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Kurzfassung

Der Schwerpunkt dieser Dissertation ist eine neuartige tiefgreifende Fusionsmethode
zwischen heterogenen Metadaten und Bilddaten zur Lösung des Zuordnungsproblems von
Ampeln zu Fahrspuren. Die Ampel zu Fahrspurzuordnung gehört dem Forschungsbereich
der autonomen Robotik bzw. des autonomen Fahrens an und wird unter Verwendung
von Methoden der künstlichen Intelligenz bearbeitet.

Die Arbeit verwendet einen Datensatz mit über 45.000 Einzelbildern aus 848 komplexen
Straßenkreuzungsszenarien in Deutschland. Als Basis besitzt jedes Kreuzungsszenario
die Verbindung zwischen Ampeln und Fahrspuren als Referenzinformation und ist mit
den folgenden Metadaten annotiert: Ampeln, Fahrspurmarkierungen, Fahrspurrich-
tungspfeilen und Fahrspurschildern. Es wird eine optimierte Vogelperspektiventransfor-
mationsmethode vorgestellt, die unabhängig von extrinsischen Kameraparametern ist
und ein vollständiges Vogelperspektivenpanorama aus zusammengesetzten Einzelbildern
erzeugt. Diese Methode wird für die Bildvorverarbeitung eingesetzt und ermöglicht eine
effiziente Annotation von Fahrspurmarkierungen in der Vogelperspektive.
Zuerst wird gezeigt, dass ein neuronales Faltungsnetz ein Zuordnungsproblem in ein

Regressionsproblem transferieren kann, um alle relevanten Ampeln ihren zugehörigen
Fahrspuren zuzuweisen. Es wird ein Positionsvektor als Faltungsnetzausgabe definiert.
Dieser kodiert alle relevanten Ampelpositionen als binäre Information. Dadurch wird
die Ampel zu Fahrspurzuordnung ausschließlich visuell gelöst. Des Weiteren wird der
visuelle Ansatz um einen tiefgreifenden Metadatenfusionsansatz erweitert. Dieser Fusion-
sansatz ermöglicht heterogene Metadaten in ein neuronales Faltungsnetz zu fusionieren.
Dabei werden die Metadaten in verschiedene Metadatenmerkmalkarten transformiert.
Diese Metadatenmerkmalkarten werden mittels einer elementweisen Multiplikation und
einer adaptiven Gewichtungstechnik mit dem globalen Mittelwert der ausgewählten
Fusionsebene im neuronalen Faltungsnetze fusioniert. Der tiefgreifende Metadatenfusion-
sansatz wird auf alle Arbeitsschritte geprüft, gegen regelbasierte, Metadaten getriebene
und visuelle Ansätze verglichen und um ein Sequenzmodel erweitert. Weiterhin wird
ein professioneller Probandentest durchgeführt, um die menschliche Leistung für dieses
Zuordnungsproblem zu messen und als Maßstab zu definieren.

Im Ergebnis erreicht der tiefgreifende Metadatenfusionsansatz eine mittlere Genauigkeit
von 93,7 % und übertrifft signifikant regelbasierte, metadatenbasierte und bildbasierte
Ansätze. Er übertrifft auch die gemessene menschliche Leistung für den vollständigen
Datensatz in der Genauigkeitsmetrik (+2,7 %) und dem F1wert1 (+4,1 %). Jedoch

1Der F1wert setzt sich aus der Richtig-Positiv-Rate (engl. Precision) und der Sensitivität (engl. Recall)
zu gleichen Teilen zusammen.
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erzielen die gemessene menschliche Leistung und der tiefe Metadatenfusionsansatz eine
nahezu identische Richtig-Positive Rate von 92,9 ±1,3 %. Außerdem wird festgestellt,
dass eine frühe Fusion der Metadaten am effektivsten ist und alle fusionierten Meta-
datenmerkmalkarten sich positiv auf die Ergebnisse auswirken. Ferner hat sich gezeigt,
dass der beste Fusionsoperator die elementweise Multiplikation ist. In Anlehnung an
die menschliche Wahrnehmung ist festzustellen, dass sich die Ergebnisse mit sinkendem
Abstand zur Haltelinie steigern.

Stichwörter neuronale Faltungsnetze, tiefgreifende Fusion, intelligente Transportsys-
teme, Robotik und Automatisierung, Ampelassistenz.
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Abstract

This dissertation focuses on a novel deep fusion method with heterogeneous metadata
and image data to resolve the one-to-many traffic light to lane assignment problem. The
traffic light to lane assignment belongs to the research field of autonomous robotics or
driving and is handled using artificial intelligence.

The work uses a dataset with over 45 thousand frames from 848 complex intersection
scenarios in Germany. Each intersection scenario has as a ground truth, the traffic light
to lane connections and is annotated with the following metadata: traffic lights, lane
line markings, lane arrow markings, and lane signs. An optimised inverse perspective
mapping method is introduced which is independent from extrinsic camera parameters
and creates a stitched inverse perspective mapping full panorama image. This method
is employed for image data preparation and enables an efficient annotation of inverse
perspective mapping lane line markings.

At first, it is shown that a convolutional neuronal network can transfer an assignment
problem in a regression problem to assign all relevant traffic lights to their associated
lanes. Here, an indication vector defines the output of the network. The vector encodes
all relevant traffic light column positions as binary information. This introduced strategy
resolves the traffic light to lane assignment problem by vision, exclusively. Furthermore,
the vision solution is enhanced by a deep metadata fusion approach. This approach is
able to fuse heterogeneous metadata into a convolutional neural network. It transforms
the metadata into several metadata feature maps. These metadata feature maps are
fused into the convolutional neural network by means of an element-wise multiplication
and an adaptive weighting technique with the global average of the selected fusion
layer. The approach is examined for all working steps, compared against rule-based,
only-metadata, and only-vision approaches and extended by a sequence approach. To
appraise the deep metadata fusion approach in an expert manner, a subjective test
is conducted that measures the real human performance for the traffic light to lane
assignment and defines an independent baseline.

As result, the deep metadata fusion approach reaches a mean accuracy of 93.7 % and
outperforms rule-based, only-metadata, and only-vision approaches significantly. It also
outperforms the human performance in the accuracy (+2.7 %) and F1score2 (+4.1 %)
metric for the full dataset. However, the human performance and deep metadata
fusion approach achieve an almost identical mean precision result with 92.9 ±1.3 %.
Additionally, it results that an early fusion is most effective and all fused metadata
feature maps have a positive effect on the results. The ideal fusion operator is the

2The F1score is a composted and equally weighted metric of the precision and recall metrics.
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element-wise multiplication and the results increase the closer the vehicle approaches
the stop line similar to humans perception.

Keywords Convolutional Neural Networks, Deep Fusion, Intelligent Transportation
Systems, Robotics and Automation, Traffic Light Assistance.
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1
Introduction

Scope Self-driving cars will be the next big technology step for our society in the
coming decade. At the present time, many car manufacturers spend a great deal of
effort in research of autonomous vehicles. Here, the goal is to reach autonomous driving
without any pedals or a steering wheel, also known as level five driving [1], to absolve
the driver from his legal responsibility. This technology also influences the development
of level three (highly automated driving3) and level four (fully automated driving4)
vehicles. According to the statistic, level three and level four will be in the European
market by car manufacturers with a large quantity in 2020 and 2025 [2].

In addition to the development of the technology in the car, a key component is the
development of infrastructure technology in form of high definition maps (HD maps).
HD maps support sensor-based functions of self-driving cars by use of their detailed
knowledge about the environment. They are needed for autonomous driving in order to
enable the self-driving car to make decisions in complex driving situations, localise itself
with high precision in relation to its surrounding world, and to drive in accordance with
the needs of traffic participants [3]. Another key component are outstanding government
regulations, which have to be enacted to clear the liability in case of accidents. Otherwise,
car manufacturers are not allowed to sell self-driving cars in large quantities.

Furthermore, hardware manufacturers such as NVIDIA and Intel are developing their
own autonomous driving kits [4], [5]. These kits include efficient hardware performance
and custom-built software algorithms for autonomous driving systems. At the moment,
almost every car manufacturer or supplier cooperates with one of these hardware
manufacturers since a powerful and resource efficient hardware platform is necessary to
develop machine learning or deep learning algorithms. Deep learning is considered as an
enabler for autonomous level five or lesser driving and replaces gradually conventional
image processing algorithms, e.g. specifically Hough transformation for cycle detection
in traffic lights or histograms of orientated gradients for general object classification.
The key for deep learning is exactly annotated data, which has to be recorded and

3Highly automated driving: The vehicle drives in defined environments without any driver input. In
unknown situations, the driver has to take over control.

4Fully automated driving: The vehicle drives without any driver input. In unknown situations, the
vehicle is able to stop safety at a parking place.
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1 Introduction

annotated by humans as well as a large amount of data also for rare and challenging
driving situations.

Topic This work relates to Advanced Driver Assistance Systems (ADAS). ADAS
systems form the basis for self-driving cars and are used from level two (partly automated
driving5) upwards. It is part of the research field of intelligent transportation systems
and autonomous robotics. In detail, this dissertation deals with the topic of "deep
learning metadata fusion for traffic light to lane assignment". The aim is to develop a
reliable Traffic Light to Lane Assignment (TL2LA) function for Traffic Light Assistance
(TLA) systems by use of a Convolutional Neural Network (CNN). This resolves the
special issue in which the traffic light is relevant for which lane at signalised intersection
scenarios. For this purpose, a novel deep metadata fusion approach is developed. This
approach creates the TL2LA function by fusing image data and additional metadata
within a CNN.

Mathematically speaking, the TL2LA function could be expressed by a many-to-many
assignment problem. The problem will reduce to a one-to-many assignment problem
if the ego-vehicle lane only is considered. An assignment problem would be resolved
analytically with an optimisation of the Kuhn-Munkres algorithm6 if the problem was
transformed to the graph theory and all connection properties were known in form of
a performance matrix, cf. [6]. In case of an analytic search algorithm solution, the
complexity of the TL2LA problem can be expressed by O(n2) under the condition that
n indicates the number of traffic lights T and lanes L. However, an analytical solution is
very difficult because of the unknown performance matrix properties. The assignments,
e.g. in figure 1.1, can be expressed by an allocation matrix

Malloc =



1 0 0 0 0 0 0
0 1 1 1 0 0 0
0 1 1 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 1 0 1


︸ ︷︷ ︸

T traffic lights


L lanes, (1.1)

which contains the assignment of all traffic lights T to all lanes L. In this matrix, a
one represents a relevant traffic light for the respective lane and a zero indicates a non-
relevant connection. In total, there are 2n theoretical solutions. Figure 1.1 underlines

5Partly automated driving: The vehicle drives for a short time without any driver input. The driver
has to permanently monitor and take over control of the vehicle at any time.

6Also known as the Hungarian method with an initial complexity of O(n4).
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Fig. 1.1 Exemplary presentation of the traffic light to lane assignment (TL2LA) function.
Traffic light 1 and traffic light 2 are positioned close together but are not relevant for
the same lanes. Traffic light 4 is mounted above lane 4 but is relevant for lane 2 and
lane 3. Traffic light 6 is a non-relevant traffic light for all lanes. This figure is taken
from figure 4.1 in [7].

the challenges of this special issue7: Traffic light 1 and traffic light 2 are positioned close
together but are not relevant for the same lanes. Traffic light 4 is mounted above lane 4
but is relevant for lane 2 and lane 3. Traffic light 6 is a non-relevant traffic light for all
lanes and must be ignored.
Many drivers sometimes have trouble to assign the relevant traffic lights to their

current lane. Causes for this could be distraction at the wheel or unknown urban
environments. If this happens, most drivers will decelerate to gain more time for the
decision before the end of the intersection scenario is reached as marked by the stop line.
The TL2LA function will help to avoid accidents and save lives in the future. Today,
about 4.0 % of all (≈2,600) fatalities per year are caused by motorcar accidents with a
red light offence in Germany. And about 2.3 % of all (≈300,000) registered red light
offences per year cause accidents with personal injury in Germany [8], [9]. Furthermore,
800 (1.9 % of ≈42,000) fatalities were registered on average each year in two-vehicle
crashes that involved at least one driver who ran a red light in the USA from 1997 to
2004 [10]. This makes the TL2LA function a necessary aspect for all following TLA
systems in the field of ADAS and self-driving cars. Some conceivable TLA systems are
listed below:

• Signalling of the current traffic light state (information)

• Automatic warning of red traffic lights (warning)

• Emergency braking on stop lines (action)

The first TLA system on the market is the Traffic Light Information System from Audi
7The generic intersection scenario, see figure 1.1, would have 2(T +L) = 4096 assignment possibilities
without logical restrictions.
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1 Introduction

[11]. This system uses HD maps for the traffic light position, state and relevant infor-
mation. It acquires its traffic light information via Interface to Vehicle communication
(I2V) from local traffic centres. That is why it is only available in ten U.S. cities.

The approach is to develop an independent TL2LA function which makes the assign-
ment within the first attempt without any prior knowledge about the current intersection
scenario. This excludes the usage of cloud management data, e.g. statistical observations
of the current intersection scenario or any I2V. Thus, the approach can be used in every
urban environment without the need of HD map information about relevant traffic
lights. Rather, the idea can be used to validate or even generate this information for
HD maps.

Database This thesis uses as a database the DriveU traffic light dataset [12]. In
comparison to other public traffic light datasets (LaRA8 [13], VIVA9 [14], and Bosch
Small10 [15]), it has the most annotated traffic lights and states with entire intersection
scenario frame sequences. In addition to the already annotated traffic lights in the
DriveU dataset, the images were annotated by humans with lane line markings, lane
arrow markings, and lane signs, as well as with connections between traffic lights and
lanes. This connection between traffic lights and lanes represents the TL2LA ground
truth.

Fig. 1.2 Distribution of all annotated metadata objects in the left camera image (traffic lights,
lane line markings, lane arrow markings, and lane signs). The metadata objects are
symbolised as coloured markers centred on their image position. The background of
the figure forms the mean left camera image of all annotated camera images.

8La Route Automatise: http://www.lara.prd.fr/benchmarks/trafficlightsrecognition.
9Vision for Intelligent Vehicles and Applications: http://cvrr.ucsd.edu/vivachallenge/index.php/

traffic-light/traffic-light-detection/.
10Small Bosch Traffic Light Dataset: https://hci.iwr.uni-heidelberg.de/node/6132.
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Fig. 1.3 Visualising of all intersection scenario routes driven by the ego-vehicle and standardised
on the same starting point. Each line represents one of the 848 database sequences
and the total travelled distance is 78.9 km.

Figure 1.2 shows a distribution of all annotated metadata objects11. Each metadata
object (traffic light, lane line marking, lane arrow marking, or lane sign) is visualised
as a round and coloured marker at its centred image position. The background fills
the mean left camera image of all annotated camera images. Moreover, an annotated
example image is available in appendix section 7.1.

The database was recorded using a stereo camera. Each camera image has a resolution
of (1024, 2048, 3) RGB pixels. The frame rate is 15 fps and every third frame is
annotated. In sum, there are 45,317 frames annotated. The amount of uncompressed
data is about 1.6 TBytes12. The total travelled distance of all intersection scenarios is
78.9 km. The intersection scenario routes of all 848 sequences are visualised conceptually
in figure 1.3. Each ego-vehicle route is plotted for the lateral and longitudinal distance
and is standardises on the same starting point at zero. The entire travelled distance
was driven at an average ego-vehicle speed of 31.3 km

h . In the course of this drive, the
average number of lane changes per intersection scenario was 0.28 lane changes and the
average number of traffic light state changes per intersection scenario, e.g. from green
to yellow colour, was 2.3 traffic light state changes. Furthermore, the average number of
lanes per intersection scenario is 3.3 lanes and the average number of traffic lights per
intersection scenario is 6.7 traffic lights in the database.
As described, the approach uses already detected and classified traffic lights for the

TL2LA function. Consequently, traffic light recognition (TLR) is not part of this thesis
because this task is already well addressed in literature, cf. [15]–[23]. Furthermore,
the recognition of the additional annotated lane line markings, lane arrow markings,

11The database acquisition, data annotation, and preparation of a data annotation tool was also part of
this work and preceded the actual development of the TL2LA function.

121.6 TBytes (image data) = 1024 (pixels) · 2048 (pixels) · 3 (RGB channels) · 45317 · 3 (all images) ·
2 (left and right stereo camera) · 1 bytes per pixel.
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1 Introduction

and lane signs is also not part of this thesis and is already addressed by other reference
literature, cf. [24]–[27].

Outline The thesis is structured in the following parts. The first part contains necessary
background knowledge about the applied methods in the two quoted manuscripts. The
functionality of neural networks is explained and the most important layer types and
hyper parameters are addressed to set up a CNN. In particular, the part explains the
normalisation and merging of convolutional feature maps that are necessary for the deep
metadata fusion approach. Furthermore, a separate Inverse Perspective Mapping (IPM)
method is introduced in order to transform the road part of the camera image into a
bird’s-eye view. This is used for the pre-processing of input images. The IPM method
is also used to annotate lane line markings, which are required as metadata for the
deep metadata fusion approach. The second part is a manuscript of a published paper
at the IEEE Intelligent Transportation System Conference (IEEE ITS13). The paper
explains a CNN model approach to develop a TL2LA function. The assignment problem
is converted into a regression problem with the help of an output regression vector,
which is resolved by a CNN. The third part is a second manuscript of a published IEEE
paper in the Robotics and Automation Letter (IEEE RA-L14). This paper describes in
detail the novel deep metadata fusion approach to create a reliable TL2LA function
by combining image data with additional metadata within a CNN. It is based on the
IEEE ITS CNN model approach and uses its findings, e.g. for drawing a comparison to
other approaches and for the design of another subjective test. Both manuscripts have
a prefixed exposition to underline their contribution in the context of this thesis and
both are followed by an additional section to contribute complementary investigations.
The last two parts deal with a discussion about the manuscripts as well as a summary
and outlook of my dissertation.

13The authors are T. Langenberg and F. Wörgötter. Contribution of T. Langenberg (first author):
implementation and evaluation of experiments and writing of the paper. Contribution of F. Wörgötter
(second author): scientific advice and paper corrections.

14The authors are T. Langenberg, T. Lüddecke, and F. Wörgötter. Contribution of T. Langenberg
(first author): implementation and evaluation of experiments and writing of the paper. Contribution
of T. Lüddecke (second author): review of the approach and paper corrections. Contribution of F.
Wörgötter (third author): scientific advice and paper corrections.
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2
Background Knowledge of Applied

Methods

2.1 Theory of Convolutional Neural Networks

The concept of neural networks denotes an interdisciplinary research field of system
theory, models and methods regarding biological neurons, and neuron associations [28].
The motivation for the usage of neural networks results from the functionality and
performance of their biological example. The idea is to adapt the neural system from
animals, especially from humans, and model this into a usable algorithm.
In connection with neural networks, Convolutional Neural Networks (CNN) have

become more famous for several image classification tasks in the last few years. CNNs are
the state-of-the-art for image processing tasks since the victory of the AlexNet CNN [29]
at the ImageNet Large Scale Visual Recognition Challenge15 (ILSCRC) in 2012. Since
then, CNNs are built with more and more convolutional and other special layers. Some
of the most popular CNNs are the VGG-16 [30] from 2014, the GoogLeNet [31] with
their interception module, and Microsoft’s ResNet [32] with 152 neural network layers
from 2015. All of these CNNs have won the past ILSCRC challenges.

In addition to the already mentioned image classification task, CNNs are also used for
object detection, image segmentation and regression tasks. These tasks are always based
on the fundamental property of pattern recognition, which is the main characteristic of
CNNs.

Moreover, pre-trained CNNs are used for relative image processing tasks in practical
applications, e.g. the above-mentioned VGG-16 CNN or GoogLeNet are often used as
pre-trained CNNs for image classification. On the one hand, transfer learning is possible.
All convolutional layers and their weights are copied from a pre-trained CNN to a new
CNN. Only the remaining fully connected layers are trained while the convolutional
layers remain static. This saves training run-time and hardware resources. On the other
hand, adaptive learning exists. The complete CNN topology and its weights are copied
from a pre-trained CNN to a new CNN. The new CNN is trained for another task
15The ILSCRC is a yearly image classification competition.
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2 Background Knowledge of Applied Methods

with the copied weights, which were used for initialisation. This also reduces training
run-time and sometimes achieves better test results.

2.1.1 Definition of Deep Learning

The term deep learning is often mentioned in the context of CNNs but is not limited
to image processing tasks only. It describes a special realisation of Artificial Neural
Networks (ANN) with CNNs, which themselves belong to the class of machine learning
algorithms [33]. Deep learning is defined as an approach that solves problems using
representation learning. Computers are enabled to learn complex concepts based
on simpler concepts by representations that are expressed in terms of other simpler
representations [34, p. 5]. Deep learning is realised with a hierarchical construction of
many neural network layers, particularly with convolutional layers. Therein it appears
that the deeper the network layer, the more complex the representations, e.g. from
contours to edges, from edges to object parts, and from object parts to objects. This
simplified imagination of deep learning refers to the understanding and visualisation of
CNNs [35].

2.1.2 Operation Principle

Functionality of a Single Neuron Neural networks are information processing systems.
Their structure and functionality are adapted from the human brain and they consist of
many parallel working neuron connections. These neurons communicate in the form of
activation signals, which are weighted according to their learned importance [36, p. 11].

The simplest structure of a single neuron is a perceptron, see fig. 2.1. The perceptron
has {x1, ..., xN} inputs and one output y1. Each input is weighted by its corresponding
weights {w1, ..., wN}. The sum of all weighted inputs including bias b is forwarded to
the activation function φ. The activation function produces the non-linearity of each

𝑦1

input single neuron output

𝑥1
𝑥2
𝑥…
𝑥𝑁−1
𝑥𝑁

𝜙  

i=1

𝑁

𝑤i ∙ 𝑥i + 𝑏

𝑤𝑁

𝑤1

𝑏

Fig. 2.1 Functionality of a single neuron, a so-called perceptron, within a neural network. The
perceptron has N inputs {x1, ..., xN} and each input has a weight w. The perceptron
generates the output y1 by using a non-linear activation function φ for the sum of the
weighted input plus a bias b.
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2.1 Theory of Convolutional Neural Networks

neuron by the selection of a non-linear activation function, e.g. a hyperbolic tangent, a
sigmoid, or a rectified linear unit function.

Forward Propagation Forward propagation produces the output of a neural network.
The input data is gradually processed from network layer to network layer by use of
the activation functions and weights. Each network layer thereby reduces the size of its
input with simultaneous generalisation.

The forward propagation for a single neuron, cf. fig. 2.1, is defined by

yl = φ

(
N∑
i=1

wl
i · xli + bl

)
(2.1)

with N number of contributing neurons xli, weighted by wl
i with an additional bias bl,

and separated by independent neural network layers l, cf. [37]. The forward propagation
for specific neural network layers, e.g. in a convolutional layer or a pooling layer, is
explained in the following subsection 2.1.3.

Backward Propagation Backward propagation is used to update or train the weights
of neural network layers. Processing is executed subsequent to the forward propagation
after each iteration n and represents the most time-consuming computation step. The
backward propagation procedure is described for the above-mentioned single neuron as
follows.

First, the error loss

Ψ = 1
N

N∑
i=1

(ŷi − yli)2 (2.2)

is calculated after each iteration. Here, the error loss is given by the Mean Squared
Error (MSE) loss function with the target vector ŷ and output vector y both with the
same length N . Second, the gradients ∆wl

i are calculated by use of the chain-rule:

∂Ψ
∂wl

i
= ∂yl

∂wl
i

∂ξl

∂yl
∂Ψ
∂ξl

with ξl =
N∑
i=1

wl
i · xli + bl. (2.3)

It results by means of simplification, see [34, p. 200-214] for more details,

∆wl
i = − ∂Ψ

∂wl
i

(2.4)

as a gradient. The term backward propagation actually describes the determination of
the gradients. The weights are updated using another algorithm. In this case, it is the
Stochastic Gradient Descent Momentum (SGDM) algorithm, cf. [34, p. 200]. Third, the
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2 Background Knowledge of Applied Methods

weights are updated via

wl
i(n + 1) = wl

i(n) + η ·∆wl
i(n) (2.5)

for the next iteration (n + 1) by use of the gradient and the learn rate η, which is
explained in section 2.1.4.

2.1.3 Explanation of Neural Network Layers

A neural network, particularly a CNN consists of at least three different layer types:
convolutional layers, pooling layers, and fully connected layers. Additionally, a CNN
can be extended with more layer types to improve the test results, decrease the training
run-time, or enables new network topologies to resolve more complex tasks. In the
following, neural network layers are explained briefly that are utilised in this work.

Convolutional Layer The aim of convolutional layers is to learn feature representa-
tions16 from the input image. A convolutional layer is composed of several convolutional
filter kernels. Each kernel computes a new convolutional feature map. Particularly, each
neuron of a convolutional feature map is locally connected to a region of neighbouring
neurons in the previous convolutional layer, depending on the kernel size κ, cf. fig. 2.2.
Here, a symmetric kernel size is used. All kernel weights κ2 of a kernel are shared for all
spatial locations (u, v) of the input tensor to produce a new convolutional feature map
denoted by k. Moreover, many convolutional layers use a zero pooling extension at the
input borders in order to make the feature map size equal to the input tensor size, see
fig. 2.2.

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 1 0 0 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0

1 4 4 4 3 1

1 4 3 2 1 0

1 4 4 4 2 0

0 1 1 2 4 1

0 1 1 2 4 1

1 3 4 4 4 1

0 1 0

1 2 1

0 1 0

𝑋u,v
l

𝑊l,k

𝑌u,v
l,k0 as zero poolingwith

=∗

Fig. 2.2 Example of a single feature map convolution. The input tensor feature map X l
u,v is

convolved by a 3 by 3 shared weight filter kernel W l,k with zero pooling at the borders
in order to create the a new convolutional feature map Y l,k

u,v.

16A feature representation is understood as an abstract object part, e.g. lines, circles, or edges, cf. also
subsection 2.1.1.
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2.1 Theory of Convolutional Neural Networks

A new convolutional feature map

Y l,k
u,v =

Kl−1∑
i=1

X l,i
u,v ∗W l,i,k (2.6)

is obtained by adding all input tensor feature maps in X l,i
u,v with i ∈ {1, ...,Kl−1} at

location (u, v), which are convolved with corresponding kernel W l,i,k of the l-th layer [38].
The number of input tensor feature maps is defined by the number of kernels Kl−1 of
the previous (l− 1) convolutional layer. Then, a non-linear activation function φ, e.g. a
rectified linear unit function, is applied to each value of the single convolutional feature
map Y l,k

u,v together with the bias bl,k of the kernel used. This results in convolutional
layer output

Z l,k
u,v = φ(Y l,k

u,v + bl,k). (2.7)

This describes the forward propagation in a convolutional layer. The concrete backward
propagation for this layer type is described in [34, p. 350-352] and follows the principle
in subsection 2.1.2.

