4 research outputs found

    Advances in vision-based lane detection: algorithms, integration, assessment, and perspectives on ACP-based parallel vision

    Get PDF
    Lane detection is a fundamental aspect of most current advanced driver assistance systems (ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous vision-based lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system, and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed

    A computer vision-based lane detection technique using gradient threshold and hue-lightness-saturation value for an autonomous vehicle

    Get PDF
    Automatic lane detection for driver assistance is a significant component in developing advanced driver assistance systems and high-level application frameworks since it contributes to driver and pedestrian safety on roads and highways. However, due to several limitations that lane detection systems must rectify, such as the uncertainties of lane patterns, perspective consequences, limited visibility of lane lines, dark spots, complex background, illuminance, and light reflections, it remains a challenging task. The proposed method employs vision-based technologies to determine the lane boundary lines. We devised a system for correctly identifying lane lines on a homogeneous road surface. Lane line detection relies heavily on the gradient and hue lightness saturation (HLS) thresholding which detects the lane line in binary images. The lanes are shown, and a sliding window searching method is used to estimate the color lane. The proposed system achieved 96% accuracy in detecting lane lines on the different roads, and its performance was assessed using data from several road image databases under various illumination circumstances

    Driver lane change intention inference using machine learning methods.

    Get PDF
    Lane changing manoeuvre on highway is a highly interactive task for human drivers. The intelligent vehicles and the advanced driver assistance systems (ADAS) need to have proper awareness of the traffic context as well as the driver. The ADAS also need to understand the driver potential intent correctly since it shares the control authority with the human driver. This study provides a research on the driver intention inference, particular focus on the lane change manoeuvre on highways. This report is organised in a paper basis, where each chapter corresponding to a publication, which is submitted or to be submitted. Part â…  introduce the motivation and general methodology framework for this thesis. Part â…¡ includes the literature survey and the state-of-art of driver intention inference. Part â…¢ contains the techniques for traffic context perception that focus on the lane detection. A literature review on lane detection techniques and its integration with parallel driving framework is proposed. Next, a novel integrated lane detection system is designed. Part â…£ contains two parts, which provides the driver behaviour monitoring system for normal driving and secondary tasks detection. The first part is based on the conventional feature selection methods while the second part introduces an end-to-end deep learning framework. The design and analysis of driver lane change intention inference system for the lane change manoeuvre is proposed in Part â…¤. Finally, discussions and conclusions are made in Part â…¥. A major contribution of this project is to propose novel algorithms which accurately model the driver intention inference process. Lane change intention will be recognised based on machine learning (ML) methods due to its good reasoning and generalizing characteristics. Sensors in the vehicle are used to capture context traffic information, vehicle dynamics, and driver behaviours information. Machine learning and image processing are the techniques to recognise human driver behaviour.PhD in Transpor
    corecore