However, pattern classification and data 

regression problems have been widely studied using statistical theory such as 

discriminate analysis and Bayesian decision theory (Fu, 1968; Fukunaga, 1972; Duda 

and Hart, 1973).  These statistical approaches offer strong theoretical as well as 

practical foundations for the implementation of classification and regression systems.  

The Bayesian classification rates are generally accepted as the optimum results in 
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terms of quantifying the performance of classifiers in a statistical sense.  Assignment 

of risk factors is also made possible within the Bayesian framework.  Therefore, it is 

worthwhile to investigate how to incorporate the statistical properties into the 

learning algorithm of FAM. 

 

Apart from investigating the theoretical and algorithmic aspects, effective 

operational strategies are envisaged for practical application of ART-based model.  

In summary, this research is geared towards achieving the following objectives: 

(i) to develop novel architectures and learning algorithms for incremental 

learning systems based on ART and Bayesian theorem; 

(ii) to investigate the use of an order algorithm to mitigate the effects of 

sequences of training samples in the developed ART-based models; 

(iii) to devise a novel pruning strategy for the developed ART-based models; 

(iv) to design a novel rule extraction method from the developed ART-based 

models; 

(v) to demonstrate the applicability of the developed ART-based models to 

pattern classification and data regression tasks 

 

During the course of achieving the objectives, extensive empirical studies are 

conducted using benchmarks as well as real-world data sets to evaluate the ART-

based models developed in this research.  The benchmark data sets are taken from 

public domain repositories so that performance comparisons with other approaches 

can be conducted.  Besides, a number of real-world data sets collected from 

industrial organizations are used to demonstrate the applicability of the proposed 

ART-based models in real environments. 
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1.7 Thesis Outline 

This thesis is organized in accordance with the research objectives.  In Chapter 2, a 

literature review on incremental learning systems by various approaches is presented.  

Then, incremental learning systems based on ART are introduced.  In particular, two 

variants of the ART networks that are used as building blocks for the new ART-

based models developed in this research are examined in detail. 

 

A novel hybrid ART-based model is proposed in Chapter 3 for online pattern 

classification, probability estimation and regression tasks.  A number of simulations 

based on benchmark pattern classification and data regression tasks are conducted. 

The results are compared with those obtained by other approaches.  The bootstrap 

method is employed to quantify and compared the results statistically. 

 

In Chapter 4, improvements to the ART-based model developed in Chapter 3 

are presented.  These include an ordering algorithm (Dagher et. al., 1999) that 

mitigates the problem associated with sequence of training samples in FAM.  The 

ordering algorithm was originally proposed for tackling classification tasks using 

FAM.  But, in this research, it has been extended to handling data regression tasks.  

 

In Chapter 5, further improvements to the proposed ART-based model (in 

Chapters 3 and 4) are explained.  These include effective post-processing procedures, 

i.e., confidence factor, pruning, quantization, rule extraction and evaluation of the 

rules using a classifier based on fuzzy inference systems.  Again, extensive 

experimental studies using benchmark problems are conducted, with the results 

compared with those obtained by other approaches. 
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To demonstrate the applicability of the proposed ART-based model (in 

Chapters 3 to 5) as a pattern classification and data regression tool with a rule 

extraction capability, benchmark and real-world case studies are presented in 

Chapters 6 and 7, respectively.  Two problems in power systems, one in fire safety 

engineering, and one in medical diagnosis are considered in Chapter 6.  For data 

regression tasks, three case studies, with one in power systems and two from fire 

safety engineering, are examined in Chapter 7.  The results from all experimental 

studies in Chapters 6 and 7 are compared with those obtained by other approaches as 

well. 

 

Finally, conclusions are drawn and contributions of this research are set out in 

Chapter 8.  A number of areas to be pursued as further work are suggested too. 



CHAPTER 2 

INCREMENTAL LEARNING SYSTEMS AND ADAPTIVE RESONANCE 

THEORY 

 

 

2.1 Introduction 

The nature of incremental learning is that the learning system keeps updating its 

knowledge base as a new input sample arrives without having to consider all 

previous samples.  According to Fu (1994), this learning strategy is both biologically 

and psychologically plausible.  Jean Piaget, a noted learning theorist, argues that the 

external world is built by sequential conceptualization and abstraction of the 

environment during the early stage of a child’s development (Piaget, 1953).  

Children first grow into their surroundings by direct action; then they draw analogies 

from concrete examples; later they gradually develop abstract and formal reasoning 

skills. 

 

From the machine learning point of view, an incremental learning system 

should be able to differentiate between spurious and rare but important information.  