Pooling Layer A pooling layer down-samples the output of the previous convolutional
layer. It takes an area of features from the previous convolutional layer and selects
or generates a new feature, which best represents all taken features. Pooling factor λl

depends on the pooling filter size and the stride length for each resulting pooling location
(p, q). The stride length is set to no overlap by default. This means each pooling area
is independent. This setting yields by use of a symmetric two-dimensional pooling filter
that the pooling factor is equal to the filter size.
Two widely used methods, maximum and average pooling, have high computational

efficiency. They are therefore frequently used in pooling layers because they achieve good
classification accuracy in open-source databases [39]. The maximum pooling method is
defined by the explained default pooling settings as

Z l,k
p,q = max({Z l,k

u,v : u = p, ...,p + λl − 1; v = q, ..., q + λl − 1}) (2.8)

and the average pooling method as

Z l,k
p,q = 1

(λl)2

p+λl−1∑
u=p

q+λl−1∑
v=q

Z l,k
u,v. (2.9)

Fully Connected Layer A fully connected layer is composed by a parallel arrangement
of single neurons or perceptrons. A conjunction of one or more fully connected layers
is called a Multi-Layer Perceptron (MLP) in the reference literature [40]. In a fully

11



2 Background Knowledge of Applied Methods

𝑦1

𝑤5,5
1

𝜙 𝜙𝜙𝜙𝜙

𝑦2 𝑦3 𝑦4 𝑦5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑤1,1
1

Fig. 2.3 Extract of a Multi-Layer Perceptron (MLP). It contains one fully connected layer with
five inputs xi and five outputs yj. φ are the non-linear activation functions and w1

i,j
are the connection weights.

connected layer, all inputs are connected with their weights to every single neuron, cf.
fig. 2.3, which shows a fully connected layer with five inputs {xli, ..., xlNi} and outputs
{ylj, ..., ylNj} and their weights wl

i,j. The fully connected layer input xli is mostly the
output of the last pooling layer Z l,k

p,q for the first fully connected layer in a CNN. For
this all output locations (p, q) of each feature map k in the pooling layer have to be
flattened from a tensor to a vector. It applies i ∈ {1, ..., P ·Q ·K} with K feature maps
and P , Q as the tensor height and width.

Dropout Layer Dropout layers are used during the training process and have two
benefits. First, they improve neural networks by reducing over-fitting17. Second, they
improve the performance of neural networks independently from the dataset used. This
is achieved by breaking up redundant adaptations between fully connected layers, which
are inconvenient for generalising unseen data [41].
A typical configuration places the dropout layer in front of a fully connected layer.

The dropout layer itself is modelled by a Bernoulli distribution B(pB). Each input signal
of a neuron is multiplied by an independent random value χli, which has the probability
pB of being one. It applies for the output

ylj = φ

(
Ni∑
i=1

wl
i,j · xli · χli

)
(2.10)

in a fully connected layer with an upstream dropout layer with

χli ∼ B(pB). (2.11)

Batch Normalisation Layer A batch normalisation layer is deployed before the activa-
tion function of a convolutional or fully connected layer. The layer normalises the batch
17Over-fitting means that the CNN has perfectly learned the training dataset, but is not able to

successfully transfer the learned features on an unseen test dataset.
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2.1 Theory of Convolutional Neural Networks

input of the dataset. Thus, the activation functions always react to the same input
distribution because otherwise the distribution of each layer’s inputs would changes
during the CNN training process. This is also known as the internal co-variance shift
problem, which is addressed through a batch normalisation layer. In consequence, a
batch normalisation layer decreases the training run-time and allows a greater degree of
freedom for the initial learning rate parameter [42].

The batch normalisation algorithm follows two steps: (1) the normalisation and (2) the
scale and shift. First, all activation inputs Y l,k,(b)

p,q of a batch size B with b ∈ {1, ..., B}
are normalised to

Ŷ l,k,(b)
p,q =

Y
l,k,(b)
p,q − µ(B)√
σ2

(B) + ε
. (2.12)

in terms of the batch mean µ(B) and the batch variance σ2
(B) within a layer l. The

technical parameter ε is set to 0 < ε � 1 to avoid dividing through zero. The batch
mean µ(B) and the batch variance σ2

(B) are calculated with l = 1 as follows:

µ(B) = 1
BKPQ

B∑
b=1

K∑
k=1

P∑
p=1

Q∑
q=1

Y k,(b)
p,q , (2.13)

σ2
(B) = 1

BKPQ

B∑
b=1

K∑
k=1

P∑
p=1

Q∑
q=1

(Y k,(b)
p,q − µ(B))2. (2.14)

Second, the normalised activation inputs are scaled and shifted with the parameters θ
and β, which are to be learned:

Ỹ k,(b)
p,q = Ŷ k,(b)

p,q · θ + β. (2.15)

The parameter θ and β are updated via

∂Ψ
∂θ

=
B∑

b=1

K∑
k=1

P∑
p=1

Q∑
q=1

∂Ψ
∂Ỹ

k,(b)
p,q

· Ŷ k,(b)
p,q and (2.16)

∂Ψ
∂β

=
B∑

b=1

K∑
k=1

P∑
p=1

Q∑
q=1

∂Ψ
∂Ỹ

k,(b)
p,q

(2.17)

through backward propagation of the error loss Ψ, explained in sec. 2.1.2, during the
training process, cf. [42]. The gradients are used to improve iteratively θ and β as
explained in equation 2.5. When the training process is complete, the parameters µ(B)

and σ2
(B) will be generated and stored for the entire training dataset. These parameters

are used to normalise new unseen test datasets identical to the training dataset.
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Merge Layer The purpose of merge layers is to construct more complex network
topologies. They enable to combine or fuse two or more input data streams. There
are several kinds of merge layers. In principle, all merge layers are formulated via
mathematical operators which combine multiple data streams. The most famous one
is the concatenation layer in equation 2.18, which simply chains features in a specified
dimension:

Xk = Xk1_Xk2 with k ∈ {k1, k2} (2.18)

Moreover, element-wise multiplication, addition, and subtraction layers exist, cf. [43].
Disadvantages of merge layers are that more effort is needed for network specification,

e.g. for the hyper parameter setup (see next subsection 2.1.4) and that the complexity
of backward propagation increases the computational outlay of training run-time.

Long Short Term Memory Layer A Long Short Term Memory (LSTM) layer processes
data time series or frame sequences. The LSTM layer is designed as a constant-error-
carousel that is self-connected to its output. The resulting layer architecture is also
called a memory cell, cf. [44].

Figure 2.4 illustrates the architecture of an LSTM layer in the form of a block diagram.
This LSTM layer is designed to process the same input and output data format as for a
fully connected layer. The input and output vectors are x(f) and y(f). Here, the time
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Fig. 2.4 Block diagram of a Long Short Term Memory (LSTM) layer. It uses the input x(f)
and previous output y(f-1) for each frame iteration f to generate the output y(f). It
consists of four gates: forget gate (forget), input gate (in), cell gate (cell), and output
gate (out). It is reinitialised with vectors 0V filled with zeros for each new iteration
cycle.
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2.1 Theory of Convolutional Neural Networks

steps are represented by frame index f corresponding to the current input image of a
CNN. The LSTM layer consists of a forget (forget), input (in), cell (cell), and output
(out) gate. All these gates have as inputs the current input vector x(f) and the previous
output vector y(f − 1). Each gate is trained by the convolution and addition of the
inputs with the weight matrices W , recurrent weight matrices R, and bias b (equivalent
to the forward propagation in section 2.1.2). Each gate output is also activated by a
non-linear activation function φ.
The cell gate is the core of the LSTM layer. It is regulated by the input gate by

means of the element-wise multiplication of their outputs. The forget gate controls
which values can pass by addition. Technically, it is self-connected via element-wise
multiplication of its previous decision at frame f− 1. The LSTM output y(f) is activated
again and passes the output gate by means of another regulation by an element-wise
multiplication, see figure 2.4.
In a new iteration cycle, the LSTM layer is reinitialised by use of vectors 0V filled

with zeros and the LSTM process described starts again.

2.1.4 Hyper Parameter Setup

Hyper parameters are parameters that have to be defined manually by the researcher
knowledge before the training process starts, cf. [45]. Hyper parameter setup is mostly
very time consuming and the hyper parameters have a direct influence on three deep
learning properties: hardware resources, training run-time, and test results. These
deep learning properties also influence each other, see figure 2.5. In most cases, the
hardware resources (computing power and memory storage) are limited. The training
run-time depends on the available hardware resources, such as the number of parallel
GPUs, their graphical processing power, graphical memory storage, and of course the
hyper parameters. The deep learning property test results especially depend on the
hyper parameters and not exactly on the training run-time. This means that a CNN

test results

hyper
parameters

Fig. 2.5 Relation of CNN hyper parameters and three deep learning properties. The hyper
parameter setup influences the training run-time, the test results, and the hardware
resources of a CNN.
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with badly conditioned hyper parameters could evoke a very long training run-time but
achieve poor test results.
Important hyper parameters are the convolutional kernel size κ (symmetric two-

dimensional filter kernel), the number of convolutional feature maps K, and the pooling
factor λl of the current layer l to set up a CNN topology. These three hyper parameters
determine the number of neurons in the next convolutional layer and the number of
weights in the current convolutional layer, cf. [46]. The number of neurons is given by

NN = P ·Q
(λl)2 ·K (2.19)

with P and Q as the height and width of the input tensor for the convolutional layer.
The number of weights is defined by

NW = κ2 ·K. (2.20)

The number of neurons, the number of weights, and the number of convolutional layers
impact on run-time (the larger the CNN is, the longer the training run-time takes) as
well as the test results. Note that on the one hand, if the number of weights is too
small in the CNN, the CNN will not learn any generalisation. On the other hand, if the
number of weights is too big in the CNN, the CNN will be over-fitted after the training
process such that the transferability of the results is lost.
Furthermore, three important hyper parameters are introduced below to setup the

training process of a CNN:

Initial Learn Rate The initial learn rate η is the most challenging parameter. In a
common MLP, the initial learn rate is by default one, but by using CNNs, the range
is often between [10−5, 10−2]. The best practice is to set a minimum and a maximum
initial learn rate value, monitor the CNN error loss of each training process, and improve
the value by using the bisection method after each training.

Moreover, learn rate decay is a technique to improve the training process by means of
step-wise reduction of the learn rate, e.g. by a factor of two, after a defined number
of epochs. This technique is also known as the L2 regulation. Note that on the one
hand, if the learn rate is very small, the loss of the CNN will decrease only after a long
run-rime or possibly never. On the other hand, if the learn rate is too large, the CNN
error loss will diverge and the training process should be stopped immediately.

Batch Size The batch size18 hyper parameter is a technical parameter and is limited
by the availability of memory storage on GPUs. This guarantees a maximum utilisation
18Bach size is also mentioned as mini batch size in literature.
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of the hardware resources. Unless if the mini batch size is too small (only a handful of
input images), the CNN will not learn any generalisation and the CNN error loss will
not start to decrease.

Number of Epochs This hyper parameter specifies how often the training dataset
should be processed via the CNN. The best practice is to set up a large number of
epochs using early stopping by means of a validation dataset. Otherwise, if the training
process processes the training dataset with too many epochs, the CNN will be over-fitted
after the training process.

Furthermore, the number of epochs NE , the batch size B, and the number of training
dataset images ND influence the number of iterations NI = NE · ND

B . After each iteration,
the kernel weights of a CNN are updated.

The goal should be to achieve the best possible result with a reasonable training
run-time and the given hardware resources. To achieve this, it should be started from a
minimal hyper parameter setup for a CNN topology at the beginning. Moreover, there
are approaches for automatically finding the optimal hyper parameter setup by using
efficient search algorithms [47], [48] or advising the initial hyper parameter setup based
on a previous brute force optimisation study [49]. However, the automatic setting of
CNN hyper parameters is still an open-research question.

2.1.5 Normalisation in Convolutional Neural Networks

Normalisation has become more important during the usage of CNNs in the last few years,
since normalisation has enabled a faster training process and a greater generalisation of
a CNN while a less careful hyper parameter initialisation.

The four normalisation types are explained below. They all have data normalisation
in common to make updating the weights more efficient for each iteration. Moreover, a
dropout layer as explained in subsection 2.1.3, which is actually a regularisation layer,
also realises a type normalisation. Instead of data normalisation, it directly normalises
the weights of the following fully connected layer.

Zero Normalisation This normalisation type normalises the entire dataset before the
training. The global mean of all input images is determined and is subtracted from each
image value separately for each image channel. This is the easiest normalisation type
and is applied normally to every CNN.

Batch Normalisation Batch normalisation normalises the single mini batches with
each other during training. Batch normalisation needs its own network layer for
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implementation and was explained in detail in subsection 2.1.3.

Layer Normalisation Layer normalisation works in principle as well as batch normali-
sation on layer level. It has the adjustment that all feature maps of an input image in a
selected convolutional layer are normalised with each other, cf. [50]. This is applied to
each input image.

Instance Normalisation Instance normalisation is a sub-type of layer normalisation,
cf. [50]. It normalises in the same way as layer normalisation, but with the distinction
that only certain and not all convolutional feature maps are normalised with each other.

2.1.6 Definition of Deep Fusion

Deep Fusion belongs to the research field of artificial intelligence and is a sub-aspect of
deep learning. The definition of the term deep fusion is not consistent in the reference
literature. However, all scientific publications have in common that deep fusion is about
deep information fusion and it describes a technique to integrate several data streams
together in a CNN, cf. [51], [52]. Deep fusion can take place in an early or late processing
step in the CNN topology, which is usually clarified by additional experiments, depending
on the use case. Each deep fusion approach can be broken down into the following
categories:

Fusion Technique There are two main fusion techniques: (1) multi-feature fusion and
(2) heterogeneous data fusion. The difference between both is conditioned by the input
data. Multi-feature fusion uses only one data source, e.g. image data, and splits them
within the CNN in different data streams, which are then fused together again in a later
processing step, cf. [53]–[55]. By contrast, heterogeneous data fusion takes several data
streams, e.g. image data and metadata, as input data and fuses them in the CNN, see
also subsection 4.2.3.

Fusion Method The fusion method also conditions the fusion operator used. Two
methods exist [56]: (1) direct fusion and (2) aggregation fusion. Direct fusion presumes
that the different data streams are adapted to the same size. Here, fusion operators
like an element-wise addition, element-wise multiplication, or a convolution are used.
Aggregation fusion do not need data streams of the same size. Hence, fusion operators
like maximisation, minimisation, or concatenation, which aggregate the data streams,
are used, cf. [57].
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Fusion Level In general, deep fusion is divided into three fusion levels: (1) raw level,
(2) feature level, and (3) object level. The first level describes the fusion of raw data
streams, e.g. the deep fusion of camera images and disparity maps to create high
resolution depth maps, e.g. in [58] and [59]. The second level describes the fusion of
previously generated features. This fusion level is often used in combination with the
multi-feature fusion technique. The third level describes the fusion of already recognised
objects. For example, this fusion level is employed in order to verify detected objects by
a camera and RaDAR sensor, cf. [60].

Note that the deep metadata fusion approach as proposed in chapter 4 can be categorised
as a direct deep feature fusion with heterogeneous data in this work.

2.2 Method of Inverse Perspective Mapping

Inverse Perspective Mapping (IPM) describes in general an image transformation. It is
part of the linear algebra in the field of perspective projection. An image is transformed
from its origin plane into another plane inside a three-dimensional coordinate system,
while the point of view stays the same. Other known terms are bird’s-eye-view or top
view, which describe an often used perspective projection: The point of view of the
camera is virtually transformed vertically above the ground.
For this work, I developed an IPM method to create top view images from an ego-

vehicle camera. The aim is to generate an IPM full panorama image of the complete
intersection scenario by stitching single top view images of the same sequence together.
Unfortunately, only the ego-vehicle camera yaw angle is available, but the pitch and
roll angles are missing. Thus, the contribution of this approach is a procedure which
compensates nick angular movements between stitched IPM frames by means of the
determination of the image horizon in its three-dimensional point cloud image. The roll
angle is neglected in the approach. Moreover, the main extensions of this IPM approach
in contrast to a conventional IPM transformation, cf. [61], [62], are:

• A flat world assumption function to convert quickly between the camera coordinate
system and the world coordinate system.

• A mean absolute error optimisation to find the best match between the previous
and next stitched top view images.

• A cross-correlation back-correcting to minimise the deviation between the generated
IPM full panorama image and each single top view image.
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This IPM approach is only real-time capable with high computational outlay because of
the pitch angle compensation and the mentioned extensions. However, the IPM method
is also used for efficient and offline IPM lane line marking annotations, see upcoming
subsection 2.2.5.

2.2.1 Image Horizon Estimation

A three-dimensional point cloud image is used to estimate the image horizon uH , which
is used to compensate the unknown pitch angle of the ego-vehicle. The image horizon
(marked as red line in fig. 2.6) is calculated for each camera image and constitutes
the key parameter for each IPM transformation into a top view image. It is formed
from the intersection line of the two planes EUV and Eroad and represents the constant
u-intercept of the intersection line in the image coordinate system. EUV is the UV-plane
equation of the camera coordinate system. The plane Eroad is the recognised road part
in the camera image that is projected into the top view image. It is illustrated as a blue

Fig. 2.6 Illustration of a three-dimensional point cloud image Du,v,w. The point cloud image
has in its dimensions U and V the camera image Iu,v and in the dimension W the
disparity map of the camera image. The road plane Eroad (blue surface) is used to
determine the virtual horizon uH (red horizontal line).
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transparent surface in fig. 2.6 and is determined by use of the RANSAC algorithm19.
The RANSAC algorithm randomly iterates through many possible planes of Eroad to
find the most robust match between the estimated plane and the point cloud image
pixels [63]. The RANSAC algorithm needs as input the three-dimensional point cloud
image stored in Du,v,w and the initial search plane EWU, which represents the WU-plane
equation of the camera coordinate system. The parameters of the RANSAC algorithm
are: number of iterations (500), maximum error distance to decide between inlier and
outlier pixels (2 px), and the percentage of correctly fitted pixels to abort early the
search (90 %).
Figure 2.6 shows an example of a three-dimensional point cloud image Du,v,w. This

image is created by use of the (left) camera image Iu,v (with the row position u and
column position v) and the disparity map of the left and right camera image with a base
width of 0.2 m. The disparity map is generated by means of the Semi Global Matching
(SGM) stereo processing algorithm, cf. [64], [65]. It represents the image depth in pixels,
which is plotted in dimension W of fig. 2.6.

2.2.2 Flat World Assumption

The IPM transformation requires a function that represents a flat world assumption for
the road area in front of the ego-vehicle. This enables a fast and consistent conversion
between the image row index u and the longitudinal world distance z(u). This function
can be derived from figure 2.7. The longitudinal world distance

z(u) = tan(α′) · hcam (2.21)

is calculated by using the angle α′ and the world camera height hcam = 1.24 m. The
angle α′ is specified by the alternate angle α:

α′ = π

2 − α. (2.22)

The angle
α = tan−1

((uH − u) · ρ
f

)
(2.23)

is defined by the difference between the image horizon uH , the image row index u, and
the two fixed camera parameters: pixel density ρ = 2 µm

px and focal length f = 4.8 mm.
The final equation 2.24 results from inserting the equations 2.21, 2.22, and 2.23 into
each other:

z(u) = tan
(
π

2 − tan−1
((uH − u) · ρ

f

))
· hcam. (2.24)

19RANSAC stands for Random Sample Consensus.
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Fig. 2.7 Explanation of the flat world assumption function and its corresponding coordinate
systems. The projection into other coordinate systems uses the camera view only.

The flat world assumption function, equation 2.24, describes a simplification of the road
plane Eroad depending on the U-dimension in the three-dimensional point cloud image,
since it relies on the image horizon uH .
The lateral world distance

x(v) = v · ρ
f
· z(u) (2.25)

is calculated by means of the standard pin-hole camera model20. This equation uses
the image column index and the previously determined longitudinal world distance
represented by v and z(u).

Moreover, figure 2.7 displays three coordinate systems: the camera coordinate system
(U, V, W), the world coordinate system (Y, X, Z), and the IPM coordinate system
(WT , VT , UT ). All coordinate systems use Cartesian coordinates. These coordinate
systems enable the IPM transformation from a camera image Iu,v into a top view image
JuT ,vT by means of the flat world assumption made and the image horizon estimation.
The indices uT and vT in JuT ,vT are the row and column indices of the transformed top
view image. The IPM method is split in two main algorithms, the IPM full panorama
image stitching and IPM top view image back-correction, which are introduced in
subsections 2.2.3 and 2.2.4 below.

2.2.3 Full Panorama Image Stitching

The IPM full panorama image stitching procedure is described in algorithm 1 for one
intersection scenario or sequence. The algorithm 1 is now explained line by line:
The procedure loops each camera image I fu,v by the frame index f of all frames

F to generate the IPM full panorama image OuT ,vT , see line 3. In the loop, the
20The standard pin-hole camera model based on the theorem of intersecting lines.
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Algorithm 1 IPM full panorama image stitching procedure.
1: input: I fu,v: camera image with frame f,

Df
u,v,w: point cloud tensor of disparity map,

ROI fu,v: region of interest from I fu,v,
EUV: UV-plane in image coordinate system,
EWU: WU-plane in image coordinate system,
M f
rot: rotation matrix,

M f
transl: translation matrix,

IPMconfig: fixed IPM configuration parameters.

2: output: OuT ,vT : IPM full panorama image.

3: for f = 1:F do

4: Eroad ← fRANSAC(Df
u,v,w, EWU) // search best road plane

5: ufH ← Eroad ∩ EUV // calculate intersection line

6: if f > 1 then

7: for i = -5:5 do

8: H ← fTRANSFORM(ufH + i, IPMconfig) // create transformation matrix
9: J f,i

uT ,vT ← I fu,v ·H ∀(u,v) ∈ ROI fu,v // transform camera image
10: J f,i

uT ,vT ← J f,i
uT ,vT ·M f

transl∀(uT , vT ) // translate top view image
11: J f,i

uT ,vT ← J f,i
uT ,vT ·M f

rot∀(uT , vT ) // rotate top view image
12: ∆i ← fMAE(J f,i

uT ,vT , J
f-1,imin
uT ,vT ) // compare images by MAE

13: end for

14: imin ← min({∆}) // select best top view image
15: OuT ,vT ← OuT ,vT ⊕ J f,imin

uT ,vT // stitch top view image

16: else

17: H ← fTRANSFORM(ufH , IPMconfig) // create transformation matrix
18: J f

uT ,vT ← I fu,v ·H ∀(u,v) ∈ ROI fu,v // transform camera image
19: OuT ,vT ← J f

uT ,vT // initialise IPM panorama image

20: end if

21: end for

RANSAC algorithm is used to estimate the road plane Eroad of the disparity map point
cloud image Df

u,v,w by means of the initial plane EWU in the WU-plane of the image
coordinate system, see line 4. In line 5, the intersection line between the planes Eroad
and EUV is calculated to determine the image horizon ufH of the camera image I fu,v, cf.
subsection 2.2.1.

Then, a case differentiation is made depending on the frame index f. In case of f = 1,
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the procedure initialises the IPM full panorama image with the first top view image,
see lines 17-19, which are similar to lines 8, 9 and 15. In case of f > 1, the procedure
loops variations of the virtual horizon with ufH ∈ {−5, ..., 5} pixels to optimise the IPM
transformation into the top view image J f,i

uT ,vT , see lines 7 to 13.
A perspective projection transformation matrix H is generated for each variation, see

line 8. The matrix H is calculated by means of the four top view image corner points
({uTj , uTj } : j ∈ {1, ..., 4}). These points correspond to the four regions of interest corner
points ({uj, uj} : j ∈ {1, ..., 4}), displayed in figure 2.8. These points are used to solve
the equation21 

uTj
vTj
0

 = H ·


uj
vj
1

 . (2.26)

The regions of interest corner points are calculated by rearranging equation 2.24 and 2.25
to u and v and by plugging in the fixed IPM transformation parameters for z(u) and
x(v). The fixed IPM transformation parameters IPMconfig are:

• z1(u) = 50 m "world top view longitudinal top"

• z2(u) = 10 m "world top view longitudinal bottom"

• x1(v) = 10 m "world top view lateral right"

• x2(v) = -10 m "world top view lateral left"

Subsequently, the camera image is transformed into the top view image J f,i
uT ,vT by

multiplying each image pixel (u,v) inside the defined region of interest image ROI fu,v
with the transformation matrix H, see line 9. An example region of interest image is
shown in figure 2.8, which corresponds to figure 2.6.
The resulting top view image is scaled on the global top view length and width by

use of a pixel size of 0.02 m. It is translated and rotated, see line 10-11, by use of the
translation matrix

M f
transl =

[
ωf
UT 0
0 ωf

V T

]
(2.27)

and rotation matrix

M f
rot =

[
cos(γf) − sin(γf)
sin(γf) cos(γf)

]
. (2.28)

The ego-vehicle yaw rate around the rear axle is given by γf. Note that the rotation
centre lies out of the top view image, because γ is centred on the rear axle of the
21The equation 2.26 would normally be constrained for H with nine variables. Two variables are freely

select-able for scaling, however, two variables are firmly set to zero, and another variable is always
one.

24



2.2 Method of Inverse Perspective Mapping

Fig. 2.8 Region of interest image ROI f
u,v of the camera image I f

u,v with the four region of
interest corner points.

ego-vehicle. The ego-vehicle speed is represented by ωf
UT and ωf

V T for the UT and VT

dimension.
The current top view image is compared to the previous one by means of the Mean

Absolute Error (MAE), see line 12. Selected is the top view image J f,imin
uT ,vT with the

minimal derivation, which is stitched on the IPM full panorama image, see line 14-15.
As a final result, the IPM full panorama image OuT ,vT is gained. Figure 2.9 shows the

IPM full panorama image, which belongs to the point cloud image Du,v,wf in figure 2.6 as
well as to the region of interest image ROI fu,v in figure 2.8. The blue surface illustrates
the position where this top view image was stitched after transformation, translation,
rotation, and optimisation of the camera image.

Fig. 2.9 IPM full panorama image with an example position of a stitched top view image. The
blue surface corresponds to the blue one in figure 2.6.

25



2 Background Knowledge of Applied Methods

2.2.4 Top View Image Back-Correction

The IPM back-correction is an extension of the IPM full panorama image stitching
procedure, cf. algorithm 1. The aim is to improve the IPM transformation into a top
view image by using the already existing IPM panorama top view image. Hence, this
procedure can only be applied after the IPM full panorama image stitching procedure is
finished and the IPM full panorama image is created.
The IPM back-correction procedure is displayed in algorithm 2. First, an IPM

panorama top view image Of
uT ,vT is cut out and rotated back to the original size of

a single top view image for a frame f, see line 3. An example of an extracted IPM
panorama top view image is shown in fig. 2.10 (b) which conforms to the blue surface in
figure 2.9. Second, a variation of the virtual horizon vfH is looped with i ∈ {−10, ..., 10}
pixels, see line 4-8. The top view images J i

uT ,vT are generated by using the likewise
newly created transformation matrices H in the loop, see line 5-6. The camera image
transformation into a top view image works identically to the transformation described
in line 8-9 of algorithm 1, cf. subsection 2.2.3. Third, the new top view images are
compared against the previously extracted IPM panorama top view image by using
the Cross-Correlation Function (CCF), see line 7. The CCF iterates the image by a
row-wise shift. As a return value, the maximum result of all iterations is selected. The
algorithm selects the highest cross-correlation result of all variations, which determines
the improved top view image, see line 9-10.

The advantage of this procedure is that the top view images are as similar as possible

Algorithm 2 IPM top view image back-correction procedure.
1: input: OuT ,vT : IPM full panorama image,

I fu,v: camera image with frame f,
IPMconfig: fixed IPM configuration parameters,
ufH : initial virtual horizon of frame f

2: output: J f
uT ,vT : improved top view image of frame f.

3: Of
uT ,vT = fEXTRACT (OuT ,vT , f) // extract IPM panorama top view image

4: for i = -10:10 do

5: H ← fTRANSFORM(ufH + i, IPMconfig) // create transformation matrix
6: J i

uT ,vT ← I fu,v ·H ∀(u,v) ∈ ROI fu,v // transform camera image
7: ∆i = max(fCCF (J i

uT ,vT , O
f
uT ,vT )) // compare images by CCF

8: end for

9: imax ← max({∆}) // find best top view image
10: J f

uT ,vT = J imax
uT ,vT // select improved top view image
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to the IPM full panorama image. This is especially beneficial for the IPM lane line
marking annotations, because they are annotated in the IPM full panorama image and
taken over into the single top view images, see next subsection 2.2.5.

2.2.5 IPM Lane Line Marking Annotations

All IPM full panorama images represent the entire driving route of all intersection
scenarios. The idea is to use the IPM full panorama images to annotate all lane line
markings with less time investment and adequate quality. The benefit is that only one
large IPM full panorama image has to be annotated per intersection scenario instead of
many single camera images. In detail, each IPM full panorama image is used for the
IPM lane line markings as follows:

All lane line markings are annotated particularly favourably in the IPM full panorama

(a) Top view image. (b) IPM panorama top view image

Fig. 2.10 Illustration of IPM lane line markings and a comparison between a single top view
image and the extracted IPM panorama top view image for the same frame.
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image as consistent markings by hand. The area of each associated IPM panorama
top view image lane line markings is taken over to its related single top view image.
Figure 2.10 (b) displays the annotated IPM lane line markings in the IPM panorama
top view image for the ego-vehicle lane, and figure 2.10 (a) displays the accepted IPM
lane line markings in the top view image (see light green annotations).
Moreover, the lane line markings in the top view images can be re-transformed into

the original camera image by using the inverse transformation matrix HT for each frame,
cf. figure 2.11.
Figures 2.10 (a) and 2.11 also show a qualitative comparison of the example image

or frame. The annotated IPM lane line markings are compared to its reference lane line
markings for the ego-vehicle lane. In order to check the exactness of the annotated IPM
lane line markings, a sample of 60 reference camera images was used. These reference
camera images were selected at random. For each reference camera image, the ego-vehicle
lane line markings were annotated by hand. These reference lane line markings were
re-transformed into their top view images with the explained IPM transformation and
compared by their lateral error.
Table 2.1 states the quantitative comparison results between all reference camera

images and the top view lane line markings in pixels and in meters for the ego-vehicle
lane. One pixel is equal to 0.02 meters in a top view image. The MAE and Root
Mean Squared Error (RMSE) are used to measure the exactness in the lateral direction.
Table 2.1 shows the calculated errors for all reference camera images, the best, and
the worst reference image. Over all reference camera images, an MAE of 13.3 cm is
achieved. The maximum difference between the best and worst comparison results is
one order of magnitude with an MAE of 3.6 cm to 33.0 cm.

Fig. 2.11 IPM lane line markings re-transformed into the camera image and compared to the
reference lane line markings for the ego-vehicle lane.
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2.2 Method of Inverse Perspective Mapping

Tab. 2.1 Evaluation of IPM lane line markings by using a sample of 60 references camera
images.

References MAE RMSE
All (Mean) 6.66 px / 0.133 m 8.10 px / 0.162 m
Best 1.78 px / 0.036 m 2.07 px / 0.041 m
Worst 16.52 px / 0.330 m 17.51 px / 0.350 m

However, the MAE and RMSE are conditioned by the IPM transformation and depend
on the longitudinal distance of the IPM lane line markings, see z(u) in equation 2.24.
Figure 2.12 displays the average lateral MAE and RMSE over the longitudinal distance
between all reference camera images and IPM lane line markings. It is apparent that the
lateral error rises with increasing longitudinal distance. The MAE and RMSE maxima
are at a longitudinal distance of 48 m with 26 cm and 34 cm. Moreover, the MAE and
RMSE over the longitudinal distance of the IPM lane line markings, which belongs to
the qualitative comparison in figure 2.10 (a), is displayed in figure 7.2 in the appendix.

The advantage of this procedure is that the annotation of lane line markings in an IPM
full panorama image is carried out much faster than the standard annotation procedure22

for each single camera image. This means in numbers that all lane line markings are
finished annotated on average in about six minutes in an IPM full panorama image or
22Normally, camera image for camera image is annotated by hand with an annotation tool that also

uses some tracking filters for the lane line markings to relive the annotation.

Fig. 2.12 Evaluation of the lateral error over the longitudinal distance of IPM lane line markings.
The lateral error is calculated between all IPM lane line markings and re-transformed
lane line markings of the reference camera images and displays as MAE an RMSE.
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2 Background Knowledge of Applied Methods

sequence. In contrast, the annotation of a sequence needs approximately 45 minutes23

on average by use of the standard annotation procedure with an average number of 30
frames to annotate. However, this temporal advantage in the manual annotation outlay
is based on sufficient computing power as the generation of an IPM full panorama image
takes about two minutes24.

23This number is extrapolated based on the reference lane line markings annotation.
24By use of a single 2.4 GHz thread from an Intel Xeon E5-2640 v4 CPU.

30



3
Manuscript: Automatic Traf-

fic Light to Lane Association for Com-
plex Intersections, IEEE Conference on

Intelligent Transportation Systems
(IEEE ITS)

Exposition This chapter deals with my "Automatic Traffic Light to Lane Association
at Complex Intersections" paper. It was published at the IEEE conference on Intelligent
Transportation Systems in 2018. This IEEE ITS paper proposes an approach to resolve
the TL2LA problem in the research field of ADAS for the first time in literature. The
approach presents a visual solution by using a CNN and focuses on the traffic light
to ego-vehicle lane association, which is compared against a test with human subjects
named subjective test to evaluate the CNN model performance. The TL2LA problem is
methodically resolved by using a target regression vector that transfers the assignment
problem to a regression problem. This target regression vector trains a CNN on the
column positions of all relevant traffic lights per frame.

This paper refers to the database introduced and uses the traffic light annotations as
well as the traffic light to lane assignment ground truth, cf. chapter 1. Applicable are
the neural network layers explained (convolutional, pooling, batch normalisation, and
fully connected layer), cf. subsection 2.1.3, with all defined hyper parameter employed
to successfully train a CNN, cf. subsection 2.1.4. Moreover, reference is made to the
IPM method mentioned to transform the road part of the CNN input images into a top
view image, cf. section 2.2.

The following contents of this chapter 3 were taken identically from the original
publication, see [66], and were adapted to the format of my dissertation only.

Abstract We introduce an approach that enables associating all relevant traffic lights
to the ego vehicle lane at complex intersection scenarios. To achieve this, we use a
combination of image data and traffic light metadata.
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First, we prepare the input image data that consists of a partly Inverse Perspective
Mapping (IPM) for the road and highlight traffic light metadata information like position
and colour in the image. Next, we train with the input data a common Convolutional
Neural Network (CNN) topology on a target regression vector. This vector contains
the column positions of all relevant traffic lights in the image. Finally, we perform two
post-processing steps that improve single traffic light results.

Results on average yield an accuracy of 86.40 %. In the near field, accuracy improves
to 93.88 %. Moreover, we carry out a subjective test, where humans are presented with
the same images as processed by the CNN. This defines a reliable baseline for detailed
comparisons against our results.
In sum, our approach and the subjective test achieve similar results on average.

In detail, the subjective test reaches more accuracy for highly complex intersection
scenarios. However, it has less accuracy for distances between 25 m to 50 m to the stop
line than the proposed approach.

3.1 Introduction

The association of all relevant traffic lights to the ego vehicle lane represents a field which
did not receive a lot of attention so far. However, performing traffic light association is
a fundamental step in Traffic Light Assistance Systems (TLA) and provides an essential
component for autonomous level three and higher driving in cities.
The problem is presented in fig. 3.1. The generic intersection scenario consists of

five lanes, six traffic lights, and all correctly assigned relevant traffic lights to the ego
vehicle lane number four. For some cases, not all traffic lights are a decision factor,
which are identified with the ego vehicle lane borders, see traffic light four in fig. 3.1.
More generally, we try to solve a one-to-many assignment problem with one lane and
many traffic lights.

One TLA application regarding autonomous driving consists of braking and stopping
on lines at signalled intersections. Therefore, the application requires detailed information
about the traffic lights that are relevant for the ego vehicle lane. The main challenges
to produce this detailed information are: (i) all the relevant traffic lights are rarely
positioned above or beside their respective lanes, (ii) some traffic lights are positioned
close together but are not relevant for the same lane, (iii) traffic lights that are not
relevant have to be rejected, i.e. tram, pedestrian and bicycle lights as well as traffic
lights, which belong to the next upcoming or neighbour intersection.

The proposed approach delivers all relevant traffic lights without prior knowledge while
approaching the intersection based on a camera sensor. The approach is independent of
any cloud systems and statistical observations over-time of equal intersections. We use
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Fig. 3.1 Generic example to associate all relevant traffic lights to the ego vehicle lane.

image data with annotated traffic lights and allocations to the ego vehicle lane. This
data is used to train a Convolutional Neural Network (CNN). We use annotated traffic
lights, because the problem to detect traffic lights has already been addressed by many
previous work in the research field of Traffic light Detection (TLD), see next sec. 3.2.
The CNN delivers a vision-based solution for the association of all relevant traffic lights
to the ego vehicle lane.
In this paper, we will not focus on the generation of the annotated traffic lights,

because this is part of other research fields like TLD. We use daylight image data with
sunny or cloudy weather conditions.

This paper is structured into four main parts. First, we put our recent work in context
to related research fields, sec. 3.2. Second, we introduce our CNN model approach,
sec. 3.3. Third, we explain our dataset and compare the results that are observed by our
CNN approach to two simpler rule-based approaches. Finally, the conducted subjective
test ensures a discussion and a meaningful evaluation, sec. 3.4

3.2 Related Work

Our paper topic has two related and independent research fields. One research field
is TLD, which is a necessary condition to solve our presented problem. One of the
recently published TLD approaches is [21]. They introduced three methods for using
stereo vision to detect traffic lights. These methods improve the false positive rates
while minimally decreasing detection rates. Another method was presented in [16]. They
build a vision based detection method by combining Histogram of Oriented Gradients
features with a linear Support Vector Machine (SVM) to detect traffic lights plus a
CNN to classify traffic lights. Further methods to detect traffic lights are the use of
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Adaptive Background Suppression Filter together with a SVM [17] or pure CNN based
methods in [22] and [23].

The other research field is TLA, which needs reliable information about the relevance
of traffic lights. One TLA approach is to support the driver with additional information
about the next upcoming traffic light, e.g. colour and distance. In [67] and [68] they
made approaches with interconnected traffic lights to the ego vehicle. They are based
on interface to vehicle communication and GPS positions of all subscribers. Both
approaches work with a connection to a global database, which provides among others
the relevant traffic light information. Another TLA approach is [69], which focuses more
on safety during autonomous driving. They made a simulation controlled by traffic
lights whether a vehicle should stop or could drive over the intersection. This could be
one of the most common TLA systems in future.
The presented problem to associate all relevant traffic lights has little of its own

specific research literature yet. However, it is sometimes mentioned in publications
which deal with TLD. In [70] an overview of traffic light research was presented, focusing
on available datasets and unsolved problems in the context of TLD. They also pointed
out that a Driving Assistance System (DAS) must be able to determinate whether a
traffic light is relevant or not relevant for the ego vehicle lane at intersection scenarios.
The first approach for this is a static one in [71]. They recorded a database before their
test drive, in which the information about relevance is stored for each traffic light on
the route. A more dynamic approach is the traffic light mapping [72]. They determine
the relevance by assuming that the largest and nearest orientated traffic light in driving
direction is valid based on the intersection width and the estimated real world positions
of traffic lights. In addition, their hypothesis is statistically improved by traversing the
same intersections many times. The newest approach in literature was made in [73].
They defined their so-called main traffic light. This traffic light has to be detected for
DAS at multi traffic light intersections, which satisfies the same purpose as one relevant
traffic light. Their main traffic light is defined as follows: it has to be the traffic light
with the largest size and highest position from the group with most traffic lights of
the same colour. Unfortunately, all of these approaches have not yet performed any
experiments that provide results for direct comparisons regarding the association of
relevant traffic lights.

Our main contribution is an approach to associate all relevant traffic lights to the ego
vehicle lane based on a camera sensor during a single intersection crossing. We develop
a CNN, which is fed with specially processed image data and therein encoded metadata
with characteristics of the traffic lights. The CNN is trained on a target regression
vector, which contains all positions of relevant traffic lights.

We compare this novel approach to the two previously mentioned rule-based ap-
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proaches, the traffic light mapping [72] and the main traffic light approach [73]. Fur-
thermore we evaluate our CNN results with a subjective test by showing humans our
CNN test images and request them to associate the relevant traffic lights.

3.3 Proposed Approach

For our work we use data from the DriveU dataset [12] recorded with the left-sided
stereo camera. From this dataset, we selected exclusively complex urban intersection
scenarios. We define a complex intersection scenario in terms of two conditions. First, a
decision regarding the relevance of traffic lights must always be made. Second, at least
one of three main challenges, mentioned in sec. 3.1, must exist.
Our proposed CNN model approach consists of four working steps, cf. fig. 3.2. The

steps are depicted as a flowchart. In the first step, we prepare the input images and
target regression vectors from the frames and traffic light metadata that ensures better
understanding by the CNN. In the second step, the CNN is set and trained by the input
and target data. Next, we perform an output vector mapping to examine single traffic
light results. Last, we execute a simple majority decision maker over each sequence by
its temporally sorted frames to improve the results.
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Fig. 3.2 Flowchart of our proposed CNN model approach.

3.3.1 Input Image Data Preparation

The input images for our CNN model consist of three different down sampled and square
tailored RGB colour planes from the original image. These planes yield superimposed
an input image of size (256, 256, 3) pixel, cf. fig. 3.3 (a).
Plane 1 contains the traffic light metadata information about position, size, and

colour. The information of traffic lights is processed such that each traffic light’s height
and width is three-times increased. The rectangles are filled with colours that group
traffic lights which have the same information. We increase the area of a traffic light
position in the plane, because this increases importance of the traffic light information.
Otherwise, the traffic light size is too small and the CNN is not able to react to it.
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Additionally, we place the original traffic light appearance with a zoom factor of two
in the centre, thus we do not lose any information like traffic light arrows or icons.
Plane 2 contains the originally recorded camera image, but traffic lights from plane 1
have been cut out. We restricted the image up to a maximum distance that is the next
50 meters of the road. If the distance to the stop line of the intersection is smaller than
50 meters, we will restricted the image until the stop line. Plane 3 contains the missing
road meters from plane 2. These parts are transformed into an Inverse Perspective
Mapping (IPM) by using the extrinsic and intrinsic camera parameters together with
a flat world assumption, cf. [61]. In consequence, the input images become robust to
asymmetric shape transformations of lane markings, arrows, and icons between different
input images. These modifications enable the CNN to be more easily trained on the
lane features, see sec. 3.4.3 where we used different input image variants.
In Fig. 3.3 (b) three examples of generated CNN input images are presented. The

perspective of the ego vehicle lane is always identified in the vertical centre of the input
image. This results from the fact that the ego vehicle is always in the lower centre of
the image because of the camera alignment.

The target data are target regression vectors that have the length of one input image
row. In fig. 3.3 (c) the corresponding target regression vectors are shown for the three
example input images from (b). In the original data, the traffic lights do not contain
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Fig. 3.3 (a) input image preparation: plane 1 with traffic lights of intersection, plane 2 with
upper camera image, and plane 3 with bottom IPM image, (b) three input image
examples, (c) target regression vectors corresponding to input image examples.
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different information within a column. This allows us to train and test the relevant
and not relevant traffic lights according to their column positions. If a traffic light is
relevant for the ego vehicle lane, we set the target regression vector at this position to
255 or white respectively. Otherwise, we set the target regression vector to zero or black
respectively. The white gaps in fig. 3.3 (c) have the same width as the enlarged relevant
traffic lights.

3.3.2 Convolutional Neural Network

The CNN topology possess five convolutional (Conv.) and maximum pooling layers
(Max. Pooling). The down sample factor is symmetric and has a factor of two due to the
max pooling stride parameter of 2 by 2. As a kernel size parameter, in all convolutional
layers a 3 by 3 shared weight kernel is used. In other work, the choice of small kernel
and stride parameters has proven to be particularly effective [39].
The last maximum pooling layer is followed by two fully connected layers (FC.).

The output layer is the output regression vector. As activation function, we apply
the rectified linear unit function to all layers. Figure 3.4 presents the described CNN
topology and contains the number and size of each feature map. Moreover, after each
convolutional layer, a batch normalisation layer that decreases the training time is
added. Dropout regularization is applied to the two FC. layers to avoid over-fitting
during the training of the CNN.

FC. 1 (1024)

Conv. 1 (256, 256, 16)

Max. Pooling 2

Conv. 3 (64, 64, 64)

Conv. 4 (32, 32, 128)

Conv. 5 (16, 16, 256)

Max. Pooling 3

Max. Pooling 4

Max. Pooling 5

FC. 2 (1024)

Conv. 2 (128, 128, 32)

Max. Pooling 1

Fig. 3.4 CNN topology for the traffic light relevant association.
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The CNN is trained with a decreasing learning rate of factor 1.25. It begins at every
25 epochs with an experimentally determined initial learning rate of 5 · 10−6. We deploy
as loss function the mean squared error function. The training algorithm utilizes the
stochastic gradient descent momentum. The training is stopped if the validation error
stagnates or increases for five successive epochs. The maximum number of possible
epochs is set to 125, and the mini batch size amounts to 200 frames per iteration.

3.3.3 Output Vector Mapping

As CNN output we get a regression vector, which contains the traffic light relevant
information coded through its column positions. Since we want to evaluate single traffic
light results, we have to perform an output vector mapping as post-processing on the
test dataset. Therefore the associated relevant and not relevant traffic lights in the
output regression vector are mapped out of the frame to single traffic lights for each
sequence.
We need three vectors for the mapping: the target regression vector tv, the output

regression vector ov and a matching vector mv. The matching vector contains the
information regarding the traffic light identifier t per sequence. We are able to generate
the true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
confusion matrix values for each single traffic light with these vectors. Therefore we
use an ascertained length lt as well as a left side starting position pt from the matching
vector for each single traffic light, see fig 3.5. We compare a threshold th128 = 128
against the sum of every chosen element i of the output regression vector. With this
threshold decision, we determinate the traffic light relevant result r for each traffic light
t in a frame f of a sequence s:

rs,f,t =

 1
lt

lt−1∑
i=pt

ovs,f(i) ≥ th128 7→ 1; 0

 (3.1)

In the traffic light relevant result rs,f,t, a value of one means a relevant traffic light, and
a value of zero means a non-relevant traffic light. The confusion matrix values cs,f,t are
generated through, cf. fig 3.5,

cs,f,t =

rs,f,t = 1 7→

lt−1∑
i=pt

tvs,f(i) = 0 7→ FP;TP

 (3.2)

or

cs,f,t =

rs,f,t = 0 7→

lt−1∑
i=pt

tvs,f(i) = 0 7→ FN;TN

 . (3.3)
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Fig. 3.5 Examples for TP, TN, FP and FN relevant traffic lights generated from the target
regression, output regression and matching vector for one frame of a sequence.

3.3.4 Simple Majority over Frames Decision Maker

We employ a simple majority over frames decision maker on all results rs,f,t, cf. equa-
tion 3.1. Hence, we reduce the number of flipping outputs for the same traffic light
between consecutive frames of a sequence. We always calculate the mean traffic light
relevant results from the first to the current frame of a sequence. Then we decide by
simple majority whether it is a relevant or a not relevant traffic light to improve the
rs,f,t result. This is achieved by iterating over s and t and forming the mean value by
add up all previous frames k until the current frame f:

rs,f,t =
( f∑
k=1

rs,k,t >
f
2 7→ 1; 0

)
(3.4)

In case of ∑f
k=1 rs,k,t = f

2 we decide in favor of the newest value rs,f,t. The final
confusion matrix values cs,f,t are calculated with the explained improvement as shown
in equation 3.2 and 3.3.

3.4 Experiments

3.4.1 The Dataset

We use for our experiments the data illustrated in table 3.1. We split the data to a
training (≈89 %) and test (≈11 %) dataset. Each sequence represents a drive recorded
with a camera to an intersection from different distances until the stop line is reached by
the ego vehicle. We extracted from each sequence 25 to 30 frames. All frames contain
annotated traffic lights, which are marked as relevant or not relevant for the ego vehicle
lane. In sum we have a majority event rate (share of relevant traffic lights) of 46.7 % in
the dataset.

The training dataset is balanced with multiple copies of underrepresented intersection
scenarios, because we have, e.g. more one-left-two-straight-lane scenarios than one-
left-one-straight-one-right-lane scenarios in the dataset. Hence, we avoid over-training
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Tab. 3.1 Dataset overview with number of sequences, frames, and all traffic lights of the training
and test dataset.

Sequences Frames Traffic Lights
Training Dataset 356 10360 (64082)a 49363 (308312)a

Test Dataset 48 1310 7136
Sum 404 11670 56499
a With data balancing and augmentation.

of frequently existing scenarios. Moreover we use data augmentation for the training
dataset by doubling each frame and swapping the traffic light colours from red to green
or the other way around. This prevents over-training on a specific colour for a relevant
traffic light through equal distribution of all red and green traffic lights. Thereby we
increase the number of frames and traffic lights in the training dataset sixfold, cf.
table 3.1.
Figure 3.6 shows a histogram of all available frames in the test dataset against the

distance d in meters to the stop line for all sequences. The most interesting distance is
between 15 and 45 meters, where the ego vehicle is close enough to see some traffic light
icons like arrows and far enough away to have even the higher traffic lights visible in the
frame. We divided our test dataset into four distance ranges for an easier evaluation:
d < 12.5 m, 12.5 m ≤ d < 25.0 m, 25.0 m ≤ d < 50.0 m, and d ≥ 50.0 m.
Additionally, we divided our test dataset into four lane groups derived from the

number of lanes L: L = 2, L = 3, L = 4, and L ≥ 5. Table 3.2 displays the distribution
for the number of sequences against the lane groups of the test and training dataset.

Fig. 3.6 Dataset histogram for number of available frames against distance to stop line at
intersection of the test dataset.
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Tab. 3.2 Dataset distribution for number of sequences against number of lanes L at intersection
of the test and training dataset.

L = 2 L = 3 L = 4 L ≥ 5
Test Sequences 3 13 20 12
Training Sequences 22 86 169 79

3.4.2 Comparison with rule-based Approaches

We have ourselves implemented the traffic light mapping approach from [72] and the
main traffic light approach from [73], mentioned in sec. 3.2. However, the traffic light
mapping approach is implemented without the statistical improvement through many
observations of the same intersections. These we compare against our CNN model
approach.

In contrast to our CNN model, both approaches select only one traffic light per frame
and mark this as relevant. Hence, we have to align our approach to the other ones.
Therefore we use, on the one hand, precision as evaluation metric, because the rule-based
approaches do not care about FN or TN relevant traffic lights. The precision is defined
as

precision = TP
TP + FP . (3.5)

On the other hand, we select only one relevant traffic light per frame, too. In our case,
we select the traffic light tmax with the highest confidence from all as relevant predicted
traffic lights T .

rs,f,tmax ⇐ max({Cs,f,t({r|1}) : t ∈ T}) (3.6)

The single confidence per traffic light, frame and sequence is calculated as follow in
terms of the output regression vector

Cs,f,t = 1
lt · th128

lt−1∑
i=pt

ovs,f(i). (3.7)

Hence, we ensure a correct comparison between their and our approaches.

Table 3.3 exhibits the precision results for both rule-based approaches and our CNN
model approach generated on our test dataset. The results yield an up to 25 % lower
precision than our approach. This underlines that simpler rule-based approaches do not
work for the complex intersection scenarios which occur exclusively in the dataset used.
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Tab. 3.3 Comparison between our CNN and two simpler rule-based approaches on the test
dataset by mean of precision.

Approaches Precision
Traffic Light Mapping 62.37 %
Main Traffic Light 71.18 %
Our CNN Model 87.93 %

3.4.3 Different Variants of Input Images

We tested our approach against different input image variants, too. Figure 3.7 (a) shows
the used variants: image (i) is based on the background only, image (ii) contains the
background and the recorded road by the camera, and image (iii) is the preferred image
variant for our approach with the IPM transformed road. Figure 3.7 (b) displays the
results over distance to the stop line of the three input image variants. Thereby σ

indicates the standard deviation of several trained and tested CNNs.
On the one hand, it appears that the variants (ii) and (iii) perform generally (except in

the near field) significantly better than variant (i), which does not have any road features

(i) (ii) (iii)

(a)

(b)

Fig. 3.7 (a) three input image variants from (i) to (iii) and (b) results over distance ranges of
the three input image variants from (a).
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in the image. On the other hand, variant (iii) achieves for longer distances (d > 25 m)
significantly more accuracy than variant (ii), because it is using IPM transformed road
features, cf. fig. 3.7.