Hence, generalisation and selective learning are two main issues.  On arrival of a 

new sample, the system has to decide either to absorb (assimilate) the sample by 

generalising its knowledge base or to encode (accommodate) the sample into one of 

the existing information representations (e.g. an existing pattern prototype) in the 

knowledge base.  Indeed, as pointed out by Hrycej (1992), the stability-plasticity 

dilemma can be viewed as a reformulation of Piaget's theory of assimilation and 

accommodation in the human developmental stage. 
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The next section presents a review of incremental learning systems with 

dynamic structures and learning algorithms.  Then, the architecture of Adaptive 

Resonance Theory (ART) family of neural networks is introduced.  In particular, the 

Fuzzy ARTMAP (FAM) network, which is the backbone of this research, is 

described in detail.  The importance of rule extraction is also explained.  A rule 

extraction technique for ARTMAP-based networks, which was proposed by 

Carpenter and Tan (1995), is described.  A summary is included at the end of this 

chapter. 

 

2.2 Review of Incremental Learning Systems 

The review of related literature covers a number of different approaches for 

incremental or sequential learning. First, several types of classical and symbolic 

learning methods are examined.  Then, a survey on a variety of neural network-based 

incremental learning systems is presented.  In the survey, different types of neural 

network models are grouped based on the network architecture and learning 

algorithm. 

 

2.2.1 Classical and Symbolic Incremental Learning Approaches 

The ground work for analysing sequential pattern recognition problems was first 

proposed by Wald (1947) with the introduction of the Sequential Probability Ratio 

Test (SPRT).  The idea is that by observing an input pattern, or a measurement of an 

input pattern, the test has to yield a decision either to make a prediction of the output 

class, or to request for another observation.  This method was modified and 

generalized by Anderson (1960) and Chien and Fu (1966).  Other sequential 

algorithms included the backward procedure using dynamic programming, the non-
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parametric sequential ranking procedure and the sequential Bayes test (Fu, 1968; 

Melsa and Cohn, 1978).  Although the SPRT approach can be used for classification 

tasks (Young and Calvert, 1974), it is more suited for feature extraction problems. 

 

Sebestyen (1962) described a remarkable work on building a representation 

of data in the input space using Gaussian kernel functions.  The approach utilizes the 

Euclidean distance between the input sample and the cluster centers to decide the 

output class that the input sample should belong to.  Sorenson and Alspach (1971) 

proposed a recursive Bayesian estimation technique using the Gaussian sums.  The 

technique aims to approximate the probability density function of the state of a noisy 

dynamic system conditioned on the available measurement data using a convex 

combination of Gaussian densities.  Similar to the Kalman filter (Kalman, 1960), the 

method is able to perform online approximation of probability density functions 

using non-orthogonal basis functions based on data samples taken from the system 

states. 

 

With regard to the method of Sorenson and Alspach (1971), an Adaptive 

Mixture Model (AMM) for both supervised and unsupervised classification in 

dynamic environments was introduced by Preibe and Marchette (1991).  The method 

fits a mixture of Gaussian densities based on data samples recursively.  It then 

performs non-parametric estimate of the probability density functions for computing 

decision regions without explicit assumptions of the underlying functions.  The 

approach also allows the number of Gaussian kernels to grow with the data samples 

and the target classes to increase over time.  Simulation results show that it is able to 

achieve a close approximation to the estimated function in both stationary and non-
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stationary environments.  However, the approach relies on a number of underlying 

assumptions about the operating conditions, especially in the non-stationary 

environments. 

 

In the symbolic Artificial Intelligence (AI) research, a series of tree-like 

learning models based on the incremental concept of formation was studied.  EPAM 

(Feigenbaum, 1963) was one of the earliest incremental concept formation systems 

used for handling classification tasks.  This learning model was later refined by 

Feigenbaum and Simon (1984).  The EPAM algorithm builds a discrimination 

network consisting of nodes and links to represent its acquired knowledge.  When the 

system encounters a sample, it searches through the network until a terminal node is 

reached.  Two learning mechanisms can take place, either familiarization or 

discrimination.  By familiarization, the sample is absorbed into the current terminal 

node.  Otherwise, the node is discriminated or rejected, which, in turn, leads to a new 

search phase, or to creation of a new link in the network. The EPAM learning 

mechanism injects two new ideas into the field of symbolic learning machines.  First, 

a discrimination network architecture for concept learning is introduced, and second, 

both the classification and learning processes are interweaved together, i.e., if the 

system is not able to classify the current input, it then learns and absorbs the input 

into its knowledge base.  