3.4.4 Subjective Test on CNN Image Data

We conducted a subjective test with the same input images that we use for our proposed
CNN model approach to define a reliable baseline, cf. fig. 3.7 (a) (iii). This baseline is
used for a meaningful comparison to our results.
For humans, traffic light to lane association is a continuous process that happens

when approaching an intersection. In contrast to this and to provide a fair comparison
with our automatic method, we decided to chunk the human recognition process by
asking our subjects to tell us their traffic light to lane association using single images of
the same intersection taken at four different distances. For this, we used a ten seconds
recognition time window in order to allow more than the usual time to assess each single
image. Usually one would calculate about 5 to 6 seconds of driving time up to any
traffic light starting from a distance of about 75 m. Hence, in this way we are essentially
measuring an upper assessment bound for single image-based recognition by humans
(note, longer times did not lead to better results).

In detail, as test data we extracted from each of the 48 test sequences one frame per
available distance range. Each frame was randomly selected for each distance range.
This reduced the amount of test data frames for the subjective test. In sum we selected
100 test images for the subjects plus ten practice images. The practice images are given
to the subjects to get familiar with the valuation tool before the actual test starts. All
test and practice frames were upsampled from size (256, 256, 3) to (512, 512, 3) pixels
using nearest neighbour interpolation to obtain a user-friendlier eye-hand coordination
on the screen. The training images were not shown to the subjects by us, because on
the one hand the training dataset has a huge number of images. And on the other hand
we assume that the subjects have sufficient experience in urban traffic. An overview of
the chosen subjective test dataset taken out of the testing dataset is shown in table 3.4.
During the practice and test stage all subjects have ten seconds per image time to

Tab. 3.4 Overview of the subjective test dataset as random selected subset of the full test
dataset.

Sequences Frames Traffic Lights
Subjective Test Dataset 48 100 (110)c 520
c Including ten practice images.
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associate all relevant traffic lights to the ego lane. If the time per image is over, the
screen will switch to black and no further changes are possible. This is done because
the subjects should not start analysing the displayed scenarios in detail. In reality they
also have a limited time to decide. The subjects can mark a traffic light as relevant by
directly clicking on the concerned traffic light in the image.
We recruited 21 subjects (20 male and 1 female) with a mean age of 30.2 years and

a mean driving experience of 10.4 years. All subjects had essentially no knowledge of
the shown intersection scenarios in the test images, which were recorded in the German
cities of Essen, Duesseldorf, Dortmund and Hannover. The mean decision time over
all subjects per test images was 5.97 seconds, thus the processing time of ten seconds
was almost always adequate. The maximum processing time was not longer than 20
minutes, which excluded errors due to fatigue of the subjects.

3.4.5 Results

We evaluated our results by means of average over distance to the stop line and over
the number of lanes. In addition, we compared them against the subjective test results.
We make use of the metric accuracy, which is defined as

accuracy = TP + TN
TP + FP + FN + TN . (3.8)

Table 3.5 contains the average accuracy for our CNN model test dataset and the
subjective test dataset as well as the 90 % confidence interval of the subjective test
estimated from our 21 subjects. The results are close together with an absolute difference
of 0.87 % accuracy. The difference between the average accuracy for our CNN model
on the subjective and full test dataset is 0.39 %. This low value indicates that the
subjective test dataset is a representative sample of the full CNN model test dataset.
Figure 3.8 compares the results for each defined distance range. The subjective test
results increase gradually when getting closer to the stop line as we would also expect
more distinctly from the CNN model. But our CNN model achieves in the distance

Tab. 3.5 Average accuracy for our CNN model and the subjective test of the subjective test
dataset.

Average Accuracy 90 % Confidence Interval
Our CNN Model 86.79 (86.40)d % —
Subjective Test 85.97 % ±1.00 %
d Average accuracy of the complete test dataset.

44



3.4 Experiments

93.9

88.5
89.0

83.1
92.7 2.3

89.7 1.2

85 1.2
82.7 1.5

Fig. 3.8 Comparison between our CNN model and the subjective test results over distance
ranges deduced from the distance d.

range from 25 m to 50 m about 4.0 % more accuracy than the subjects. This is quite
impressive and helpful to associate all relevant traffic lights as early as possible. All
other distance ranges do not have significant differences in consideration of their 90 %
confidence intervals.

A second comparison (fig. 3.9) illustrates the accuracy for each lane group determined
by the number of lanes of each sequence. In two lane intersections, our CNN model
reaches about 5.6 % more accuracy than the subjects. For three and four lane intersection
scenarios significant differences do not exist. In most complex intersection scenarios
with five or more lanes, the subjective test achieves about 4.9 % more accuracy. An
explanation for this is that the used dataset probably does not have enough scenarios of
this kind to understand any very complex situation, whereas human beings can.

Moreover we have compiled some visual results taken from the subjective test dataset
in fig. 3.10 to force a direct confrontation between our CNN model and the subjective

87.4 88.2 88.0

78.7

81.8 1.1

89.8 1.2
85.8 1.7

83.6 1.8

Fig. 3.9 Comparison between our CNN model and the subjective test results over lanes groups
deduced from the number of lanes L.
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(a)

(b)

(c)

(d)

Fig. 3.10 Comparison of our CNN model and the subjective test by single frame results (the
blue rectangle boxes visualise the ground truth for relevant traffic lights): (a) CNN
model and subjective test associate all relevant traffic lights correctly, (b) CNN model
associate all relevant traffic lights correctly and subjective test makes mistakes, (c)
CNN model produces errors and subjective test associate all relevant traffic lights
correctly, (d) CNN model produces errors and subjective test makes mistakes.
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test. The confrontation consists of all four possible comparisons to each other. Each is
exemplified with two input images, in which all relevant traffic lights (annotated ground
truth) are marked with a blue rectangle box. The first comparison in fig. 3.10 (a) shows
two input images, which are completely correctly predicted by both our CNN model and
the subjects. The second gives two examples of input images, which are only correctly
predicted by our CNN model. These scenarios are particularly demanding because all
traffic light colours are identical despite different lane assignments for left and straight
lanes, see fig. 3.10 (b). The third comparison displays input images, which are predicted
correctly by the subjects only, see fig. 3.10 (c). There is the challenge that traffic lights
with different lane assignments hang extremely close together and even have the same
colour. The last comparison in fig. 3.10 (d) shows very challenging five lane and four
lane intersection scenarios, which are predicted from our CNN model and the subjects
with errors.

3.5 Conclusion

In our work we dealt with the problem of associating all relevant traffic lights for the
ego vehicle lane. We introduced an approach based on a CNN, which processes traffic
light metadata encoded in partly IPM transformed image data as input images. The
CNN was trained on a target regression vector, which contains all column positions of
relevant traffic lights. The approach was trained and tested with a difficult dataset with
more than 400 complex intersection scenarios.

In our evaluation, we compared our approach to two rule-based approaches on the test
dataset. This comparison leads to the insight that rule-based approaches are unsuitable
for complex intersection scenarios.
In addition, we carried out a subjective test with randomly selected test images to

create a baseline, which we used for statistical and visual comparisons. It turned out
that our CNN model approach with 86.79 % to 85.97 ±1.00 % is almost at par with the
subjective test. However in a detailed evaluation, our approach gave better performance
in the distance range from 25 m to 50 m. The test subjects achieved better performance
for complex intersection scenarios with five or more lanes. The visual confrontation
of single frames resulted in two insights valid for our CNN model approach and the
subjective test. The first is that intersection scenarios were predicted fully correctly,
where relevant and not relevant traffic lights are differentiable by different colours. The
second is that intersection scenarios were predicted with errors, which have four or more
lanes and every traffic light shines in the same colour.
We developed our CNN implementation by use of the open-source framework Keras

with the TensorFlow backend [43]. The CNN processing time was 1.69 ms per frame
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with two Nvidia GeForce GTX 1080 Ti.
In the future we will work on additional optimisations of our CNN, e.g. with a

pre-trained CNN or different image resolutions.

Acknowledgement We would like to thank Andreas Fregin for providing us with a
part of his recorded DriveU dataset and all colleagues and friends, who have conducted
the subjective test for us.

3.6 Complementary Investigations to the IEEE ITS Paper

In this section, additional experiments are quoted which were not part of the original
paper because of reasons pertaining to relevance and limited space. The chosen CNN
topology, input image size, and dataset size are investigated, and the mentioned three
traffic light to lane association main challenges are evaluated in detail and concluded.

3.6.1 Investigation of CNN Topology vs. Input Image Size

I investigated the CNN topology and input image size with a comparative simulation
study. This simulation study was executed with three different CNN topologies and four
various input image sizes for each combination.

The three CNN topologies are illustrated in detail in figure 3.11. The figure shows the
different convolutional layers of the three explained topologies: AlexNet (the proposed
and used one), VGG-16, and VGG-19. Note that the number of convolutional feature

AlexNet (proposed convolutional layers)

VGG-16 convolutional layers 

VGG-19 convolutional layer extension 

[…][…]

k = 16 convolutional feature maps each with a 3 by 3 kernel size 𝜅

k = 32 convolutional feature maps each with a 3 by 3 kernel size 𝜅

k = 64 convolutional feature maps each with a 3 by 3 kernel size 𝜅

k = 128 convolutional feature maps each with a 3 by 3 kernel size 𝜅

k = 256 convolutional feature maps each 
with a 3 by 3 kernel size 𝜅

Fig. 3.11 Convolutional layers of the AlexNet, VGG-16, and VGG-19 topologies. The square
brackets ([...]) symbolise the omitted input image layer at the beginning as well as
the omitted fully connected layers and the output regression vector at the end of the
CNN topology, cf. figure 3.4 in subsection 3.3.2.
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Tab. 3.6 Results of the CNN topology and input image size investigation by using the accuracy
metric and their 90 % confidence intervals for the IEEE ITS dataset.

Input Image Size

Topology 64 px 128 px 256 px 512 px Mean
AlexNet 68.2 ±2.3 % 82.4 ±1.4 % 86.4 ±0.5 % 84.7 ±1.0 % 80.4 ±3.2 %
VGG-16 83.9 ±0.6 % 85.6 ±0.6 % 84.5 ±1.5 % 86.8 ±0.8 % 85.2 ±0.7 %
VGG-19 65.4 ±7.1 % 82.0 ±4.3 % 85.7 ±0.4 % 81.0 ±7.2 % 78.5 ±5.5 %
Mean 72.5 ±4.3 % 83.3 ±1.6 % 85.6 ±0.6 % 84.2 ±2.5 % —

maps k and the pooling factor λ were retained for all topologies and that figure 3.11
shows exclusively the convolutional layer part and not the complete CNN topology.
The AlexNet [29] topology is equivalent to the proposed CNN topology with five

convolutional layers and three fully connected layers, but with consistently smaller
shared weight kernel sizes of 3 by 3 weights, cf. subsection 3.3.2. It is a comparatively
small one in comparison to other popular CNN topologies, cf. section 2.1. The VGG-16
topology has more than two-and-a-half times as many convolutional layers in comparison
to the AlexNet one. The VGG-19 topology has three additional convolutional layers as
the VGG-16 topology. The additional convolutional layers are added behind the existing
ones by using the same kernel sizes to extend each convolution operation. After each
additional convolutional layer of the VGG-16 and VGG-19 topology a normalisation
layer is implemented in deviation from the original topology definitions. The expectation
of the VGG-16 and VGG-19 is to obtain better results with a deeper CNN topology.
The four various input image sizes are: (64, 64, 3), (128, 128, 3), (256, 256, 3), and

(512, 512, 3) RGB pixels. They vary logarithmically on the proposed input image size
of 256 px by a factor of two. The expectation of the various input image sizes is that
larger input images obtain better results due to feature details.
The results of this simulation study are listed in table 3.6. Accuracy was used as

a metric for comparison with its 90 % confidence intervals. Each combination was
simulated five times with random weight initialisation25. The mean accuracy results
increase with a larger input image size until they stagnate after 256 px with 85.6 ±0.6 %
to 84.2 ±2.5 % for 512 px. The VGG-16 topology achieves the most consistent results
among all CNN topologies over all input image sizes with a mean accuracy of 85.2 %.
The highest single results are achieved by the AlexNet topology together with an input
image size of 256 px (86.4 ±0.5 %) and the VGG-16 topology with an input image size

25The weights are initialised between [0, 1] by using an uncorrelated equal distribution.
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of 512 px (86.8 ±0.8 %) without a significant difference between both. Moreover, the
256 px input image size produces quite constant simulation results with the lowest 90 %
confidence interval values. Disadvantages of the deeper CNN topologies and larger input
image sizes are the longer training run-time and more expensive hardware resources. For
example, processing of the VGG-16 CNN topology with an input image size of 512 px
takes about five times longer than the proposed AlexNet topology with an input image
size of 256 px. Moreover, twice as many hardware resources are required.
In conclusion, expanding the simulation study to other CNN topologies with higher

complexity, i.e. more convolutional layers, does not achieve a significantl higher accuracy.
Furthermore, this can only be achieved if larger input images and a longer training
run-time with more hardware resources are applied in order to reach higher accuracy
results in general. This relationship was also explained in subsection 2.1.4 concerning
the hyper parameter setup and the three deep learning properties, cf. figure 2.5.
The AlexNet topology chosen in combination with the default (256, 256, 3) input

image size yields the highest reliability, which is indicated by the lowest 90 % confidence
interval with ±0.5 % accuracy. Hence, the proposed CNN topology and input image
size used in the IEEE ITS paper have been retained to develop the deep metadata
fusion approach in the IEEE RA-L paper, see chapter 4. This was carried out to ensure
comparability between both manuscripts and under consideration of the plurality of
simulations required to keep the training run-time within an adequate time window.

3.6.2 Investigation of Training Dataset Size

Using machine learning algorithms formerly raises the question of the overall quality of
the dataset, i.e. the quantity, resolution, and diversity of the frames. This question will
be answered with the following investigation of the training dataset size.

The training dataset ratio starts with 5 % and is doubled until 100 % is reached (100 %
training dataset ratio relates all available 10,360 training dataset frames, cf. table 3.1
in subsection 3.4.1). Each training dataset ratio is simulated five times with random
weight initialisation, again. A sample of all available frames is randomly selected26 for
each simulation. The test dataset is the same as in subsection 3.4.1 and is not changed
during the simulations.

The simulation results are shown in figure 3.12, which uses the accuracy and precision
metric for the evaluation. It exposes that a training dataset ratio < 20 % does not
produce usable results. The accuracy value converges the minority event rate27 of 53.3 %
26The training frames are selected by means of a random number generator between [1, 10360], which

uses an uncorrelated equal distribution.
27The majority (relevant traffic lights) or minority (non-relevant traffic lights) event rate indicates the

average distribution of relevant to non-relevant traffic lights in the database, cf. subsection 3.4.1.
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Fig. 3.12 Results of the training dataset size investigation. The training dataset is investigated
by using different training dataset ratios between 5 % and 100 %. The results are
displayed for the accuracy and precision metric by using the 90 % confidence interval
CI. From a training dataset ratio of 40 %, the results (accuracy and precision metric)
begin to saturate.

for non-relevant traffic lights and the precision value undercuts the event rate. Training
dataset ratios ≥ 20 % produce usable results over 80 % accuracy and precision with
decreasing differences between each doubling of the training dataset ratio. For example,
the difference between the 40 % and 100 % training dataset ratios is only 1.3 % accuracy,
which is still significant, see figure 3.12.

In summary, it exposes that a higher training dataset ratio produces a higher accuracy
value than a smaller training dataset ratio. The results start to saturate from a training
dataset ratio of approximately 40 % accuracy. It is assumed that increasing the training
dataset would not produce significantly better results by extrapolating the accuracy
and precision metrics curves over 100 % in figure 3.12. Consequently, the database
contains sufficient images for the respective approach, which is based in total on 40428

sequences recorded in four German cities with over 55 thousand associated relevant and
non-relevant traffic lights.

3.6.3 Evaluation of the Traffic Light to Lane Association Main Challenges

Three main challenges regarding the traffic light to ego-vehicle lane association or
assignment were mentioned in section 3.1. These three main challenges are:

1. All relevant traffic lights are rarely positioned above or beside their respective
lanes.

28The complex dataset has 404 sequences with approximately 55 thousand relevant and non-relevant
traffic lights and the full dataset has 848 sequences with approximately 105 thousand relevant and
non-relevant traffic lights, see subsection 4.5.1.
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2. Some traffic lights are positioned closely together but are not relevant for the same
lane.

3. Traffic lights that are not relevant must be rejected, i.e. tram, pedestrian and bicy-
cle lights as well as traffic lights that belong to the next upcoming or neighbouring
intersection.

Figure 3.13 shows a histogram of all relevant and non-relevant traffic lights depending
on their absolute lateral position centred on the ego-vehicle lane centre. In addition, the
lane distances for the left and right neighbouring lanes are marked with a mean lane
width of 3.5 m at the bottom of figure 3.13. This figure is used to explain the three
main challenges more specifically:

• Not all relevant traffic lights are located directly in the lateral range of the
ego-vehicle lane. On the contrary, they extend up to the fourth left and right
neighbouring lanes (1. main challenge).

• For each lateral position of relevant traffic lights, there are also non-relevant traffic
lights. This makes an assignment impossible based on the lateral traffic light
positions (2. main challenge).

• The lateral exterior, other area, contains predominately non-relevant traffic lights,
e.g. pedestrian or bicycle lights that must be rejected (3. main challenge).
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Fig. 3.13 Histogram of the lateral traffic light positions for relevant and non-relevant traffic lights
with respect to the ego-vehicle lane line markings. Relevant as well as non-relevant
traffic lights are located in the lateral range of the ego-vehicle lane. Non-relevant
traffic lights occur exclusively in the other area lateral range.
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Tab. 3.7 Evaluation of the three traffic light to lane association main challenges.

No. Challenge Short Description Average Accuracy
1. Traffic lights are not always positioned over their 86.3 %

corresponding lane.
2. Some traffic lights are positioned close together 71.1 %

but are not relevant for the same lanes.
3. Non traffic lights, e.g. traffic lights for trams, 97.4 %

pedestrians, bicycles, or for other intersections.

The three main challenges described are quantitatively evaluated to identify potential for
improving the proposed approach. The corresponding results are displayed in table 3.7.
The results are extracted from the test dataset by allocating each traffic light to be
resolved to one of the main challenges. The table indicates the average accuracy of the
proposed approach in the IEEE ITS paper for each main challenge.
The first main challenge achieves an accuracy of 86.3 %, which is in the average

accuracy value range of the complete test dataset with 86.4 % ±1.0 %. The second main
challenge yields the lowest results with 71.1 % average accuracy and has the highest
potential for further improvements. In contrast to this, the third main challenge yields
the highest results with 97.4 % accuracy, see table 3.5.

3.7 Brief Discussion of the IEEE ITS Paper

In this section, a few specific aspects of the IEEE ITS paper are briefly discussed:
the IPM transformation of the input image road part, the comparability between the
approach and subjective test results, the evaluation of the results against the distance
to the stop line, and the evaluation over the number of lanes with reference to the three
traffic light to lane association main challenges.
The IPM transformation of the input image road part was investigated in subsec-

tion 3.4.3. It was discovered out that the approach reaches significantly higher results
with this type of input image preparation, particularly for distances ≥ 50 m. This input
image preparation supports the CNN training process as the functionality of CNNs
is based on similar features. The IPM transformation of the road part leads to more
symmetry between various input images. This produces more identical features, e.g.
lane arrow markings and lane line markings, which also do not vary much in their size
and orientation.
In subsection 3.4.4, a subjective test conducted was described that was used for a
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comparison to the respective approach. The subjective test uses 100 randomly selected
images. These were taken from prepared CNN input images (down-sampled image
resolution, increased and highlighted traffic lights, and IPM transformed road part).
For this reason, conclusions can only be drawn in direct comparison to the respective
approach. Statements about the general ability of humans to solve the TL2LA problem
are not possible. This open question is followed up by another subjective test in the
IEEE RA-L paper, see subsection 4.4.4, and is discussed in detail later on, see chapter 5.

The results of the approach were evaluated against the distance to the stop line and
the number of lanes (in the same driving direction) of the intersection scenarios, cf.
subsection 3.4.5. It was determined that accuracy increases with decreasing distance to
the stop line because of the clearer lane courses and traffic light positions in the near
field. The accuracy courses of the approach and subjective test coincide insignificantly
with one exception for the CNN model at 25 ≤ d < 50 m, cf. figure 3.8. There, the
approach outperforms the subjective test with +4 ± 1.2 % accuracy. It is assumed that
this exception is due to the test dataset distribution and the selected interval limits29

for the evaluation.
The evaluation over the number of lanes exposed that intersection scenarios with five

or more lanes achieve the lowest accuracy (78.7 %). This result relates to the first and
second main challenges, which occur more frequently at large intersections. In other
intersection scenarios with two, three, or four lanes, the third main challenge also occurs,
cf. table 3.7. This main challenge increases the results for these three lane groups to
approximately 88 % accuracy, cf. figure 3.9. At this point, it can be anticipated that the
following deep metadata fusion approach, cf. chapter 4, resolves all three main challenges
with minor differences30: 90.1 % (1. main challenge, 76.3 % (2. main challenge), and
97.9 % (3. main challenge) average accuracy. However, the second main challenge is
still the most demanding one and is sometimes also a challenge for humans.

29The accuracy course of the only-vision approach and the complex test dataset (same approach and
dataset) has no exceptions with 15 m interval limits, see figure 4.9 (b) in subsection 4.5.5.

30The results correspond to the only-vision approach results listed in table 4.4 for the complex test
dataset.
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Exposition The following chapter deals with my "Deep Metadata Fusion for Traffic
Light to Lane Assignment" paper. It was published in the IEEE Robotics and Automation
Letters in 2019. This IEEE RA-L paper presents an innovative deep metadata fusion
approach that is applied in the research field of computer vision and describes a method
to fuse heterogeneous metadata with image data. It follows up on the approach of
the preceding IEEE ITS paper in chapter 3 and pursues the same goal: traffic light to
lane association or assignment, respectively. Again, the focus is on the traffic light to
ego-vehicle lane assignment, but the approach proposed is also applied to the left and
right neighbouring lanes. The results are compared to several other approaches as well
as against a redesigned subjective test with more subjects, test sequences, and a realistic
visualisation.

The already presented IEEE ITS CNN model approach of the previously discussed
manuscript, in chapter 3, is referred as only-vision approach in this chapter as well as
for the remainder of this thesis. This only-vision approach forms the basis for the deep
metadata fusion approach presented. The deep metadata fusion approach employs three
out of four working steps of the only-vision approach: input image preparation31, output
vector mapping, and simple majority over frame decision maker. The last two listed
working steps form the integral post-processing of the proposed deep metadata fusion
approach. The deep metadata fusion approach also uses the same CNN output, which
is renamed from output regression vector to output indication vector in this chapter as
well as for the remainder of this thesis. In addition, the presented dataset with exclusive
complex intersection scenarios is reused and is referred to as a complex test dataset.
31The input image preparation takes over the IPM road part transformation, but it does not take over

the increased and highlighted traffic light positions. This is not required any more due to the use of
traffic lights as metadata.
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Likewise, the distribution of the training and test datasets remained as it to ensure the
comparability between the results of both manuscripts. The dataset is extended with less
complex intersection scenarios (called full dataset) and is enriched with the annotated
metadata (lane arrow markings, IPM lane line markings, explained in subsection 2.2.5,
and lane signs) introduced in chapter 1. Moreover, the deep metadata fusion approach
applies a neural network merge layer for the fusion operator, cf. subsection 2.1.3, and
uses the explained data normalisation types, cf. subsection 2.1.5 to enable a deep fusion
with the annotated metadata.

The following contents of this chapter 4 were taken identically from the original
publication, see [7], and were adapted to the format of my dissertation.

Abstract We present a deep metadata fusion approach that connects image data and
heterogeneous metadata inside a Convolutional Neural Network (CNN). This approach
enables us to assign all relevant traffic lights to their associated lanes.

To achieve this, a common CNN topology is trained by down-sampled and transformed
input images to predict an indication vector. The indication vector contains the column
positions of all the relevant traffic lights that are associated with lanes. In parallel,
we fuse prepared and adaptively weighted Metadata Feature Maps (MFM) with the
convolutional feature map input of a selected convolutional layer.
The results are compared to rule-based, only-metadata, and only-vision approaches.

In addition, human performance of the traffic light to ego-vehicle lane assignment has
been measured by a subjective test.
The proposed approach outperforms all other approaches. It achieves about 93.0 %

average precision for a real world dataset. In a more complex dataset, 87.1 % average
precision is achieved. In particular, the new approach reaches significantly higher results
with 93.7 % to 91.0 % average accuracy for a real world dataset in contrast to lower
human performance.

Keywords Intelligent Transportation Systems, Computer Vision for Transportation,
Deep Learning in Robotics and Automation

4.1 Introduction

Traffic Light to Lane Assignment (TL2LA) is a necessary function for Traffic Light
Assistance Systems (TLA) as well as for autonomous driving in urban environments.
Some upcoming applications are braking at stop lines or visualising the current traffic
light colour state to prevent drivers from crossing an intersection. All these applications
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Fig. 4.1 Generic example of the traffic light to lane assignment function for the ego-vehicle lane
(blue arrows), left neighbour lane (orange arrows), and right neighbour lane (purple
arrows).

have in common that reliable information about the connection between a traffic light
and its lane is required.
The TL2LA function will help to avoid accidents and save lives in future. Today,

about 4.0 % of all (≈2.600) fatalities per year are caused by motorcar accidents with a
red light offence in Germany [8], [9].

Our paper scope is to assign traffic lights to the ego-vehicle lane as well as to the left
and right neighbour lanes. This is illustrated in figure 4.1, which visualises the TL2LA
function. Moreover, this figure also underlines the challenge that relevant traffic lights
are not always mounted directly above their associated lane, see traffic light 4.
This paper introduces a Convolutional Neural Network (CNN) with deep metadata

fusion for producing traffic light to lane assignment decisions based on single frames.
In the present work metadata are produced by use of a camera sensor. Alternatively,
metadata could be generated also by other sensors like RaDAR or LiDAR [74], [75].
One additional important aspect is that our approach works independently of any prior
knowledge about the intersection (e.g. cloud map data or statistical observations).

The paper is structured into five main sections: related work (sec. 4.2), our proposed
approach (sec. 4.3), other approaches for comparisons (sec. 4.4), experiments and
evaluation (sec. 4.5), and a conclusion (sec. 4.6).

4.2 Related Work

The problem of TL2LA belongs to the large field of autonomous driving, which has
become a very important aspect in autonomous robotics. As such it is highly interdisci-
plinary. Hence, the related work is grouped into three parts. 1) Traffic Light Recognition
(TLR) and Lane Detection (LD). These two research fields deliver the essential metadata
for our deep fusion approach. 2) Approaches to develop a TL2LA function. And 3)
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Fusion in CNNs, which relates to the specific method that we have chosen to address
the TL2LA problem.

4.2.1 Traffic Light Recognition (TLR) and Lane Detection (LD)

In general, TLR can be divided into two categories of approaches. The first category
relates to feature based detectors. In [16] and [17] a support vector machine takes over
the main part of the detection algorithm. The approach in [20] introduces methods to
detect traffic lights by use of stereo image data. Another approach [21] compares different
feature detectors like spotlight, colour or circle detectors. The second category contains
pure deep learning approaches [15], [22], [23]. They all use CNN based approaches with
different specific network architectures to detect and classify traffic lights.

The second necessary building block concerns lane detection (LD). Lane line and lane
arrow markings deliver important information about the intersection layout and are
often constrained to urban environments, [24]–[26]. Other universal approaches are also
possible, i.e. to detect and classify different kinds of lane markings like crossings, stop
lines, and arrows [27].

4.2.2 Traffic Light to Lane Assignment (TL2LA)

In the context of Advanced Driving Assistance Systems (ADAS) this topic was specifically
pointed out as an unsolved problem, [70]. A simple procedure uses stored traffic light
relevance information in a database as a look up table for vector maps [71]. An approach
using a rule-based routine assumes that the largest and nearest traffic light in driving
direction is relevant and they improve their hypothesis statistically by driving over the
same intersections many times in [72] (Traffic Light Mapping). Another rule-based
approach is presented in [73] (Main Traffic Light). A relevant traffic light is selected
using the following condition: it has to be the traffic light with the largest size and
highest position from the group with most traffic lights of the same colour.
The newest approach only uses vision and associates relevant traffic lights to the

ego-vehicle lane. They develop a CNN model that is fed with down-sampled camera
input images and trained on a target regression vector. Our new deep metadata fusion
approach starts from this idea, which we had also pursued in an early study [66].

4.2.3 Fusion in Convolutional Neural Networks

Fusion approaches with CNNs can be divided into Multiscale Feature Fusion (MFF)
and Deep Fusion (DF) approaches.
The MFF technique is based on spreads or the duplication of convolutional features

maps, respectively. Then, these feature maps are differently processed with additional
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layers. Afterwards, feature maps are merged again, which represents the actual fusion.
MFF-CNN approaches have been used for different approaches like face recognition, [55],
[76] and pedestrian detection, [54] and showed high performance. Moreover, GoogLeNet
[31] and ResNet [32] can be defined as MFF-CNNs, due to their inception module or
building block architecture, respectively.
The term Deep Fusion (DF) describes techniques to combine heterogeneous data

sources by use of a CNN. DF is applied in the field of computer vision, e.g. image
data and point cloud depth maps are fused for a semantic segmentation [77], salient
object detection [78], or semantic event recognition of sequences [79]. Semantic event
recognition in [79] is achieved by fusing three CNN pathways (action, object and scene)
to interpret and classify the sequence event. In the field of ADAS, [60] introduces three
approaches to fuse heterogeneous data from a RaDAR, LiDAR and camera sensor to
increase object detection performance.

4.3 Proposed Approach

4.3.1 Overview

Our main contribution is a novel DF approach to combine input image data with
additional heterogeneous metadata in a CNN. The approach creates adaptively weighted
Metadata Feature Maps (MFM) from the heterogeneous metadata. These MFMs are
fused with the maximum pooled convolutional feature map output of a previous CNN
layer. Fusion is executed by an element-wise multiplication between the MFMs and the
convolutional feature maps. Figure 4.2 exemplifies schematically the deep metadata
fusion approach for a selected convolutional fusion layer (Conv. 2).

⊚
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Fig. 4.2 Schematic illustration of our deep metadata fusion approach for convolutional layer 2
(Conv. 2) with Metadata Feature Maps (MFM), input image, and indication vectors.
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4.3.2 Convolutional Neural Network Input and Output

Figure 4.2 shows a generic input image, which corresponds to the TL2LA example
from fig. 4.1. All input images are down-sampled and cut to size 256 x 256 in an RGB
colour space. The road in the bottom half of an input image is transformed into an
Inverse Perspective Mapping (IPM) image using camera parameters and a flat world
assumption, cf. [61]. This IPM image contains up to a maximum of the next 50 meters
of the road from the ego-vehicle location to the stop line of the intersection. Thus, the
input image becomes insensitive to asymmetric perspective distortions of the lane line
and the lane arrow markings, cf. [66].

We train our CNN to predict an indication vector (Prediction Vec., see fig. 4.2.), the
length of which is equal to the input image width. The target indication vector (Ground
Truth Vec., see fig 4.2.) contains the column positions of all relevant traffic lights for an
associated lane. If a traffic light is relevant for its associated lane, the target indication
vector will be set to one at this position. We create and train our CNN on three of these
target indication vectors: one for the ego-vehicle lane and one for each neighbour lane.

4.3.3 Metadata Feature Map Preparation

The annotated metadata are available in the following formats: annotated rectangles in
recorded frames for traffic lights, lane signs, and lane arrow markings and annotated
polylines in IPM transformed frames for lane line markings. During online operation
these MFMs are produced by existing perception systems, e.g. LD or TLR functions in
sec. 4.2.1. Using this, we prepare our MFMs in a compatible data format with the CNN
to enable fusion between the convolution layer outputs and heterogeneous metadata.

In total we prepare twelve MFMs. Figure 4.3 visualises the corresponding MFMs for
an example input image. An MFM frame is a binary-valued image of the same size as
the input images. Thus, all MFMs values correspond to the image input pixels and their

Input Image MFM No. 1 MFM No. 2 MFM No. 3 MFM No. 4

MFM No. 5

MFM No. 9 MFM No. 10

MFM No. 6 MFM No. 7

MFM No. 11

MFM No. 8

MFM No. 12

Fig. 4.3 Example of an input image with its twelve corresponding metadata feature maps
(MFM). The MFM No. and descriptions are listed in table 4.1.
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Tab. 4.1 Metadata feature map (MFM) list of the deep metadata fusion approach.

MFM No. Description
1 All traffic lights
2 Green or yellow traffic lights
3 Red or red-yellow traffic lights
4 Traffic lights with left direction arrow
5 Traffic lights with straight direction arrow
6 Traffic lights with right direction arrow
7 All available lane line markings
8 Ego-vehicle, left or right neighbour lane line markings
9 Lane arrow marking in left direction
10 Lane arrow marking in straight direction
11 Lane arrow marking in right direction
12 All lane signs

locations.

By default all values are set to zero. The MFMs for traffic light and lane sign features
(MFM No. 1, 2, 3, 4, 5, 6, and 12 in table 4.1.) are generated by setting their annotated
rectangle positions to one. The MFMs for lane marking arrows (MFM No. 9, 10, and 11
in table 4.1.) are generated identically with the difference that the annotated rectangle
positions are converted according to the IPM. The lane line marking features (MFM
No. 7 and 8 in table 4.1.) are generated by marking all polylines with one in the MFM
with a fixed line width of twelve pixels. In addition, the area between the left and right
ego-vehicle lane line markings of MFM No. 8 is set to one and the area is extrapolated
until the top of the MFM. Note, MFM No. 8 changes depending on the associated
ego-vehicle, left or right neighbour lane.

The MFMs are down-sampled to the output size of the previous maximum pooling
layer by nearest neighbour interpolation before fusion with the selected convolutional
layer. We define a metadata feature map tensor Al,e

p,q, which contains all MFMs of the
selected convolutional fusion layer l. The feature map spatial position is given by p and
q while the MFM number (of all E = 12 MFMs) is indicated by e32.

32The MFM number E and MFM index e are said to be F and f in the originally published IEEE RA-L
paper. The variable names were changed to avoid confusion with previously defined variable names
in this dissertation.
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4.3.4 Adaptive Weighting of Metadata Feature Maps

The activations in the convolutional layer and the metadata feature maps do not
necessarily lie in a similar value range. To prevent one from outweighing the other,
values need to be scaled, which we explain in the following.

In the CNN, an output tensor Z l,k at layer l for feature map k is obtained by filtering
the input tensor X l with a kernel W l,k, adding a bias term bl and then applying an
activation function. In the following, we will refer to Z l,k

p,q in order to denote the activation
in layer l, feature map k at position (p, q), cf. [38] for details.

The adaptive weighting of the MFMs is executed by multiplying the metadata tensor
Al,e
p,q with the global average gl. The adaptive weighting technique is similar to layer

normalisation (to create gl) and instance normalisation (to adapt the MFMs), cf. [50].
The global average gl = Z̄ l is calculated over all activations (p, q) of all convolutional
feature maps k. Hence, gl represents the average activation within the CNN layer after
a ReLU activation. This is done for each forward propagation step during training and
testing of the CNN. We obtain the deep metadata fusion tensor

M l,k
p,q =

A
l,e
p,q · gl for k ∈ {1, ..., E} with e = k

1 for k ∈ {E + 1, ...,K}.
(4.1)

This tensor has to have the same size of dimensions as the output tensor Z l,k
p,q of the

selected convolutional fusion layer (l + 1). The case differentiation regarding k is made,
because the total number of convolutional feature maps K is not equal to the number of
metadata feature maps E depending on the selected convolutional fusion layer. Hence,
we fill the remain ofM l,k

p,q with ones. We make sure that the MFMs are at the same index
position k of M l,k

p,q for each forward propagation. In consequence, we always trim the
same convolutional feature map on the same fused MFM during the back propagation.

4.3.5 Deep Metadata Fusion in the CNN

Deep metadata fusion is achieved by means of a multiplication layer, which is able to
merge different tensors of the same size. We use the element-wise product ◦ as fusion
operator, which results from the multiplication of the tensors Z l,k

p,q and M l,k
p,q. As result

we get the input
X l+1,k

p,q = Z l,k
p,q ◦M l,k

p,q (4.2)

for the next convolutional layer. This is motivated for the CNN in order to let it
learn from the metadata encoded in the MFMs together with the (K − E) not fused
convolutional feature maps.

The CNN used for the deep metadata fusion approach is schematically illustrated in
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figure 4.2. It consists of five successive blocks. Each block possesses a convolutional layer
(Conv.) with 3 by 3 shared weight kernel filters, a normalisation layer and a maximum
pooling layer (Max. Pooling) with a symmetric down-sample factor of two. Thus, the
first block has an output size of (128, 128, 32) and the last block has an output size of
(8, 8, 512). These blocks are followed by two fully connected layers (FC.), which are
preceded by dropout layers. The CNN is initialised with random weights.

We interpret the problem as a regression problem and consequently employ the mean
squared error as loss function. The CNN is trained with the stochastic gradient descent
momentum algorithm (SGDM). We train the CNN using early stopping with a maximum
of 100 training epochs. If the validation error stagnates or increases during the training
for more than five epochs, training will be terminated.

4.3.6 Post-Processing

We implement two post-processing steps that improve temporal consistency. First, we
extract single traffic light results from each output indication vector for evaluation.
Second, we apply a simple majority over frame decision maker on all single traffic light
results. This reduces the number of flipping single traffic light results for the same traffic
light in consecutive frames or output indication vectors respectively, cf. [66].

4.4 Approaches for Comparisons

4.4.1 Rule-Based Approaches

A straightforward way of determining relevant traffic lights of the ego-vehicle is to rely
on a set of heuristics. The advantage of these approaches is that they do not need a
training dataset, they are simple to implement, and fast in execution.

Two known approaches are the so called Traffic Light Mapping approach, cf. [72], and
the Main Traffic Light approach, cf [73]. These two approaches and their rules have
already been described in sec. 4.2.2.
A third one is the Traffic Light above Ego-Vehicle Lane approach. This is another

rule-based approach. Its rule is as follows: A laterally mounted traffic light between the
left and right ego-vehicle lane line markings is relevant. If no traffic light is within the
ego-vehicle lane line markings, the traffic light with the shortest lateral distance to the
ego-vehicle lane centre will be selected as relevant.

4.4.2 Only-Metadata Approach

We implemented a machine learning approach to assess the question whether a camera
image is actually necessary for the task. The approach uses a Multi-Layer Perceptron

63



4 Manuscript: Deep Metadata Fusion for Traffic Light to Lane Assignment, IEEE
Robotics and Automation Letters (IEEE RA-L)

Multi-Layer Perceptron

M
a
xi

m
u

m
 A

 P
o

st
e

ri
o

ri

P
o

st
-P

ro
c
e

ss
in

g

Layer 1 (15 Neurons)

Layer 2 (5 Neurons)

Layer 3 (2 Neurons)

T
ra

ff
ic

 L
ig

h
t 

R
e

le
va

n
t 

O
u

tp
u

t

F
e

a
tu

re
 V

e
c
to

r 
In

p
u

t

Fig. 4.4 Overview of the only-metadata machine learning approach.

(MLP) to process our annotated metadata. The main difference to our proposed
approach is that we do not use any image data or fusion technique to assign relevant
traffic lights to their lanes.
Figure 4.4 explains our only-metadata approach. A feature vector containing 31

features is used as input data, see table 4.2. Each feature vector represents one traffic
light of the current frame, which is classified as being relevant or non-relevant. The
temporal consistency of some of the features (No. 1, 2 3, 7, 8, 9, 20, 21, 22, 26, 27, 28
in table 4.2) is improved by a Maximum A Posteriori (MAP) estimation. This MAP
estimation takes all features from the previous frames of the sequence into account to
correct outliers. These outliers can occur due to the disparity calculation, which is
used to estimate object positions of the metadata. The feature vector is processed by a

Tab. 4.2 Feature list of the only-metadata approach.

No. Description
1-3 lateral, longitudinal, and vertical traffic light position
4 traffic light colour (unknown, red, yellow, green, red-yellow)

coding
5-6 global traffic light height and width
7-9 mean lateral, longitudinal, and vertical traffic light assembly

position
10-12 traffic light left, straight, and right direction arrow type coding
13-15 current lane left, straight, and right direction type coding
16-17 number of left and right neighbour lanes
18-19 left-sided and right-sided lateral ego-vehicle lane line marking

position below traffic light assembly
20-22 nearest lateral, longitudinal, and vertical lane sign position
23-25 nearest lane sign left, straight, and right direction type coding
26-28 nearest lateral, longitudinal, and vertical lane arrow position
29-31 nearest lane arrow left, straight, and right direction type coding
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trained MLP, which consists of three layers. The output layer uses a softmax activation
function. Both other layers use a sigmoid activation functions.
The MLP is trained with the SGDM back propagation algorithm and uses cross

entropy as loss function to classify the input feature vectors. We train the MLP for a
maximum of 100 epochs with early stopping, see sec. 4.3.5. The output of the MLP is
post-processed with the same simple majority over frame decision maker as for our deep
metadata fusion approach, see sec. 4.7.1.

4.4.3 Only-Vision Approach

The opposite problem to the metadata approach is to rely exclusively on vision. To con-
sider this setting, we implemented a vision based approach, as described in section 4.2.2.
This approach uses only the input image and no further metadata. It makes use of the
same CNN topology, parameter setup, input images, and target indication vectors as
our proposed approach. One difference is that all traffic lights in the input images are
increased threefold in size and highlighted with a rectangle box of the corresponding
traffic light colour. This preprocessing is intended to help the CNN adapting to the
traffic light position by giving steeper gradients, cf. [66].

4.4.4 Human Performance

In order to yield a valid baseline to evaluate the algorithm’s performance, we conducted
a subjective test involving human raters. The subjective test is designed to measure
human performance at assigning all relevant traffic lights to the ego-vehicle lane. The
tool for the subjective test is shown in figure 4.5.

We randomly selected from each of our 138 test dataset sequences two different final
video frames (the database is explained in sec. 4.5.1). In sum, we showed our subject
group 276 intersection scenarios with a maximum video frame resolution of (1792, 896, 3)
RGB pixels.
The subject group were presented a short video with a length of two seconds of

each intersection scenario, which represents a covered driving route of about 25 meters.
Following this, the subject group had ten seconds time to assess all relevant traffic lights
for the ego-vehicle lane in the last frame of the video. All previously annotated traffic
lights are marked with a rectangle box with the same colour as the respective traffic
light, i.e. the subjects did not have to recognise the traffic lights themselves. A driver
would normally have about 7 seconds time for 100 meters driving route to a traffic light
assembly at the end of an intersection. So we allowed here more time to get an upper
bound for the human performance.

The subject group consists of 32 men and 8 women with an average age of 32.3 years
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Fig. 4.5 Screenshot of our programmed subjective test tool (engl. version). The subject group
had the task to mark all relevant traffic lights for the ego-vehicle lane with a relevant
tag by clicking on it.

and 9.8 years average experience in road traffic. Each test could be paused and continued
later to avoid tiredness of the subjects. The maximum test duration was 40 minutes.
The mean assessment time of a video was found to be 5.23 seconds. This shows that
the constraint of the assessment time to ten seconds time is negligible.

4.5 Experiments and Evaluations

In the evaluations we focus on the traffic light to ego-vehicle lane assignment, because
this lane is the most important one for TLA applications and for reasons of clarity and
comprehensibility. We use as evaluation metrics

accuracy = TP + TN

TP + TN + FP + FN
, (4.3)

precision = TP

TP + FP
and (4.4)

F1score = 2 · TP
2 · TP + FP + FN

. (4.5)

They are defined by use of true positive (TP ), true negative (TN), false positive
(FP ) and false negative (FN) assigned relevant and non-relevant traffic lights.

For all experiments the same database was used, which is described in the next
sec. 4.5.1.
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4.5.1 Database

Images with a resolution of two megapixel and annotated traffic light metadata are used
for our experiments from the DriveU dataset [12]. Furthermore, we have annotated the
left camera images with additional metadata: lane arrow markings, lane signs, and lane
line markings for all visible lanes, cf. fig. 4.6. The lane line marking metadata were
annotated by use of an IPM panorama of each sequence, cf. fig. 4.6 (b), which was
processed by frame stitching of the IPM-transformed frames. Moreover, we have made
a complete traffic light to lane assignment for every lane of the considered intersection,
cf. coloured assignment lines in fig. 4.6 (a). These lines represent the annotated ground
truth for the traffic light to lane assignments.

We have 848 annotated real world sequences (full) with at least two to six lanes
for the own direction of travel. 404 of these sequences represent complex intersection
scenarios (complex), see table 4.1. Complex sequences are characterised by multiple
possible driving directions and challenging traffic light arrangements. The full sequences
represent a normal distribution of available intersection scenarios with the restriction
that all intersections with only one lane are sorted out. Each sequence shows a drive
through an intersection scenario until the vehicle reaches the stop line. All sequences
are recorded in German cities. We split our database in two datasets, the full and the
complex one, which are both divided into a training and test dataset. Note, the full and
complex test datasets are disjoint and 10 % of the training data are used as validation
data. The number of all annotated dataset frames and the number of all annotated
metadata in these frames are displayed in table 4.3. The ratio of relevant to non-relevant
traffic lights associated to the ego-vehicle lane is about 52 % to 48 % in the test datasets.

(a) (b)

Fig. 4.6 One annotated frame with traffic lights, lane arrow markings, lane signs in (a), and
lane line markings in the IPM-transformed frame in (b). The blue, orange, and purple
lines in (a) represent the annotated ground truth for the traffic light to ego-vehicle
lane, left neighbour lane, and right neighbour lane assignments.
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Tab. 4.3 Number of elements in our complex (complex) and real world (full) training and test
datasets.

Training complex / full Test complex / full
Sequences 356 / 758 48 / 90
Frames 32041 / 42754 1336 / 2563
Traffic Lights 49379 / 93110 7136 / 11574
Lane Arrow Markings 26138 / 38229 3311 / 5235
Lane Line Markings 62090 / 113786 8400 / 14490
Lane Signs 8857 / 15609 1373 / 1957

4.5.2 Investigations of Fusion Approach

The metadata fusion layer can be integrated into the CNN at each convolutional layer.
In order to find out where the fusion of metadata is most effective, we conduct an
experiment. We take the full dataset and simulate our approach for each possible deep
metadata fusion layer of our common CNN topology ten times. The mean accuracy
results are shown in figure 4.7. It turns out that the deep metadata fusion is more
successful in the Conv. 1 to Conv. 3 layers. The accuracy decreases for deeper layers,
see Conv. 4 and Conv. 5. We assume that is due to their smaller kernel feature map
sizes. We recommend to make deep metadata fusion in Conv. 1 to Conv. 3. The input
(fig. 4.7) represents a vanilla concatenation of the image with the MFMs, because a
fusion between twelve MFMs and three RGB input feature maps is not possible. Vanilla
concatenation means that we simply attached to the existing K feature maps or RGB
input feature maps the E = 12 adaptively weighted MFMs, respectively.

Moreover, we investigated the used fusion operator. We exchanged the element-wise
product against an element-wise sum and the vanilla concatenation operation. The
results of these experiments are shown in table 4.4. Accuracy, precision, and F1score

Fig. 4.7 Deep metadata fusion simulations with different fusion layers.
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show only small differences (-0.4 % to -0.1 %) for the full dataset, which are not
significant. However the results significantly decrease by up to 2.9 % precision with
vanilla concatenation for the complex dataset. In general, all metrics decrease around
2 % by the use of the two other fusion operators for the complex dataset.

The mean test time of a single frame with relevant and non-relevant traffic lights was
between ten and two milliseconds depending on the selected fusion layer with a NVIDIA
GeForce GTX 1080 Ti.

4.5.3 Investigation of Metadata Feature Map Effect

We carried out an ablation study experiment to determinate the effect of each of the
twelve fused MFMs. Twelve cases, each with the omission of one out of all possible
twelve MFMs, are simulated. Figure 4.8 displays the negative impact on accuracy for
each missing metadata feature map tested for the complex dataset. MFM No. 1 (all
traffic lights) and MFM No. 8 (ego-vehicle lane line markings) have the highest impact
on the achieved results. MFM No. 6 (traffic lights with right direction arrow) shows no
significant impact. This may be because the information content of the MFM No. 6 is
almost redundant relative to MFM. No. 4 and 5. Nevertheless, we recommend to use
always all available MFMs to gain the best results because the omission of even one
MFM has always a negative effect, cf. fig. 4.8.

Fig. 4.8 Ablation study experiment to determinate the impact of each MFM.

4.5.4 Comparisons of different Approaches

Our proposed deep metadata fusion approach in sec. 4.3 and all other approaches
introduced in sec. 4.4 were compared against each other.
We calculated mean accuracies, precisions, and F1scores based on all single relevant

traffic light results for both test datasets. In addition, we determined the 90 % confidence
interval CI to make statements about significance. The subjective test uses the subject
group with 40 participants as basis for the confidence interval. The machine learning,
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Tab. 4.4 Mean results of our proposed approach and of the other approaches for the traffic
light to ego-vehicle lane assignment.

Approach Name Accuracy ±CI complex / full
Traffic Light Mapping [72]1 -
Main Traffic Light [73]1 -
Traffic Light above Ego-Vehicle Lane1 -
Only-Metadata Approach2 86.3 ±0.7 % / 86.9 ±0.4 %
Only-Vision Approach [66]3 86.4 ±0.2 % / 91.6 ±0.2 %
Human Performance4 93.9 ±0.7 % / 91.0 ±0.9 %
Deep Metadata Fusion5 (proposed approach) 89.3 ±0.4 % / 93.7 ±0.3 %
Deep Metadata Fusion5 (element-wise sum) 87.6 ±0.7 % / 93.3 ±0.3 %
Deep Metadata Fusion5 (vanilla concatenation) 87.3 ±1.0 % / 93.6 ±0.5 %
Deep Metadata Fusion5 - Left Neighbour Lane 81.2 ±0.8 % / 82.9 ±0.8 %
Deep Metadata Fusion5 - Right Neighbour Lane 83.1 ±0.3 % / 93.6 ±0.2 %
Approach Name Precision ±CI complex / full
Traffic Light Mapping [72]1 62.4 % / 77.9 %
Main Traffic Light [73]1 56.2 % / 79.0 %
Traffic Light above Ego-Vehicle Lane1 57.1 % / 60.5 %
Only-Metadata Approach2 77.2 ±1.3 % / 88.8 ±0.6 %
Only-Vision Approach [66]3 82.7 ±0.3 % / 91.9 ±0.3 %
Human Performance4 89.2 ±1.5 % / 92.9 ±1.3 %
Deep Metadata Fusion5 (proposed approach) 87.1 ±0.6 % / 93.0 ±0.2 %
Deep Metadata Fusion5 (element-wise sum) 84.5 ±0.6 % / 92.7 ±0.5 %
Deep Metadata Fusion5 (vanilla concatenation) 84.2 ±0.9 % / 92.9 ±0.3 %
Deep Metadata Fusion5 - Left Neighbour Lane 75.9 ±0.5 % / 78.4 ±0.8 %
Deep Metadata Fusion5 - Right Neighbour Lane 81.0 ±0.6 % / 90.7 ±0.7 %
Approach Name F1score ±CI complex / full
Traffic Light Mapping [72]1 -
Main Traffic Light [73]1 -
Traffic Light above Ego-Vehicle Lane1 -
Only-Metadata Approach2 82.0 ±0.9 % / 86.6 ±0.6 %
Only-Vision Approach [66]3 82.1 ±0.4 % / 93.2 ±0.2 %
Human Performance4 90.9 ±1.2 % / 89.9 ±1.3 %
Deep Metadata Fusion5 (proposed approach) 86.2 ±0.8 % / 94.0 ±0.1 %
Deep Metadata Fusion5 (element-wise sum) 84.4 ±0.9 % / 93.6 ±0.4 %
Deep Metadata Fusion5 (vanilla concatenation) 84.4 ±0.9 % / 93.9 ±0.4 %
Deep Metadata Fusion5 - Left Neighbour Lane 76.6 ±0.4 % / 83.1 ±0.5 %
Deep Metadata Fusion5 - Right Neighbour Lane 80.3 ±0.4 % / 93.9 ±0.3 %
1rule-based, 2machine learning, 3deep learning, 4subjective test, 5deep fusion
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deep learning and deep fusion approaches employ ten trained and tested models with
random initialisation and validation data as confidence interval basis. In contrast to
this, the rule-based approaches have no confidence intervals because they are based on
analytic functions. Moreover, the rule-based approaches are only evaluated with the
precision metric, because they do not deliver a relevant or non-relevant traffic light
decision for all traffic lights in a test frame.
Summarised results are given in table 4.4. Human performance achieves the highest

mean accuracy, which is significant with 93.9 ± 0.7 % and a mean precision with
89.2 ± 1.5 % for the complex test dataset. Our new deep metadata fusion approach
outperforms human performance with 93.7 % to 91.0 % mean accuracy as well as
94.0 % to 89.9 % mean F1score and achieves equally good results with 93.0 ±0.2 % to
92.9 ±1.3 % mean precision for the full test dataset. The only-vision and only-metadata
approaches obtain significantly lower accuracy and precision results than our proposed
approach. In general, the only-vision approach performs significantly better than the
only-metadata one. However, they produce similar mean accuracy results (86.3 ± 0.7 %
and 86.4 ± 0.2 %) for the complex test dataset. The three rule-based approaches do
not reach the precision of any of the others.