 

Inspired by EPAM, many incremental concept formation systems later 

emerged, e.g., UNIMEM (Lebowitz, 1985), COBWEB (Fisher, 1987), and CLASSIT 

(Gennari et al., 1989).  UNIMEM organizes knowledge into a concept hierarchy of 

nodes and links through which it sorts new samples.  Learning and classification is 
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also treated as an entity.  In addition to growing, UNIMEM performs pruning in 

order to remove unreliable concept descriptions.  However, it lacks a structured 

method for deciding between various learning operators, and is dependent on user-

specified parameters to make decisions (Gennari et al., 1989). 

 

COBWEB (Fisher, 1987) is another symbolic AI model based on the 

incremental concept.  It builds a concept hierarchy with probability information 

associated with each concept.  Unlike UNIMEM, COBWEB does not allow pruning.  

Instead, a method to split a class into several new classes, or to merge two classes 

into one is devised.  The distinctive point about COBWEB is that the system has a 

formal foundation in probability theory.  Similar to EPAM, COBWEB takes only 

nominal attributes.  A severe limitation of COBWEB is that all samples have to be 

retained as the terminal nodes in its concept hierarchy.  This approach not only 

makes the system susceptible to noise, but also leads to the possibility of over-fitting 

the data.  In view of the limitations, an unsupervised learning model called CLASSIT 

(Gennari et al., 1989) was devised.  It uses the same control strategy and operators of 

COBWEB, but differs in the representation of concepts, samples, and the evaluation 

function.  CLASSIT inspects every attribute during the classification process, even 

when the attribute has no predictive value.  Therefore, it is useful for the system to 

incorporate the idea of selective attention and to focus on certain attributes that 

contain important information of the target class in its learning process. 

 

2.2.2 Neural Network Approaches 

In this section, a review on incremental neural network models is presented.  The 

surveyed models are divided into three main categories, i.e., multi-layer feedforward 
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networks, basis and kernel function networks, as well as self-organizing and 

competitive networks. 

 

(a) Multi-layer Feedforward Neural Networks 

In an attempt to address the issue of catastrophic forgetting, French (1991, 1992) 

argued that forgetting is a direct consequence of distributed representation of 

information in a standard feedforward network trained with back propagation.  It is 

claimed that one way to maintain generalization while reducing catastrophic 

forgetting is to use a “semi-distributed” representation.  An algorithm that allows a 

multilayer feedforward network to develop a semi-distributed representation was 

proposed.  A factor is used to compute the correlation between the weight vectors 

encoded by the hidden nodes. As pointed out by French, the approach could result in 

a loss of information, and affect generalization of the resulting network.  However, 

Park et al. (1991) and Angulo and Torras (1995) showed that adaptive training could 

be achieved in non-stationary environments without sacrificing the benefits of 

distributed representation and, at the same time, avoid the catastrophic forgetting 

problem. 

 

 There are a number of algorithms that create nodes automatically in multi-

layer feedforward networks.  First, a Tiling algorithm for building a network to 

classify Boolean patterns with guaranteed convergence was proposed by Mezard and 

Nadal (1989).  The number of layers and the number of hidden nodes in each layer 

are allowed to increase whenever necessary. Nadal (1989) later introduced a network 

in which hidden nodes are added one by one until the network is able to converge to 

a solution for the problem at hand.  Variants of the Tiling algorithm were 
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investigated, e.g., the neural tree classifier by Sirat and Nadal (1990), and the parity-

machine by Biehl and Opper (1991).  On the other hand, an Upstart Algorithm 

(Frean, 1990) was proposed to build a network for implementing any Boolean 

mappings.  It is claimed that the resulting network is smaller than those produced by 

the Tiling algorithm.  Later, Muselli (1992) combined a sequential learning 

procedure with the Upstart Algorithm to construct an incremental two-layer 

perceptron network. 

 

The Cascade-Correlation algorithm (Fahlman and Lebiere, 1990) is another 

notable learning approach that builds a architecturally-dynamic multilayer 

feedforward network.  The learning procedure starts with a minimal network and 

incrementally builds a suitable cascaded structure with as many layers as the number 

of added hidden nodes.  Although the network architecture is dynamic, its training 

assumes an iterative process using the Quickprop algorithm (Fahlman, 1989).  Many 

researchers later investigated and modified the Cascade-Correlation algorithm to suit 

various application domains (Yang and Honavar, 1991; Smotroff et al., 1991; 

Sjogaard, 1992; Karunanithi et al., 1992; Hoehfeld and Fahlman, 1992).  On the 

other hand, Lehtokangas (1999, 2000) proposed a technique similar to Cascade-

Correction, i.e., constructive backpropagation (CBP).  CBP has the same constructive 

benefits as Cascade-Correction, but with a simpler implementation and the ability to 

use stochastic optimization routines.  Moreover, CBP can be extended to allow 

addition of multiple new nodes simultaneously, and can be used to perform 

continuing structure adaptation automatically.  This includes both addition and 

deletion of nodes. 
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