Additionally, table 4.4 presents the mean accuracy and mean precision results for the
left and right neighbour lanes. The left neighbour lane and right neighbour lane results
differ by about 10 % mean accuracy, 20 % mean precision, and 10 % mean F1score. We
assume that this is caused by the unbalanced ratio of existing left and right neighbour
lanes in the test datasets. However, the results are promising especially for the right
neighbour lane with 90.7 % mean precision for the full test dataset. This might be
particularly helpful for predictions of relevant traffic lights, if the ego-vehicle changes
suddenly to one of its neighbour lanes.

4.5.5 Investigation of Distances to the Stop Line

We also compared the only-metadata, only-vision and deep metadata fusion approach
against human performance with respect to the distance to the stop line of the tested
intersections for the traffic light to ego-vehicle lane assignment. We divided the distance
to the stop line d into six distance ranges with a constant difference of 15 meters. The
results of this investigation are displayed for the full and complex dataset in figure 4.9
together with their 90 % confidence intervals CI.

Our proposed deep metadata fusion approach achieves the best results in general for
the full test dataset, see fig. 4.9 (a). It outperforms humans for distances d ≤ 30 meters.
The lower human performance accuracy scores for this distance range are caused by
more false negative relevant traffic lights (relevant traffic lights, which are not marked
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as such).

In figure 4.9 (b), our deep metadata fusion approach achieves significantly higher
results than the only-metadata and only-vision approaches for the complex test dataset.
However, human performance accuracy is not reached here by our proposed approach.
The difference between accuracy scores of human performance and the deep metadata
fusion approach is not statistically significant for distances d ≥ 60 meters with the
inclusion of the confidence interval CI.

The only-metadata and only-vision approaches achieve significantly lower accuracy
results for all distance ranges in both dataset investigations. In general, this investigation
regarding distance ranges confirms our expectation: the closer the ego-vehicle gets to
the stop line the more the accuracy increases. It is, however, quite remarkable that our
approach can compete and even outperform the humans in many cases.

Fig. 4.9 Evaluation over the distance to the stop line for the full (a) and complex test dataset
(b) by use of the accuracy metric. Our deep metadata fusion approach (section 4.3)
is compared against the only-metadata (subsection 4.4.2), the only-vision approach
(subsection 4.4.3), and the human performance (subsection 4.4.4).
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4.6 Conclusion

In this work we introduced deep metadata fusion for assigning all relevant traffic lights
to their associated lanes.

We trained a common CNN with prepared and transformed input images to predict a
vector indicating all relevant traffic light column positions. To achieve this, we fused
twelve prepared and adaptively weighted MFMs with convolutional feature maps of a
selected convolution layer.
For comparisons, we implemented three rule-based approaches, a machine learning

approach, and a deep learning approach. We used for our experiments two test datasets:
a complex one, which includes exclusively difficult intersections, and a real world
dataset. Both were extracted from a database, which has in total 848 sequences of
urban intersection scenarios at daytime. The metadata used was hand-annotated by
humans. Hence, we suppose almost perfect metadata quality. In addition, we conducted
a subjective test to measure the human performance for assigning all relevant traffic
lights to the ego-vehicle lane. It turns out that our deep metadata fusion approach
solves the traffic light to lane assignment problem better than other approaches. The
baseline for this task is represented by the human performance measured by a subjective
test. This baseline is outperformed by our proposed deep metadata fusion approach
with +2.7 % mean accuracy for the real world test dataset. The deep metadata fusion
technique can also be used to improve other functions like object detection with a
RaDAR and camera sensor or lane detection with a LiDAR and camera sensor. In future
work, we will develop a sequence-based approach instead of a frame-based approach and
test our CNN with metadata similar to real detectors.

Acknowledgement We would like to thank the Daimler AG, which has supported us
with the database used. Moreover, we thank our subject group who conducted the
subjective test for us.

4.7 Complementary Investigations to the IEEE RA-L Paper

In this section, further experiments are referenced that were not part of the original
paper in order to keep the scope focused without additional approach extensions and
investigations. Here, the benefit of post-processing, configuration of the deep metadata
fusion adaptive weighting, and development of a sequence approach are investigated and
concluded.

73



4 Manuscript: Deep Metadata Fusion for Traffic Light to Lane Assignment, IEEE
Robotics and Automation Letters (IEEE RA-L)

4.7.1 Benefit of Post-Processing

In both manuscripts, the identical post-processing steps have been applied. The post-
processing steps are the output vector matching and the simple majority over frame
decision maker, which were introduced in the IEEE ITS paper for the first time, see
subsections 3.3.3 and 3.3.4. The benefit of the post-processing steps for the final results
is evaluated as follows:

The only-vision and deep metadata fusion approach for the complex and full datasets
are evaluated in independent simulations. Each simulation was performed ten times
per approach and dataset. Simulations are distinct by random weight initialisation
in the convolutional layers. The difference between the final results in and excluding
post-processing is calculated for all simulations carried out in table 4.5.

Tab. 4.5 Evaluation of the post-processing benefit by using the mean accuracy over all simula-
tions for both manuscript approaches (cf. chapter 3 and 4) and both datasets.

Approach Name Dataset Accuracy ±CI
Only-Vision Approach complex +2.45 ±0.21 %
Only-Vision Approach full +2.51 ±0.13 %
Deep Metadata Fusion Approach complex +1.72 ±0.16 %
Deep Metadata Fusion Approach full +2.20 ±0.09 %

In detail, table 4.5 states the mean difference between the accuracy results with and
without post-processing for the only-vision and deep metadata fusion approach as well
as for the complex and full dataset. In general, post-processing improves the accuracy
results up to 2.5 % with a permanent high reliability noticeable by small 90 % confidence
intervals (CI ≤ 0.21 %). The lowest improvement (+1.72 % accuracy) is achieved for
the deep metadata fusion approach with the complex dataset, which is important in
order to improve the approach.
In conclusion, all approaches always benefit from post-processing. It reduces the

number of flipping single traffic light relevant results by an outlier detection in the
smoothed time course of single traffic lights per sequence.

4.7.2 Configuration of Deep Metadata Fusion Adaptive Weighting

Adaptive weighting represents an essential step in the deep metadata fusion approach.
It influences MFM weighting by instance normalising each MFM with the global average
gl. Several weighting modifications are configured with higher or lower MFM priorities
to determine the optimal configuration.
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Tab. 4.6 Investigation of several adaptive weighting configurations by the three mean metric
results for the complex test dataset.

No. Weighting Modification Accuracy Precision F1score
1 adaptive weighting (gl · 0.01) 86.1 % 83.5 % 82.3 %
2 adaptive weighting (gl · 0.1) 87.4 % 84.4 % 84.1 %
3 proposed adaptive weighting (gl · 1) 89.2 % 87.1 % 86.2 %
4 adaptive weighting (gl · 10) 88.0 % 85.1 % 84.7 %
5 adaptive weighting (gl · 100) 87.9 % 85.4 % 84.4 %
6 constant weighting (gl = 1) 87.9 % 84.6 % 84.9 %
7 constant weighting (gl = 255) 87.6 % 85.8 % 84.1 %

In table 4.6, all MFM weighting modifications and their mean metric results are listed
for the complex test dataset. I used the complex dataset because the deep metadata
fusion approach is more successful for this dataset than for the full dataset. This choice
allows a more nuanced investigation. MFM weighting modifications No. 1, 2, 4, and
5 use the adaptive weighting explained, cf. subsection 4.3.4. Weights are modified by
a scalar multiplication with a factor of different magnitudes. The global average gl is
multiplied by one hundredth to a hundredfold. MFM weighting modifications No. 6 and
7 represent a constant weighting approach. This means that all MFM values are set
to the same constant value for every input image. Weighting modification No. 6 uses
logical values ({0, 1}), and weighting modification No. 7 uses RGB colour space values
({0, 255}).

In contrast to the adaptive weighting approach proposed, see modification No. 3 in
table 4.6, all weighting modifications produce lesser results over all three mean metric
results. Lower prioritised adaptive weighting modifications No. 1 and 2 achieve the
lowest results with an up to 3.9 % lesser F1score. Higher prioritised adaptive weighting
modifications No. 4 and 5 yield similar results to constant weighting modifications No. 6
and 7, with a maximum of 0.8 % difference among themselves for the precision metric.

With regard to the significance of the results, it should be mentioned that the
maximum confidence interval range of the complex test dataset is 0.4 %, see table 4.4.
Also, the difference between the adaptive weighting proposed and all other weighting
modifications lies in the one-digit to four-digit range.

In conclusion, the adaptive weighting global average gl regularise most efficiently the
fusion of the twelve MFMs by itself, and further modifications of the adaptive weighting
are not required in the form of other configurations.
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4.7.3 Development of a Sequence Approach

The development of a sequence approach examines the hypothesis that by processing
more than one single frame, a higher entropy is generated with regard to the intersection
scenario. This hypothesis is inspired by the information recording and processing of
humans. It is tested for the deep metadata fusion and the only-vision approach.
The sequence approach is implemented by using an LSTM layer extension, cf. sub-

section 2.1.3. An LSTM layer is integrated into the proposed CNN topology at three
different positions for testing purposes: at the end of the last convolutional layer
(Conv. 5), after the first fully connected layer (FC. 1), and after the second fully con-
nected layer (FC. 2), see figure 4.10. Furthermore, the LSTM layer is configured with
three iteration cycles: three, five, or seven time steps. This means that the LSTM layer
processes the feature inputs from three to seven input images before it produces an
output for the following network layer, see figure 4.10. The frame rate is 15 frames per
second and on average, every third frame is annotated. Thus, the shortest sequence time
of an iteration cycle is 0.4 seconds (three time steps), and the longest time is 1.4 seconds
(seven time steps).
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Fig. 4.10 Sequence approach with an LSTM layer extension. Three different integration
positions and three iteration cycles of the LSTM layer are investigated.

The parameter setup for the sequence approach is the same as for the deep metadata
fusion33 or only-vision approach. Nevertheless, the CNN of the sequence approach is
trained in a two step procedure. First, the CNN is trained without any LSTM layer as
described in subsection 4.3.5. Second, the layer outputs of the neural network layers
before the respective LSTM layer (Conv. 5, FC. 1, and FC. 2) are stored separately.
These layer outputs are used to build a shortened neural network, which starts with
an LSTM layer and ends with the indication vector output. This neural network is
trained again for up to 100 epochs with the layer outputs as LSTM layer inputs for all
three integration positions and iteration cycles. This procedure saves training run-time
33Here, the convolutional layer two (Conv. 2) was used as a fusion layer for the deep metadata fusion

approach, which was proposed as the one of the most successful fusion layers, cf. subsection 4.5.2.
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and ensures a correct comparison between the deep metadata fusion and only-vision
approach with and without an LSTM layer extension.

The mean accuracy results for the sequence approach are displayed in figure 4.11. The
figure shows the results regarding the deep metadata fusion approach and only-vision
approach, the full test dataset and complex one, all three LSTM layer integration
positions, and all three iteration cycles in comparison to the results without an LSTM
layer extension. The LSTM layer extension does not reach any significant mean accuracy
improvements for the deep metadata fusion approach with the complex test dataset.
However, the only-vision approach achieves up to 1.2 % more accuracy for all LSTM
layer integration positions and iteration cycles than the only-vision approach without
the LSTM layer extension with the complex test dataset. The deep metadata fusion and
only-vision approaches with LSTM layer extension do not outperform their baselines

Fig. 4.11 Sequence approach results with an LSTM layer extension. The LSTM layer extension
is applied to the only-vision and deep metadata fusion approach for the complex and
full test datasets. The LSTM layer extension for the only-vision approach with the
complex test dataset outperforms the baseline for all integration positions (Conv. 5
to FC. 2) and iteration cycles (three to seven time steps).
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with one exception by using the full test dataset. This exception applies for the LSTM
layer integration after the first fully connected layer (FC. 1) with seven time steps, cf.
figure 4.11. Here, both approaches significantly outperform their baseline with up to
0.4 % mean accuracy. It is assumed that these are two outliers and the better results
are also possible without the LSTM layer extension.
Note that the evaluation results of the precision and F1score metrics are relative

to the visualised accuracy results, and for other absolute value ranges, see appendix
section 7.7, where all results are listed.
In conclusion, the LSTM layer extension improves the results of the only-vision

approach with the complex test dataset for all integration positions and integration
cycles. This is due to the sequence approach, which generates new useful features
over-time to resolve the TL2LA problem. By contrast, the LSTM layer extension does
not take advantage of the over-time generated features for the deep metadata fusion
approach. It is assumed that no more improvements are possible over-time for the deep
metadata fusion approach with both datasets because the approach is already saturated
through the use of the encoded features in the twelve MFMs.

4.8 Brief Discussion of the IEEE RA-L Paper

In this section, specific implementation details of the IEEE RA-L paper on the deep
metadata fusion approach are briefly discussed: the MFM preparation, the deep metadata
fusion layer and fusion operator, and the impact of single MFMs. The approach in its
entirety and its importance for further applications and research will be discussed in
chapter 5.

The MFM preparation was explained in subsection 4.3.3. During this pre-processing,
the heterogeneous data sources are harmonised for the deep metadata fusion approach.
The various annotated metadata objects (traffic lights, lane line markings, lane arrow
markings, and lane signs) are transferred into twelve binary-valued images of the same
size – the MFMs. The correct scale and mapping between the annotated metadata
objects and the generated MFMs must be used, otherwise, the deep metadata fusion
will not work due to incorrect metadata feature positions.

The fusion operator of the deep metadata fusion approach was investigated in compar-
ison to two others, cf. subsection 4.5.2: element-wise addition, vanilla concatenation and
element-wise multiplication (proposed one). It turns out that the proposed element-wise
multiplication fusion operator performs best due to the ability to scale features of an
MFM with the previously generated convolutional features, cf. table 4.4 in subsec-
tion 4.5.4. In contrast to the feature scale of the element-wise multiplication operator,
the element-wise addition does a feature shift which can be partly compensated by the

78



4.8 Brief Discussion of the IEEE RA-L Paper

normalisation layers. The concatenation is similar to the element-wise addition because
the actual fusion takes place in the following convolution layer. There, the MFMs
and the convolutional feature maps are convolved by a single kernel and subsequently
element-wise added in order to generate a new convolutional feature map.

The fusion layer was investigated in subsection 4.5.2. It was found that an early fusion
(in Conv. 1 to Conv. 3) is more successful because the MFMs have to be down-sampled
too much for a later fusion (in Conv. 4 or Conv. 5). The encoded metadata information
is therefore largely lost. In addition, there is a growing inequality between fused MFMs
and unfused (passed-through) convolutional feature maps. For example, twelve fused
MFMs are confronted with 116 unfused convolutional feature maps in Conv. 4. This
creates a lower relevance of the fused MFMs in the CNN.

The effect of each MFM was investigated with an ablation study in subsection 4.5.3. It
was found that eleven out of twelve MFMs have a positive effect on the results between
+1.1 % and +2.2 % accuracy, cf. figure 4.8. The highest effect is attributed to MFM No. 1
(all traffic lights) and No. 8 (ego-vehicle lane line markings) because these MFMs contain
the most important features to resolve the TL2LA problem. The MFM No. 6 (traffic
lights with right direction arrow) has no significant effect on the results with +0.2 %
accuracy. It is assumed that this is because of the inner dataset distribution. Traffic
lights with right direction arrows are underrepresented in comparison to traffic lights
with left and straight direction arrows (MFM No. 4 and 5) conditioned by intersections
in Germany. In total, all MFMs concerning traffic light and lane metadata would have
a deep metadata fusion effect of about +12.5 % accuracy (addition of all single MFM
impacts, cf. figure 4.8). However, the individual MFM results of the ablation study
cannot be added together because they are not distinct from each other. What results
is a lesser total deep metadata fusion effect34 of 2.9 % greater accuracy, +4.4 % more
precision, and +4.1 % more F1score as taken from table 4.4 in subsection 4.5.4.

34Absolute difference between the only-vision and deep metadata fusion approach for the complex test
dataset.
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In the following, five cross-sectional aspects of this dissertation are discussed. These
aspects are the database, the IPM method, the subjective tests, the deep metadata
fusion approach, and the TL2LA.

Database The database used is discussed concerning the quality and usability of
the object annotations. A discussion about the dataset size was already made in
subsection 3.6.2 for the IEEE ITS paper.
The quality of the annotated metadata objects, cf. figure 7.1 in the appendix, is

affected by random human annotation errors and predefined annotation margins. The
metadata used, such as lane arrow markings, lane line markings, and lane signs are
annotated with a margin of ±5 pixels in the horizontal and vertical object directions.
The traffic light metadata used were annotated with a margin of ±2 pixels. These
annotation margins are satisfactory in order to use the metadata objects in the form
of MFMs for the deep metadata fusion approach because the annotation margin error
becomes smaller together with the up to factor eight down-sampled MFMs. Furthermore,
the annotation margin of the traffic lights is exact enough to use these metadata for a
detection task, what it were originally intended for, cf. the DriveU dataset [12].
Moreover, the usage of annotated metadata raises the following research question

concerning the usage of metadata from real detectors: How much do the accuracy,
precision, and F1score metrics decrease by using different false positive (FP) and false
negative (FN) ratios of the metadata objects for the deep metadata fusion approach? FPs
and FNs of the annotated metadata objects are currently very rare and quantitatively
not measurable without a validation of each metadata object. In this work, it is assumed
that the annotated metadata does not have any FPs or FNs. However, the creation of
metadata from real detectors would be an independent research project and could be
part of a subsequent project of this thesis. It could be created by (1) generating of FPs
and FNs into the database of the annotated metadata objects with a random object
generator or by (2) capturing FPs and FNs metadata objects by means of algorithms
from real detectors which are fed with the recorded camera images. At the moment,
this research question cannot be answered exactly. Nevertheless, the question regarding
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metadata from real detectors would not arise anymore if real detectors achieved detection
rates35 close to 100 % as is necessary for level three driving or higher.

IPM method The method to generate top view images from camera images was
explained in section 2.2. It is used to prepare the input images for the only-vision
and deep metadata fusion approach. The main contribution in comparison to other
state-of-the-art IPM transformations is that this IPM method is independent from
extrinsic camera parameters such as the pitch angle. Moreover, the method allows to
create an IPM full panorama image, cf. figure 2.9, that is used to annotate all lane
line markings with less time effort and minor lateral errors up to medium distances of
50 m, cf. figure 2.12. This IPM lane line marking annotation principle would have the
potential to replace the standard annotation procedure if minimal lateral errors were
acceptable or further improvements followed.
A disadvantage of this IPM method is that it is currently not real-time capable,

because it needs a lot of computing power for the RANSAC algorithm and the MAE
optimisation to determine the road plane and the image horizon. A further improvement
could be, e.g. a semantic segmentation of the free space in the camera image. Then
only relevant three-dimensional road plane points are passed to the RANSAC algorithm
to improve the road plane estimation, cf subsection 2.2.1, and reduce the processing
time of the algorithm.

Subjective Tests Two subjective tests were conducted in this work. Both subjective
tests had the same goal: Subjects should identify all relevant traffic lights for the
ego-vehicle lane.

The first one was designed by me to verify the performance of the only-vision approach
in the IEEE ITS paper, see subsection 3.4.4. The subjects were shown the prepared
CNN input images with one difference: The images were up-scaled from (256, 256, 3)
to (512, 512, 3) RGB pixels in height and width to obtain more convenient handling.
Hence, the first subjective test design has three disadvantages:

1. The subjects had to interpret the top view of the road part in the input images.
This is an unusual perspective for humans and could produce some misleading
information by the identification of the ego-vehicle lane.

2. The image resolution was relatively low. This led to smaller traffic lights, which
are far away from the ego-vehicle and more difficult to observe as well as to mark
with the mouse cursor. Moreover, traffic light icons, e.g. direction arrows, had

35This is measured by the true-positive-rate or precision metric.
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a low resolution. Thus, they were not clearly visible for the subjects in the test
images.

3. The subjects were always shown a single input image like the CNN also processes
and evaluates. But the assessment of one single image is also unusual for humans,
who are more familiar with videos or image sequences.

However, the test should not measure the real human performance. It is a methodical
comparison to the CNN results of the only-vision approach, since other approaches for
comparison, except the rule-based ones, are not available in the reference literature.
The second subjective test, see subsection 4.4.4 in the IEEE RA-L paper, addresses

the three disadvantages of the first one. It uses the originally recorded camera images, a
high resolution with (1792, 896, 3) RGB pixels, and plays a three-second long video of
the intersection scenario before the actual assessment of the subjects starts. However,
one bottleneck remains in both subjective test designs: Each subject requires more or
less time to mark all relevant traffic lights by means of the mouse cursor. This delay in
handling means that the ten-second assessment or processing time was not enough in
exceptional cases.
Moreover, the second subjective test had the aim to measure the real human per-

formance regarding the TL2LA problem. Human performance is outperformed by the
proposed deep metadata fusion approach for the full test dataset in the accuracy and
F1score metrics with up to 2.7 %. This raises the research question as to whether
the deep metadata fusion approach solves the TL2LA problem more successfully than
humans. The answer can be determined by using the precision metric. This metric
describes the true-positive-rate of relevant traffic lights for the ego-vehicle lane and is
independent from the number of marked as relevant traffic lights by the subjects. The
precision of the subjective test always outperforms all other approaches, see subsec-
tion 4.5.4. The only exception is 92.9 ±1.3 % (human performance) to 93.0 ±0.2 %
(deep metadata fusion approach) for the full test dataset, but this is not significant.
Thus, the better accuracy and F1score results are caused by subjects who have marked
only one instead of all relevant traffic lights for the ego-vehicle lane per test sequence.
In conclusion, the deep metadata fusion approach is almost as accurate as the measured
human performance with the second subjective test.

Deep Metadata Fusion Approach The development of the deep metadata fusion
approach36 to resolve the TL2LA problem represents the main contribution of this
thesis. The approach is based on the encoding of relevant traffic light column positions
36The approach is based on a combination of existing neural network layer types like merge, multiplica-

tion, and normalisation layers which are available in open-source frameworks, cf. [43], [80].
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in an indication vector. This was introduced with the only-vision approach in the IEEE
ITS paper for the first time, cf. chapter 3, and enables a CNN to transfer a one-to-many
assignment problem into a regression problem.
For comparison, other approaches were explained and tested to resolve the TL2LA

problem. Diverse rule-based approaches (traffic light mapping, main traffic light, and
traffic light above ego-vehicle lane, cf. subsection 4.4.1), an only-metadata approach37,
cf. subsection 4.4.2, and the only-vision approach, cf. subsection 4.4.3, were evaluated.
Moreover, an error analysis revealed that all these approaches have a joint overlap of
5.0 % accuracy errors, details are explained in section 7.6 in the appendix. In sum,
none of these approaches were able to achieve similar or even better results like the deep
metadata fusion approach, cf. table 4.4 in subsection 4.5.4. It was also shown that this
approach can be applied to more than one lane, e.g. the left and right neighbouring
lanes.

The deep metadata fusion approach was investigated for various optimisations: three
different fusion operators (cf. subsection 4.5.2), several adaptive weighting modifications
(cf. subsection 4.7.2), an LSTM layer extension (cf. subsection 4.7.3), and the effect
of each MFM on the results (cf. subsection 4.5.3). In conclusion, the most efficient
deep metadata fusion approach configuration uses an element-wise multiplication fusion
operator, an unmodified global average scalar for the adaptive weighting, and all twelve
available MFMs. In contrast to the only-vision approach, which benefits from an LSTM
layer extension by using over-time generated features, the deep metadata fusion approach
cannot be improved with an LSTM layer extension.
The main advantages of this novel deep metadata fusion approach are as follows in

comparison to other deep fusion approaches:

• It is fast in forward propagation, especially the adaptive weighting technique
because it uses exclusively the global average of all previous convolutional layers
to weight all MFMs instead of additional learned scale and shift parameters like
they are learned for layer normalisation, cf. subsection 2.1.5.

• The deep metadata fusion approach works without additional backward propaga-
tion. After the preparation of the MFMs, the MFMs are immediately fused into
the CNN without prefixed convolutional layers as is implemented in other deep
fusion approaches, e.g. in [76], [60], and [79], which requires to set up more hyper
parameters and a longer training run-time.

• In a direct comparison, the deep metadata fusion approach demonstrates that
a more complex fusion operator like the proposed element-wise multiplication

37This approach is based on the annotated metadata and traffic lights, which are packed into a feature
vector. The feature vector is described in more detail in table 7.1 in the appendix.
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leads to better results than a simpler fusion operator like concatenation (with
up to +2.0 % accuracy, 2.9 % precision, and +1.8 % F1score, cf. table 4.4).
This could influence further investigations regarding the deep fusion in CNNs,
cf. subsection 2.1.6, because most deep fusion approaches use aggregation fusion
(maximisation, minimisation, summation, or concatenation), e.g. in [81], [57], and
[79].

A disadvantage of the deep metadata fusion approach as well as for the only-vision one
is that traffic lights which hang directly above each other cannot be differentiated with
the indication vector in rare cases. Here, an indication matrix instead of an indication
vector would compensate this disadvantage, but it should be ensured that the additional
row dimension does not have too many elements, e.g. an indication matrix size of
(2, 256) values would be sufficient for an upper and a lower horizontal level of traffic
lights. Otherwise, it could lead to training complications with the loss function. If the
proportion of unset (zeros) to set values in the indication matrix was very unbalanced,
the CNN would learn the simplest solution that all indication matrix values are always
zero.
Furthermore, optimisation could be included to add additional MFMs to the deep

metadata fusion approach, which contain, e.g. depth maps [58], [59] or semantically
segmented images [79]. This would extend the deep metadata fusion approach by a
raw level fusion and could focus the CNN on more important features for the TL2LA
function. Moreover, an extension of the CNN topology implementation with a capsuled
neural network layer [82] could be validated. This layer has the property to decide
between different feature hierarchies by bringing them into a logical order, which could
be beneficial for the TL2LA.

Traffic Light to Lane Assignment (TL2LA) The TL2LA function was the motivator
behind the development of the deep metadata fusion approach in this thesis. In addition,
the development of a TL2LA function could also be resolved with other approaches
than the made only-vision or deep metadata fusion one. In the following, three other
approach options are discussed:

• A combination of simpler approaches can be implemented. For example, the results
of the only-vision approach can be used as additional feature vector input for the
only-metadata approach. This would then be a composition of two approaches.
This special composition was also validated, but has not achieved significantly
better results than the only-vision approach, see section 7.5 in the appendix for
more details.
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• The TL2LA function can be realised with traffic infrastructure data, e.g. HD
maps provided by a cloud data management system. Traffic light state, position,
and relevance information are transmitted via I2V to the vehicle. Some I2V traffic
light information concepts are already proposed in [68] and [67]. In addition, a
simulation study with traffic infrastructure data to decide how fast a vehicle should
drive towards the relevant traffic light was conducted in [69]. However, such HD
maps provided by I2V are only available for small regions, are error-prone for city
construction, and are expensive to create at the moment. Moreover, the expansion
of the I2V infrastructure, e.g. with the mobile network 5G, is also not finished yet.

• The development of a TL2LA function can be simplified by an equal traffic light
state restriction. This means that the vehicle will brake on a stop line if all traffic
light states are red. If all traffic light states are green, the vehicles will drive
through the intersection. The advantage of this restriction is that the TL2LA
function would be very reliable. However, it is obvious that many cases will be
not addressed with this restriction, particularly complex intersection scenarios.

In conclusion, the deep metadata fusion approach for the TL2LA function represents an
approach option that can be implemented immediately, is cost effective, and dominates
the majority of intersection scenarios at the moment.
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Summary This work dealt with a novel deep metadata fusion approach to resolve the
many-to-many traffic light to lane assignment (TL2LA) problem. The work closed the
research gap between Traffic Light Recognition (TLR) and Traffic Light Assistance
(TLA) systems. It enabled TLA systems to interpret recognised traffic lights in the right
context by assigning them to their relevant lanes. The deep metadata fusion approach
was developed by means of a database with 848 real intersection scenarios and over 45
thousand frames, which were recorded by a stereo camera. Each frame was annotated
by humans with traffic lights, lane line markings, lane arrow markings, and lane signs
as metadata objects, cf. chapter 1.

In chapter 2, the theory regarding deep learning and deep fusion with Convolutional
Neural Networks (CNN) was explained. The presented deep metadata fusion approach
was categorised as a direct deep feature fusion approach with heterogeneous data
streams. Moreover, an Inverse Perspective Mapping (IPM) method was developed in
order to transform camera images into top view images as well as to annotate efficient
lane line markings by use of an IPM full panorama image of the intersection scenario
or sequence. The IPM method was developed independently from extrinsic camera
parameters such as the camera pitch angle. It used a flat world estimation of the
road part in a three-dimensional point cloud image by use of the RANSAC algorithm.
Subsequently, it compared the top view image against the previously created top view
image of the sequence by use of an Mean Absolute Error (MAE) to optimise the IPM
transformation.
In the first manuscript, cf. chapter 3, an only-vision approach was developed. This

approach resolved the TL2LA problem by vision only. The main contributions of the
only-vision approach were: (1) The road part of the input images was transformed
into a top view image by use of the IPM method. This conditioned more symmetry
between different CNN input images and improves the results. (2) As CNN output,
an output indication vector was defined. This indication vector enabled the CNN to
transfer the assignment problem into a regression problem. For that the indication
vector encoded the column positions of all relevant traffic lights in the input image. As
result, the only-vision approaches achieved 86.4 % average accuracy. In addition, the
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CNN topology, dataset size and CNN input image size were investigated. In conclusion,
an AlexNet CNN topology resolved the TL2LA problem with high accuracy results and
a low 90 % confidence interval over many simulations by use of an acceptable training
run-time. An enlargement of the available dataset size or the chosen input image size
did not achieve higher accuracy results.
In the second manuscript, cf. chapter 4, the deep metadata fusion approach was

developed. It was based on the processing steps and the contribution of the only-vision
approach. Furthermore, the deep metadata fusion approach encoded the metadata
objects into twelve binary Metadata Feature Maps (MFM) of the same size as the
selected convolutional fusion layer. These MFMs were fused by use of an adaptive
weighting technique and an element-wise multiplication fusion operator into the selected
convolutional fusion layer. The adaptive weighting technique used the global average of
the previous convolutional layer. It was discovered that an element-wise multiplication
as fusion operator, an early fusion in convolutional layer one to three, and the use of
all metadata feature maps achieve the highest results with 93.7 % average accuracy
for the full dataset. The deep metadata fusion approach was compared against three
rule-based, an only-metadata, and an only-vision approach. It outperformed significantly
all other approaches and the results increased the closer the vehicle approaches the stop
line up to 96.7 % accuracy for distances between 15 m to 30 m for the full dataset.
However, traffic lights which are positioned close together but are not relevant for the
same lanes are still a challenge for the deep metadata fusion approach. In addition, a
subjective test was conducted to measure human performance and to obtain a baseline
for the TL2LA problem. For this, a subjective test tool was programmed and rolled
out to a heterogeneous group of 40 subjects. The subjective test design was based
on a previous performed subjective test and remedied its disadvantages because the
previous subjective test was conducted to evaluate the CNN model performance of the
only-vision approach. In conclusion, the human performance and deep metadata fusion
approach achieved almost identical precision (true-positive-rate) results. However, the
deep metadata fusion approach outperformed the human performance in the accuracy
metric for the full test dataset with +2.7 %. Moreover, the only-vision approach and
deep metadata fusion approach were extended to a sequence approach by use of an
Long Short Term Memory (LSTM) layer. The result was that the only-vision approach
benefited exclusively from this extension.

In the last chapter 5, the quality of the annotated metadata objects and the usage of
metadata from real detectors were discussed. The disadvantages of the first subjective
test and their compensation with the second one were discussed and the results of the
measured human performance and the deep metadata fusion approach were interpreted.
In addition, the advantages and disadvantages of the deep metadata fusion approach as
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well as possible optimisations of the approach were mentioned. Finally, three alternative
approaches to create a TL2LA function were suggested.

Moreover, a video38 was created that exemplifies the traffic light to lane assignment,
the deep metadata fusion approach, and the second subjective test.

Outlook The deep metadata fusion approach could be adapted to other use cases in the
field of ADAS. It could be resolved for further assignment problems, e.g. vehicle to lane
assignment. In the reference literature, the preceding vehicle to lane assignment problem
is resolved by rule-based, filter-based, or Multi-Layer-Perceptron (MLP) approaches.
For example, it is checked as to whether the preceding vehicle is in the ego-vehicle-lane,
cf. [83], a Bayes filter generates a discrete posterior probability for a preceding vehicle
in the ego-vehicle-lane, cf. [84], or an MLP is trained with lane and vehicle features in
order to decide on which lane index the preceding vehicles are located, cf. [85]. The
deep metadata fusion approach could be used to resolve this assignment problem by
using the same CNN input images and use case specific MFMs.
The deep metadata fusion approach could also be used for deep feature fusion of

different senor data sources, RaDar, camera, or LiDar, to detect or classify objects.
For example, object detection with camera and LiDar sensor data uses region based
or gated based deep fusion approaches in the reference literature. Region based deep
fusion processes separately the camera and LiDar data and fuses their object proposals
together by using an element-wise mean fusion operator, cf. [86]. Deep gated fusion
fuses generated camera and LiDar feature maps pixel-wise together depending on the
gated fusion unit decision after each convolutional layer, cf. [87].
Moreover, the deep metadata fusion approach could be extended to a full end-to-

end re-enforcement learner by implementing it in a vehicle fleet. This would open up
the opportunity to use a large amount of training data via cloud data management
and to train a global CNN that has local copies in each vehicle. The sensor input,
camera images and metadata, would be stay the same. The actor output would be the
information as to whether a vehicle should brake on or run over a stop line at a signalised
intersection instead of the output indication vector for relevant and non-relevant traffic
lights. However, drivers who do not follow the traffic rules can compromise this approach
extension.

I created my dissertation in the form of an offline development. The next step should
be to integrate the deep metadata fusion approach into a test vehicle to validate the
approach in real world. This test vehicle must have a TLR and Lane Detection (LD)
function to create the required MFMs.

38Link to the video of the IEEE RA-L paper [7]: https://ieeexplore.ieee.org/ielx7/7083369/
8581687/8613841/ieee_ra_l_video.mp4?tp=&arnumber=8613841.
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7
Appendix

7.1 Database Annotations of one Example Image

In this section, the database annotations which were explained in chapter 1 are visualised
based on an example image.
Figure 7.1 shows an example image with all objects annotated by humans. Traffic

lights, lane arrow markings, and lane signs were annotated as rectangles. The lane
line markings were annotated as polylines in the IPM full panorama image and re-
transformed into the left camera image, cf. subsection 2.10. The traffic light to lane
connections (ground truth) were created by using an allocation matrix with predefined
identification numbers of each lane and traffic light. An allocation matrix was filled for
each database frame by hand, cf. equation 1.1 that shows an example allocation matrix.

Fig. 7.1 Example of one annotated image: Traffic lights (yellow), lane line markings (white),
lane arrow markings (cyan), and lane signs (magenta) are annotated. The TL2LA
ground truth (orange, blue, and purple traffic light to lane connections) are shown for
each lane.
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7.2 Example of an IPM Lane Line Marking Image Evaluation

In this section, a single IPM lane line marking image is evaluated. This image corresponds
to the example image in figure 2.10 (a), cf. subsection 2.2.5.

Figure 7.2 shows the lateral error over the longitudinal distance of the IPM lane line
markings. The lateral error has its maximum at 48 m with an MAE of 18 cm. The
lateral error of 5 cm can be interpreted as a default error at the beginning of the IPM
lane line marking annotation (10 m). This default lateral error is caused by off-centred
annotations of the lane line markings. A real world lane line marking has a width of
about 12 cm or six pixels (1 px = 0.02 m) in the IPM full panorama image. Thus, this
example image has an annotation margin of about 2.5 pixels.

Fig. 7.2 Evaluation of the IPM lane line marking exactness for a single image through calculation
of the lateral error by using reference lane line markings for the ego-vehicle lane. The
RMSE and MAE have their maxima at 48 m and the default lateral error is about
5 cm.

7.3 Feature Vector Attributes of the Only-Metadata Approach

This section provides additional information on the feature vector attributes of the
only-metadata approach. Table 7.1 explains the encoded feature information of the
input feature vector for the only-metadata approach. It is similar to table 4.2 in
subsection 4.4.2. However, table 7.1 contains an additional column for the value range
to describe the 31 features in more detail. This column was not added to the original
manuscript of the IEEE RA-L paper because of space restrictions, cf. chapter 4.
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7.4 CNN Output Visualisation of the Only-Vision Approach

Tab. 7.1 Feature list of the only-metadata approach including the value range and the encoding
for the input feature vector.

No. Description Value Range

1-3 lateral, longitudinal, and vertical traffic light position [0.1, 128.0] meter
4 traffic light colour (unknown, red, yellow, green, red-yellow) [0, 4] binary

coding
5-6 global traffic light height and width [0.1, 1.5] meter
7-9 mean lateral, longitudinal, and vertical traffic light assembly [0.1, 128.0] meter

position
10-12 traffic light left, straight, and right direction arrow type coding {0, 1} binary
13-15 current lane left, straight, and right direction type coding {0, 1} binary
16-17 number of left and right neighbour lanes [0, 5] number
18-19 left-sided and right-sided lateral ego-vehicle lane line marking [-32.0, 32.0] meter

position below traffic light assembly
20-22 nearest lateral, longitudinal, and vertical lane sign position [0.1, 128.0] meter
23-25 nearest lane sign left, straight, and right direction type coding {0, 1} binary
26-28 nearest lateral, longitudinal, and vertical lane arrow position [0.1, 128.0] meter
29-31 nearest lane arrow left, straight, and right direction type coding {0, 1} binary

7.4 CNN Output Visualisation of the Only-Vision Approach

In this section, the entire output of the only-vision approach is visualised and described
to explain the functionality of the output regression vector in more detail.
Figure 7.3 displays the output of the CNN model or only-vision approach for the

complex test dataset. The approach was described in the IEEE ITS paper, cf. chapter 3.
The figure shows all target regression vectors, the output regression vectors, and the
matching vectors in the form of a binary image for each test frame of a sequence.
The three regression vectors and the calculation of the traffic light relevant results are
described in subsection 3.3.3. Note that these vectors are renamed as indication vectors
in the IEEE RA-L paper, cf. chapter 4. The matching vector contains all traffic lights
(relevant and non-relevant traffic lights for the ego-vehicle lane) of the complex test
dataset. The output regression vector contains the predicted relevant traffic lights for
the ego-vehicle, and the target regression vector represents the ground truth for all
relevant traffic lights. Qualitative results of the only-vision approach can be examined
by comparing the target and output regression vectors. For example, in sequence 13
the traffic light on the right side (at vector length 224 to 256 pixels) is assigned as an
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Fig. 7.3 Qualitative results of the only-vision approach. The output regression vector contains
the predicted relevant traffic lights for the ego-vehicle lane. The target regression
vector contains the ground truth. The matching vector contains all (relevant and
non-relevant) traffic lights.

FP. In sequence 38, the traffic light on the left side (at vector length 0 to 32 pixels) is
assigned as an FN.

7.5 Only-Vision and Only-Metadata Approach Composition

In this section, a composition of the only-vision and only-metadata approach was made.
The idea was that the only-metadata approach uses the output of the only-vision
approach as additional input.

94



7.5 Only-Vision and Only-Metadata Approach Composition

Conversion and 
Harmonisation

In
d

ic
a

ti
o

n
 V

ec
.

A
N

N

Tr
a

ff
ic

 L
ig

h
t 

R
el

ev
a

n
t 

O
u

tp
u

tMetadata Input

C
N

N

Im
a

g
e 

In
p

u
t

Fe
a

tu
re

 V
ec

to
r 

In
p

u
t

Fig. 7.4 Composition of the only-vision and only-metadata approaches. The feature vector
input for the only-metadata approach is extended by one additional feature. This
additional feature is the binary encoded traffic light relevant results of the only-vision
approach.

Figure 7.4 explains the composition of both approaches by means of conversion and
harmonisation of their input and output data. The only-vision approach and the only-
metadata approach are executed as described in subsections 4.4.2 and 4.4.3. In addition,
the feature vector input is extended by the traffic light relevant results of the only-vision
approach after post-processing, cf. subsection 3.3.3. The traffic light relevant results
are encoded as a binary feature: a one for a relevant and a zero for a non-relevant
traffic light. Thus, the resulting feature vector input for the ANN of the only-metadata
approach has 32 instead of 31 features, cf. table 7.1.
Table 7.2 displays the results of the approach composition as well as the results for

every single approach taken from table 4.4 and figure 4.9 of the IEEE RA-L paper with
the complex test dataset. The approach composition results can be understood as a
maximum function between the only-vision and only-metadata approaches. This can

Tab. 7.2 Results of the only-vision and only-metadata approach composition for the complex
test dataset.

Approach Mean Metrics Accuracy over Distances d
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d
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d
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15

Composition1 87.5 % 83.0 % 82.4 % 80.2 % 84.1 % 85.2 % 89.0 % 90.6 % 91.0 %
Only-Vision1 86.4 % 82.7 % 82.1 % 73.6 % 83.0 % 85.1 % 88.9 % 90.4 % 90.6 %
Only-Metadata1 86.3 % 77.2 % 82.0 % 79.5 % 85.8 % 85.0 % 87.8 % 88.1 % 85.7 %
1The minimum 90 % confidence interval for all accuracy over distance results is ±0.6 %.
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be seen by using the accuracy over distance evaluation in table 7.2. The only-vision
approach already outperforms the only-metadata approach for most distances to the
top line. One exception is that the only-metadata approach achieves an accuracy that
is +2.8 % greater in the distance range between 60 m and 75 m.

In conclusion, the composition of these two approaches achieves a 1.1 % better mean
accuracy than the only-vision approach, but the results do not match those of the
deep metadata fusion approach with a mean accuracy of 89.3 %, cf. table 4.4. Thus,
this composition of both approaches is not an alternative to the deep metadata fusion
approach proposed in chapter 4.

7.6 Error Analysis of Different IEEE RA-L Paper Approaches

In this section, an error analysis is performed for the proposed deep metadata fusion
approach as well as for the other approaches that were used for comparison in the IEEE
RA-L paper.
Figure 7.5 shows the error overlaps of the only-metadata, only-vision, and deep

metadata fusion approaches. The areas of the circles visualise the mean accuracy error
for each approach. Error quantities39 are taken from table 4.4 for the full test dataset.
Error overlaps between the three approaches are calculated by comparing the single test
frame results with each other.
The accuracy error overlap between the only-metadata and only-vision approach

is 6.7 % and the accuracy error overlap between all three approaches is 5.0 %. The
only-vision and deep metadata fusion approach have the highest error overlap. There
are 0.2 % accuracy errors of the only-vision approach outside of the deep metadata
fusion approach error quantity, see figure 7.5.
In conclusion, 5.0 % of full test dataset frames are generated with accuracy errors

by all approaches. This means that these test frames have at least one TN or FN
relevant traffic light. Moreover, the three rule-based approaches are not analysed in
detail because they are exclusively measurable in the precision metric. The TNs of these
three rule-based approaches are superimposed with the only-metadata, only-vision, and
deep metadata fusion approach error quantities. Furthermore, the error quantities of
the human performance measured in the (second40) subjective test are also not analysed
because they are based on a random sample of the full test dataset. However, it was
found that each single test frame of the subjective test was assessed correctly by at least
one subject.

39Error quantities are calculated by 100 % minus the mean accuracy results.
40This subjective test is described in subsection 4.4.4 in the IEEE RA-L paper, cf. chapter 4.
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Fig. 7.5 Intersection diagram of the error overlap in the accuracy metric for the only-metadata,
only-vision, and deep metadata fusion approaches with the full test dataset. The highest
error overlap is exhibited by the only-vision and deep metadata fusion approach. All
three approaches have a joint overlap of 5.0 % accuracy errors.

7.7 Experimental Results of the Sequence Approach

In this section, all simulation results of the LSTM layer extension for the only-vision
and deep metadata fusion approaches are listed, cf. subsection 4.7.3.
Tables 7.3, 7.4, 7.5, and 7.6 represent the mean accuracy, precision, and F1score as

well as the accuracy results regarding the distance to the stop line for each simulation.
In total, 45 simulation were run (5 repetitions, 3 integration positions, and 3 iteration
cycles) for each approach (only-vision and deep metadata fusion approach) and dataset
(complex and full dataset).

The results in tables 7.3 and 7.5 show that the deep metadata fusion approach is
unresponsive to all LSTM layer extensions regarding the integration positions and
iteration cycles. The results are quite constant with ±0.45 % mean accuracy, ±0.95 %
mean precision, and ±0.6 % mean F1score (maximum-minimum difference between No. 6
and No. 35 in table 7.3) for the full dataset. For the complex dataset, the results are in
a similar value range with ±1.5 % mean accuracy, ±0.95 % mean precision, and ±0.9 %
mean F1score (maximum-minimum difference between No. 10 and No. 23 in table 7.5).
However, it is conspicuous that an LSTM layer extension for the deep metadata fusion
approach achieves results of the highest accuracy with an integration position after the
Conv. 5 layer.
The LSTM layer extension results for the only-vision approach are displayed in
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tables 7.4 and 7.6. The mean metrics results are also constant, as already seen for the
deep metadata fusion approach using the full dataset. However, the only-vision approach
has a positive outlier in precision with +0.9 % (No. 26 in table 7.6) in comparison to
the approach without LSTM layer extension for the full dataset, cf. table 4.4. Moreover,
the LSTM layer extension for the only-vision approach achieves a reversal of the trend
that distances between 15 m to 30 m have a higher accuracy than distances under 15 m
for the full dataset, see No. 8, 9, 12, 14, and 15 in table 7.6. This is obtained with an
LSTM layer integration position after the Conv. 5 in combination with five or seven
iteration cycles.
Results of high accuracy in the distance range (d < 15 m) are also apparent in the

LSTM layer extension for the only-vision approach with the complex dataset, see No. 12
and 21 with 95.5 % accuracy in table 7.4. In general, this also justifies the higher mean
accuracy results with the LSTM layer extension for the only-vision approach with the
complex dataset, cf. figure 4.11 in subsection 4.7.3.

Tab. 7.3 Detailed experimental results of all LSTM simulations with the deep metadata fusion
approach for the complex test dataset.
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1 Conv. 5 3 88.5 % 84.3 % 85.8 % 81.3 % 89.0 % 86.7 % 89.7 % 92.4 % 89.0 %
2 Conv. 5 3 88.7 % 84.5 % 86.0 % 82.0 % 89.1 % 87.3 % 89.1 % 92.4 % 91.6 %
3 Conv. 5 3 89.1 % 85.1 % 86.3 % 83.0 % 89.3 % 88.1 % 89.4 % 92.4 % 90.9 %
4 Conv. 5 3 89.0 % 85.1 % 86.3 % 81.1 % 89.1 % 88.2 % 90.3 % 92.6 % 89.0 %
5 Conv. 5 3 89.1 % 85.5 % 86.5 % 81.7 % 89.4 % 88.0 % 90.6 % 92.3 % 89.6 %
6 Conv. 5 5 89.2 % 85.2 % 86.7 % 82.2 % 89.0 % 88.6 % 90.1 % 92.7 % 89.0 %
7 Conv. 5 5 88.7 % 84.6 % 86.2 % 81.4 % 89.1 % 87.8 % 89.2 % 92.7 % 89.0 %
8 Conv. 5 5 88.8 % 84.4 % 86.1 % 81.1 % 89.3 % 87.2 % 89.7 % 92.6 % 90.9 %
9 Conv. 5 5 88.7 % 84.3 % 86.1 % 81.1 % 89.0 % 87.8 % 89.3 % 92.7 % 90.9 %
10 Conv. 5 5 89.0 % 85.0 % 86.4 % 81.6 % 89.3 % 88.2 % 89.3 % 92.9 % 91.6 %
11 Conv. 5 7 88.6 % 84.5 % 86.1 % 80.2 % 89.1 % 87.8 % 89.2 % 92.8 % 91.6 %
12 Conv. 5 7 88.5 % 84.3 % 85.9 % 81.0 % 88.9 % 88.0 % 88.7 % 92.6 % 90.3 %
13 Conv. 5 7 88.9 % 84.4 % 86.3 % 82.3 % 90.0 % 88.0 % 88.9 % 92.7 % 89.6 %
14 Conv. 5 7 88.8 % 84.7 % 86.2 % 79.3 % 89.7 % 88.3 % 89.8 % 92.3 % 92.2 %
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15 Conv. 5 7 88.7 % 84.1 % 86.0 % 81.8 % 89.4 % 88.1 % 89.2 % 91.8 % 90.3 %
16 FC. 1 3 88.8 % 84.1 % 86.2 % 81.8 % 89.4 % 88.2 % 89.6 % 91.8 % 91.6 %
17 FC. 1 3 88.6 % 83.9 % 85.9 % 81.0 % 89.9 % 88.2 % 89.2 % 91.8 % 91.6 %
18 FC. 1 3 88.6 % 83.7 % 85.8 % 81.3 % 89.4 % 87.6 % 89.4 % 91.7 % 91.6 %
19 FC. 1 3 88.7 % 83.4 % 85.9 % 81.1 % 89.6 % 88.0 % 89.2 % 92.0 % 91.6 %
20 FC. 1 3 89.0 % 84.2 % 86.3 % 81.7 % 90.3 % 88.0 % 89.6 % 92.2 % 91.6 %
21 FC. 1 5 88.7 % 84.0 % 86.0 % 82.5 % 90.0 % 87.8 % 89.3 % 91.1 % 91.6 %
22 FC. 1 5 88.8 % 83.8 % 86.0 % 81.0 % 90.2 % 87.8 % 89.4 % 92.0 % 91.6 %
23 FC. 1 5 88.9 % 84.0 % 86.2 % 81.6 % 89.9 % 88.0 % 89.5 % 92.1 % 91.6 %
24 FC. 1 5 88.6 % 83.6 % 85.9 % 81.7 % 89.7 % 88.2 % 89.2 % 91.4 % 91.6 %
25 FC. 1 5 88.9 % 84.1 % 86.2 % 81.8 % 89.9 % 88.5 % 89.5 % 91.5 % 91.6 %
26 FC. 1 7 88.8 % 84.0 % 86.2 % 81.4 % 90.4 % 88.2 % 89.1 % 91.8 % 91.6 %
27 FC. 1 7 88.6 % 83.7 % 85.9 % 81.8 % 89.9 % 87.8 % 88.9 % 91.8 % 91.6 %
28 FC. 1 7 88.6 % 83.9 % 85.9 % 82.2 % 89.7 % 87.8 % 89.0 % 91.3 % 91.6 %
29 FC. 1 7 89.2 % 84.5 % 86.6 % 81.8 % 90.2 % 88.8 % 89.6 % 92.4 % 91.6 %
30 FC. 1 7 88.5 % 83.4 % 85.7 % 81.2 % 88.9 % 87.4 % 89.2 % 91.9 % 92.2 %
31 FC. 2 3 88.6 % 83.6 % 85.9 % 81.4 % 89.3 % 87.6 % 89.2 % 91.9 % 91.6 %
32 FC. 2 3 88.8 % 84.0 % 86.1 % 81.3 % 90.2 % 88.5 % 89.2 % 91.6 % 91.6 %
33 FC. 2 3 88.9 % 84.2 % 86.1 % 81.3 % 89.9 % 88.1 % 89.5 % 92.1 % 91.6 %
34 FC. 2 3 88.9 % 84.0 % 86.2 % 81.2 % 89.6 % 87.9 % 89.7 % 92.4 % 91.6 %
35 FC. 2 3 88.3 % 83.4 % 85.5 % 79.8 % 89.7 % 87.5 % 89.3 % 91.7 % 91.6 %
36 FC. 2 5 88.4 % 83.3 % 85.6 % 80.8 % 89.3 % 87.4 % 89.2 % 91.7 % 91.6 %
37 FC. 2 5 88.8 % 83.9 % 86.1 % 81.3 % 90.2 % 87.9 % 89.4 % 92.0 % 91.6 %
38 FC. 2 5 88.9 % 83.9 % 86.3 % 81.7 % 89.9 % 88.0 % 89.4 % 92.2 % 92.2 %
39 FC. 2 5 88.9 % 84.1 % 86.3 % 81.8 % 90.0 % 88.5 % 89.0 % 92.3 % 91.6 %
40 FC. 2 5 88.8 % 83.7 % 86.0 % 82.3 % 89.7 % 87.8 % 89.4 % 91.7 % 91.6 %
41 FC. 2 7 89.1 % 84.4 % 86.6 % 81.8 % 90.2 % 88.3 % 89.5 % 92.6 % 91.6 %
42 FC. 2 7 88.6 % 83.2 % 85.8 % 81.9 % 89.4 % 87.4 % 88.9 % 92.1 % 90.9 %
43 FC. 2 7 89.0 % 84.1 % 86.3 % 81.4 % 90.4 % 88.2 % 89.3 % 92.4 % 91.6 %
44 FC. 2 7 88.5 % 83.4 % 85.8 % 82.2 % 89.1 % 87.9 % 88.8 % 91.7 % 91.6 %
45 FC. 2 7 88.8 % 84.0 % 86.0 % 82.0 % 89.6 % 87.9 % 88.9 % 92.3 % 92.2 %
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Tab. 7.4 Detailed experimental results of all LSTM simulations with the only-vision approach
for the complex test dataset.
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1 Conv. 5 3 85.7 % 82.8 % 82.0 % 71.5 % 82.9 % 86.1 % 89.5 % 89.7 % 89.0 %
2 Conv. 5 3 86.0 % 83.8 % 82.4 % 73.8 % 83.2 % 86.7 % 89.4 % 88.6 % 94.2 %
3 Conv. 5 3 86.1 % 84.2 % 82.6 % 74.3 % 82.6 % 86.3 % 89.2 % 89.6 % 93.5 %
4 Conv. 5 3 86.1 % 83.7 % 82.4 % 73.7 % 83.5 % 86.4 % 89.9 % 89.1 % 89.6 %
5 Conv. 5 3 86.2 % 83.8 % 82.8 % 71.5 % 83.8 % 86.4 % 90.1 % 90.4 % 90.3 %
6 Conv. 5 5 86.4 % 84.4 % 83.2 % 74.7 % 82.9 % 86.9 % 89.6 % 89.5 % 92.9 %
7 Conv. 5 5 86.5 % 84.4 % 83.3 % 75.9 % 84.2 % 86.6 % 89.8 % 89.0 % 92.9 %
8 Conv. 5 5 86.5 % 84.4 % 83.3 % 76.0 % 82.8 % 86.7 % 90.0 % 89.5 % 89.6 %
9 Conv. 5 5 86.2 % 84.1 % 83.0 % 73.7 % 83.1 % 86.6 % 89.9 % 89.1 % 92.9 %
10 Conv. 5 5 86.7 % 85.2 % 83.7 % 76.3 % 84.4 % 87.5 % 89.7 % 89.0 % 92.2 %
11 Conv. 5 7 86.5 % 84.1 % 83.4 % 74.4 % 83.5 % 86.3 % 89.9 % 89.8 % 94.2 %
12 Conv. 5 7 85.7 % 83.1 % 82.5 % 74.5 % 82.9 % 85.6 % 88.5 % 88.9 % 95.5 %
13 Conv. 5 7 86.3 % 84.1 % 83.3 % 74.7 % 82.6 % 86.2 % 89.8 % 89.9 % 92.9 %
14 Conv. 5 7 85.6 % 83.1 % 82.3 % 72.5 % 82.5 % 85.4 % 89.4 % 89.6 % 89.6 %
15 Conv. 5 7 86.5 % 84.2 % 83.4 % 75.8 % 83.6 % 86.7 % 89.6 % 89.0 % 93.5 %
16 FC. 1 3 86.1 % 83.0 % 82.9 % 73.7 % 82.3 % 85.5 % 90.1 % 89.6 % 94.2 %
17 FC. 1 3 86.1 % 83.2 % 82.8 % 74.0 % 83.2 % 85.6 % 90.0 % 89.6 % 89.6 %
18 FC. 1 3 85.8 % 82.8 % 82.5 % 72.9 % 82.8 % 86.0 % 89.6 % 89.3 % 89.6 %
19 FC. 1 3 85.5 % 82.7 % 82.2 % 72.6 % 81.0 % 85.1 % 89.6 % 89.3 % 94.2 %
20 FC. 1 3 86.2 % 83.4 % 83.0 % 74.7 % 83.1 % 86.2 % 89.6 % 89.4 % 94.2 %
21 FC. 1 5 86.1 % 83.3 % 82.8 % 74.0 % 82.5 % 86.2 % 90.0 % 88.9 % 95.5 %
22 FC. 1 5 85.4 % 82.5 % 81.9 % 72.1 % 81.2 % 85.5 % 89.4 % 89.0 % 94.8 %
23 FC. 1 5 85.3 % 82.2 % 81.9 % 72.9 % 82.5 % 85.9 % 89.4 % 87.9 % 89.6 %
24 FC. 1 5 85.8 % 82.8 % 82.6 % 73.9 % 81.8 % 86.0 % 89.8 % 88.7 % 94.2 %
25 FC. 1 5 86.2 % 83.0 % 83.0 % 74.6 % 82.8 % 86.6 % 89.7 % 89.3 % 89.6 %
26 FC. 1 7 85.5 % 82.7 % 82.3 % 72.8 % 82.5 % 86.4 % 89.0 % 88.7 % 89.6 %
27 FC. 1 7 85.9 % 82.9 % 82.7 % 73.3 % 83.5 % 86.3 % 89.4 % 88.9 % 94.2 %
28 FC. 1 7 85.6 % 82.5 % 82.2 % 73.1 % 80.9 % 86.2 % 89.3 % 89.0 % 95.5 %
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29 FC. 1 7 86.0 % 83.4 % 82.9 % 74.7 % 83.1 % 86.3 % 89.4 % 88.7 % 94.8 %
30 FC. 1 7 85.7 % 82.5 % 82.5 % 72.9 % 81.5 % 86.0 % 89.8 % 88.7 % 94.8 %
31 FC. 2 3 86.0 % 83.0 % 82.8 % 73.8 % 82.8 % 85.3 % 90.2 % 89.2 % 94.2 %
32 FC. 2 3 85.6 % 82.5 % 82.4 % 72.6 % 82.6 % 84.9 % 89.7 % 89.0 % 94.8 %
33 FC. 2 3 85.6 % 82.4 % 82.4 % 74.0 % 81.9 % 85.7 % 89.2 % 89.1 % 90.3 %
34 FC. 2 3 86.2 % 83.3 % 83.0 % 73.1 % 82.3 % 86.4 % 90.0 % 89.8 % 94.2 %
35 FC. 2 3 86.1 % 83.6 % 83.0 % 74.5 % 82.2 % 86.2 % 90.0 % 88.9 % 94.2 %
36 FC. 2 5 85.8 % 82.8 % 82.5 % 72.7 % 81.9 % 85.9 % 89.8 % 89.6 % 89.6 %
37 FC. 2 5 85.6 % 82.4 % 82.3 % 73.7 % 82.8 % 85.1 % 89.1 % 88.9 % 94.2 %
38 FC. 2 5 86.4 % 83.7 % 83.2 % 74.6 % 82.6 % 86.4 % 90.0 % 89.5 % 96.1 %
39 FC. 2 5 85.6 % 82.5 % 82.4 % 73.1 % 82.2 % 85.8 % 89.4 % 88.7 % 94.2 %
40 FC. 2 5 85.6 % 82.5 % 82.3 % 72.9 % 82.6 % 85.8 % 89.2 % 89.1 % 90.9 %
41 FC. 2 7 86.5 % 83.8 % 83.4 % 73.8 % 83.2 % 87.1 % 90.1 % 89.6 % 94.8 %
42 FC. 2 7 86.2 % 83.3 % 83.0 % 74.0 % 83.1 % 86.7 % 89.6 % 89.0 % 95.5 %
43 FC. 2 7 86.0 % 83.3 % 82.9 % 73.5 % 82.6 % 87.8 % 89.3 % 88.4 % 94.2 %
44 FC. 2 7 85.7 % 82.8 % 82.5 % 73.1 % 81.5 % 86.5 % 89.5 % 88.7 % 94.8 %
45 FC. 2 7 85.9 % 82.9 % 82.7 % 74.4 % 82.8 % 86.1 % 89.5 % 88.7 % 94.2 %

Tab. 7.5 Detailed experimental results of all LSTM simulations with the deep metadata fusion
approach for the full test dataset.
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1 Conv. 5 3 93.7 % 93.1 % 93.9 % 88.9 % 91.5 % 93.4 % 95.2 % 96.7 % 95.6 %
2 Conv. 5 3 93.7 % 93.1 % 93.9 % 89.0 % 91.4 % 93.2 % 95.3 % 96.7 % 95.2 %
3 Conv. 5 3 93.5 % 93.0 % 93.8 % 88.6 % 90.9 % 93.7 % 95.0 % 96.6 % 95.6 %
4 Conv. 5 3 93.7 % 93.1 % 93.9 % 89.0 % 91.8 % 93.2 % 95.3 % 96.5 % 95.2 %
5 Conv. 5 3 93.8 % 93.2 % 94.0 % 89.1 % 91.8 % 93.3 % 95.4 % 96.5 % 95.6 %
6 Conv. 5 5 94.3 % 93.6 % 94.5 % 90.4 % 91.8 % 94.3 % 95.7 % 96.7 % 95.6 %
7 Conv. 5 5 93.9 % 93.3 % 94.1 % 89.5 % 92.1 % 93.1 % 95.3 % 96.9 % 95.8 %
8 Conv. 5 5 93.8 % 93.3 % 94.1 % 89.1 % 91.9 % 93.8 % 95.1 % 96.7 % 95.6 %
9 Conv. 5 5 93.7 % 92.9 % 94.0 % 88.5 % 91.3 % 93.8 % 95.6 % 96.7 % 95.2 %
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10 Conv. 5 5 93.8 % 93.1 % 94.0 % 88.5 % 91.8 % 93.8 % 95.4 % 96.6 % 95.4 %
11 Conv. 5 7 93.5 % 93.0 % 93.8 % 88.9 % 91.6 % 93.0 % 95.0 % 96.5 % 95.4 %
12 Conv. 5 7 93.9 % 93.3 % 94.1 % 89.8 % 91.5 % 93.8 % 95.0 % 96.8 % 95.8 %
13 Conv. 5 7 94.2 % 93.6 % 94.4 % 90.3 % 91.8 % 93.9 % 95.9 % 96.6 % 95.4 %
14 Conv. 5 7 94.0 % 93.3 % 94.2 % 89.9 % 91.2 % 93.7 % 95.6 % 96.7 % 95.4 %
15 Conv. 5 7 94.0 % 93.5 % 94.3 % 90.3 % 91.8 % 93.7 % 95.3 % 96.7 % 95.2 %
16 FC. 1 3 94.0 % 93.4 % 94.2 % 89.8 % 91.8 % 93.9 % 95.2 % 96.7 % 95.8 %
17 FC. 1 3 93.7 % 93.0 % 93.9 % 88.8 % 91.8 % 93.3 % 95.1 % 96.7 % 95.6 %
18 FC. 1 3 93.6 % 93.0 % 93.9 % 89.1 % 91.2 % 93.2 % 95.0 % 96.8 % 95.6 %
19 FC. 1 3 93.9 % 93.3 % 94.1 % 89.6 % 92.0 % 93.2 % 95.4 % 96.8 % 95.6 %
20 FC. 1 3 93.9 % 93.4 % 94.1 % 89.7 % 91.3 % 93.6 % 95.4 % 96.8 % 95.8 %
21 FC. 1 5 94.1 % 93.5 % 94.4 % 90.1 % 91.8 % 93.7 % 95.6 % 96.8 % 95.8 %
22 FC. 1 5 93.8 % 93.1 % 94.0 % 89.0 % 91.4 % 93.6 % 95.3 % 96.8 % 95.6 %
23 FC. 1 5 94.0 % 93.4 % 94.2 % 89.9 % 92.2 % 93.3 % 95.1 % 96.9 % 95.8 %
24 FC. 1 5 94.0 % 93.4 % 94.2 % 89.8 % 91.6 % 93.8 % 95.4 % 96.8 % 95.8 %
25 FC. 1 5 94.0 % 93.4 % 94.2 % 89.6 % 91.3 % 93.9 % 95.5 % 96.8 % 95.6 %
26 FC. 1 7 94.3 % 93.6 % 94.6 % 90.3 % 92.2 % 94.3 % 95.4 % 97.0 % 96.0 %
27 FC. 1 7 94.3 % 93.6 % 94.6 % 90.3 % 92.0 % 94.3 % 95.7 % 96.9 % 95.8 %
28 FC. 1 7 94.1 % 93.4 % 94.4 % 89.9 % 91.9 % 93.9 % 95.3 % 97.0 % 95.8 %
29 FC. 1 7 94.4 % 93.7 % 94.6 % 90.2 % 92.4 % 94.4 % 95.7 % 97.0 % 96.0 %
30 FC. 1 7 94.2 % 93.6 % 94.5 % 89.7 % 91.9 % 94.5 % 95.5 % 97.0 % 95.8 %
31 FC. 2 3 93.6 % 93.0 % 93.8 % 88.9 % 91.6 % 92.8 % 95.0 % 96.7 % 95.6 %
32 FC. 2 3 93.7 % 93.0 % 93.9 % 88.6 % 91.2 % 93.3 % 95.4 % 96.8 % 95.6 %
33 FC. 2 3 94.0 % 93.4 % 94.3 % 89.5 % 92.1 % 93.9 % 95.4 % 96.9 % 95.6 %
34 FC. 2 3 93.6 % 93.0 % 93.9 % 89.1 % 91.4 % 93.0 % 95.2 % 96.7 % 95.6 %
35 FC. 2 3 93.8 % 93.2 % 94.1 % 89.3 % 91.5 % 93.6 % 95.1 % 96.8 % 95.6 %
36 FC. 2 5 94.0 % 93.3 % 94.2 % 89.3 % 91.8 % 93.8 % 95.4 % 96.9 % 95.6 %
37 FC. 2 5 94.0 % 93.5 % 94.2 % 90.0 % 91.6 % 93.6 % 95.3 % 96.9 % 95.8 %
38 FC. 2 5 94.1 % 93.5 % 94.4 % 90.0 % 92.2 % 93.7 % 95.3 % 97.0 % 96.0 %
39 FC. 2 5 94.0 % 93.4 % 94.2 % 90.0 % 91.8 % 93.2 % 95.4 % 96.9 % 96.0 %
40 FC. 2 5 94.0 % 93.3 % 94.2 % 89.6 % 91.5 % 93.8 % 95.3 % 96.9 % 95.8 %
41 FC. 2 7 94.1 % 93.6 % 94.3 % 89.3 % 92.0 % 94.2 % 95.4 % 96.9 % 95.8 %
42 FC. 2 7 94.2 % 93.5 % 94.4 % 89.6 % 91.8 % 94.3 % 95.7 % 97.0 % 95.6 %
43 FC. 2 7 94.2 % 93.7 % 94.4 % 90.2 % 92.3 % 93.7 % 95.4 % 97.0 % 95.8 %
44 FC. 2 7 93.9 % 93.2 % 94.1 % 88.9 % 91.8 % 93.7 % 95.4 % 96.9 % 95.8 %
45 FC. 2 7 94.4 % 93.8 % 94.7 % 90.9 % 92.6 % 94.0 % 95.5 % 96.9 % 95.8 %
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Tab. 7.6 Detailed experimental results of all LSTM simulations with the only-vision approach
for the full test dataset.

Mean Metrics Accuracy over Distances d
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1 Conv. 5 3 91.5 % 92.0 % 93.4 % 87.4 % 90.4 % 92.8 % 95.1 % 95.8 % 95.2 %
2 Conv. 5 3 91.6 % 92.5 % 93.6 % 87.5 % 91.5 % 92.9 % 95.2 % 95.9 % 95.8 %
3 Conv. 5 3 91.4 % 92.1 % 93.2 % 86.5 % 91.0 % 92.7 % 94.9 % 95.7 % 95.6 %
4 Conv. 5 3 91.4 % 91.9 % 93.1 % 86.9 % 90.3 % 92.5 % 94.8 % 95.7 % 95.4 %
5 Conv. 5 3 91.5 % 92.2 % 93.5 % 87.3 % 91.1 % 93.0 % 95.0 % 96.2 % 94.3 %
6 Conv. 5 5 91.4 % 92.1 % 93.4 % 86.8 % 91.8 % 93.3 % 94.7 % 95.5 % 95.2 %
7 Conv. 5 5 91.4 % 92.0 % 93.4 % 87.2 % 90.7 % 93.3 % 95.0 % 95.6 % 94.1 %
8 Conv. 5 5 91.4 % 92.0 % 93.2 % 87.3 % 90.9 % 92.2 % 95.0 % 95.4 % 95.6 %
9 Conv. 5 5 91.5 % 92.3 % 93.4 % 87.2 % 91.0 % 93.0 % 94.6 % 95.9 % 96.0 %
10 Conv. 5 5 91.0 % 91.5 % 92.9 % 86.0 % 89.6 % 92.7 % 94.7 % 95.5 % 95.2 %
11 Conv. 5 7 91.3 % 92.0 % 93.2 % 86.8 % 90.9 % 92.3 % 95.0 % 95.5 % 95.4 %
12 Conv. 5 7 91.4 % 92.1 % 93.5 % 87.8 % 90.9 % 92.9 % 94.7 % 95.6 % 95.8 %
13 Conv. 5 7 91.2 % 92.1 % 93.3 % 86.6 % 91.2 % 93.1 % 94.8 % 95.7 % 95.0 %
14 Conv. 5 7 91.5 % 92.3 % 93.5 % 87.8 % 91.1 % 93.7 % 94.8 % 95.3 % 95.6 %
15 Conv. 5 7 91.3 % 92.0 % 93.3 % 87.8 % 90.7 % 92.8 % 94.6 % 95.2 % 95.4 %
16 FC. 1 3 91.4 % 92.0 % 93.2 % 87.9 % 91.2 % 92.9 % 94.2 % 95.6 % 94.3 %
17 FC. 1 3 91.5 % 92.3 % 93.4 % 87.5 % 91.5 % 93.3 % 94.5 % 96.0 % 94.5 %
18 FC. 1 3 91.6 % 92.4 % 93.5 % 88.5 % 91.2 % 93.0 % 94.6 % 96.0 % 94.3 %
19 FC. 1 3 91.5 % 92.4 % 93.4 % 87.7 % 91.4 % 93.2 % 94.4 % 95.9 % 95.2 %
20 FC. 1 3 91.6 % 92.4 % 93.5 % 87.7 % 91.4 % 93.5 % 94.9 % 95.6 % 94.5 %
21 FC. 1 5 91.8 % 92.5 % 93.7 % 88.4 % 91.8 % 93.5 % 94.9 % 95.8 % 94.5 %
22 FC. 1 5 91.6 % 92.6 % 93.8 % 88.1 % 92.1 % 93.2 % 95.1 % 96.0 % 95.2 %
23 FC. 1 5 91.5 % 92.2 % 93.4 % 87.9 % 91.8 % 93.3 % 94.6 % 95.2 % 94.5 %
24 FC. 1 5 91.7 % 92.6 % 93.8 % 88.5 % 91.9 % 93.7 % 95.1 % 95.6 % 94.5 %
25 FC. 1 5 91.4 % 92.0 % 93.3 % 87.7 % 91.9 % 93.1 % 94.5 % 95.3 % 94.3 %
26 FC. 1 7 91.9 % 92.8 % 94.0 % 89.3 % 92.2 % 93.6 % 95.0 % 96.1 % 94.5 %
27 FC. 1 7 91.8 % 92.6 % 93.7 % 89.4 % 91.5 % 93.2 % 95.0 % 95.4 % 94.7 %
28 FC. 1 7 91.7 % 92.6 % 93.9 % 88.4 % 92.1 % 93.5 % 95.3 % 96.0 % 94.5 %
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29 FC. 1 7 91.6 % 92.4 % 93.6 % 88.1 % 92.1 % 93.2 % 94.8 % 95.7 % 94.3 %
30 FC. 1 7 91.6 % 92.3 % 93.5 % 88.7 % 91.8 % 93.3 % 94.6 % 95.1 % 94.3 %
31 FC. 2 3 91.4 % 92.2 % 93.3 % 87.4 % 91.2 % 92.6 % 94.7 % 96.0 % 94.5 %
32 FC. 2 3 91.6 % 92.3 % 93.5 % 88.3 % 91.2 % 93.1 % 94.7 % 95.7 % 94.5 %
33 FC. 2 3 91.6 % 92.5 % 93.6 % 88.0 % 91.3 % 93.2 % 94.9 % 96.0 % 95.4 %
34 FC. 2 3 91.5 % 92.4 % 93.5 % 88.1 % 91.2 % 93.1 % 94.8 % 95.9 % 94.1 %
35 FC. 2 3 91.8 % 92.7 % 93.8 % 88.1 % 91.8 % 93.5 % 95.2 % 96.2 % 94.5 %
36 FC. 2 5 91.7 % 92.4 % 93.6 % 88.0 % 91.8 % 93.0 % 95.0 % 96.0 % 94.3 %
37 FC. 2 5 91.5 % 92.3 % 93.5 % 87.7 % 91.5 % 93.0 % 94.6 % 95.9 % 95.2 %
38 FC. 2 5 91.5 % 92.2 % 93.4 % 87.1 % 91.6 % 93.6 % 94.9 % 95.4 % 94.3 %
39 FC. 2 5 91.7 % 92.6 % 93.7 % 88.1 % 91.2 % 93.4 % 94.8 % 96.3 % 95.4 %
40 FC. 2 5 91.5 % 92.0 % 93.3 % 88.6 % 91.5 % 92.9 % 94.5 % 95.0 % 94.3 %
41 FC. 2 7 91.6 % 92.2 % 93.5 % 88.5 % 91.8 % 92.7 % 94.7 % 95.4 % 94.3 %
42 FC. 2 7 91.7 % 92.4 % 93.6 % 88.6 % 92.1 % 93.3 % 94.7 % 95.6 % 94.3 %
43 FC. 2 7 91.4 % 92.1 % 93.3 % 86.7 % 91.5 % 92.6 % 94.9 % 95.9 % 94.3 %
44 FC. 2 7 91.6 % 92.1 % 93.4 % 87.7 % 91.6 % 93.3 % 94.7 % 95.3 % 94.3 %
45 FC. 2 7 91.5 % 92.2 % 93.4 % 87.6 % 92.1 % 92.8 % 94.6 % 95.7 % 94.3 %

7.8 Program Code of the Deep Metadata Fusion Approach

In this section, the program code of the deep metadata fusion approach is explained for
the proposed approach configuration.
Listing 7.1 displays the deep metadata fusion approach implementation for convo-

lutional layer two as fusion layer. It uses the proposed CNN topology similar to the
AlexNet one. The code is written in python version 2.7 by using the Keras [43] framework
version 2.1.2 together with TensorFlow [80] version 1.4.0. Each line is commented in
detail. In general, the program code is structured as follows: The data load is briefly
specified in lines 21 to line 31. The CNN implementation is contained in lines 38 up
to 126. The actual deep fusion code is written from lines 68 to 94. The training and
testing of the deep metadata fusion approach is coded from line 131 to the end.

1 # import − o p e r a t i o n system , keras , and t e n s o r f l o w frameworks
2 import os
3 import numpy as np
4 import k e r a s
5 import t e n s o r f l o w as t f
6 from k e r a s . l a y e r s . c o r e import Dense , Dropout , Act ivat i on , Flatten , Reshape
7 from k e r a s . l a y e r s . c o n v o l u t i o n a l import Conv2D , UpSampling2D
8 from k e r a s . l a y e r s . p o o l i n g import MaxPooling2D , GlobalAveragePooling2D ,

GlobalAveragePooling1D
9 from k e r a s . l a y e r s import Input , BatchNormalization
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10 from k e r a s . models import Model
11 from k e r a s . o p t i m i z e r s import SGD
12
13 # d e f i n e − r o o t mean squared e r r o r m e t r i c f u n c t i o n
14 d e f pred_rmse ( y_true , y_pred ) :
15 r e t u r n K. s q r t (K. mean ( ( y_pred − y_true ) ∗∗ 2) )
16
17 # s e t − g l o b a l input parameters
18 image_size = 256
19 mfm_size = 64
20
21 # read − t r a i n i n g images and metadata f e a t u r e maps and s t o r e them i n #numpy a r r a y s
22 #image_train = [ . . . ]
23 #v e c t o r _ t r a i n = [ . . . ]
24 #mfm_train_1 to mfm_train_12 = [ . . . ]
25 #mfm_train_default = [ . . . ]
26
27 # read − t e s t images and metadata f e a t u r e maps and s t o r e them i n numpy #a r r a y s
28 #image_test = [ . . . ]
29 #v e c t o r _ t e s t = [ . . . ]
30 #mfm_test_1 to mfm_test_12 = [ . . . ]
31 #mfm_test_default = [ . . . ]
32
33 # s e t − t e n s o r f l o w s e s s i o n s e t t i n g s
34 os . e n v i r o n [ "CUDA_VISIBLE_DEVICES" ]= " 0 "
35 K. c l e a r _ s e s s i o n ( )
36 K. s e t _ f l o a t x ( ’ f l o a t 3 2 ’ )
37
38 # f u s i o n l a y e r input − metadata f e a t u r e maps
39 mfm_input_1 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
40 mfm_input_2 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
41 mfm_input_3 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
42 mfm_input_4 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
43 mfm_input_5 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
44 mfm_input_6 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
45 mfm_input_7 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
46 mfm_input_8 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
47 mfm_input_9 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
48 mfm_input_10 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
49 mfm_input_11 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
50 mfm_input_12 = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
51
52 # f u s i o n l a y e r input − d e f a u l t metdata f e a t u r e map d f l t
53 mfm_dflt = Input ( shape=(mfm_size , mfm_size , 1 , ) , dtype= ’ f l o a t 3 2 ’ )
54
55 # image l a y e r input − images
56 img_input = Input ( shape=(image_size , image_size , 3 , ) , dtype= ’ f l o a t 3 2 ’ ) # input_1
57
58 # c r e a t e − c o n v o l u t i o n a l n e u r a l network model
59 cnn = Conv2D ( 1 6 , ( 3 , 3) , padding= ’ same ’ , a c t i v a t i o n= ’ r e l u ’ ) ( img_input ) # conv_1
60 cnn = BatchNormalization ( ) ( cnn ) # batch_1
61 cnn = MaxPooling2D ( p o o l _ s i z e =(2 , 2) , s t r i d e s =2, padding= ’ same ’ ) ( cnn ) # pool_1
62
63 cnn = Conv2D ( 3 2 , ( 3 , 3) , padding= ’ same ’ , a c t i v a t i o n= ’ r e l u ’ ) ( cnn ) # conv_2
64 cnn = BatchNormalization ( ) ( cnn ) # batch_2
65 conv_out = MaxPooling2D ( p o o l _ s i z e =(2 , 2) , s t r i d e s =2, padding= ’ same ’ ) ( cnn )# pool_2
66
67 # c a l c u l a t e − a d a p t i v e w e i g h t i n g g l o b a l average
68 temp_ga = GlobalAveragePooling2D ( ) ( conv_out ) # shape

( − ,64 ,64 ,32)
69 temp_ga = Reshape ( ( 3 2 , 1) ) ( temp_ga ) # shape ( − ,32 ,1)
70 f i n a l _ g a = GlobalAveragePooling1D ( ) ( temp_ga ) # shape ( − ,1)
71
72 # g e n e r a t e − a d a p t i v e w e i g h t i n g g l o b a l average f e a t u r e map
73 temp_ga_fm = Reshape ( ( 1 , 1 , 1) ) ( f i n a l _ g a ) # shape ( − ,1 ,1 ,1)
74 final_ga_fm = UpSampling2D ( s i z e =(mfm_size , mfm_size ) ) ( temp_ga_fm ) # shape

( − ,64 ,64 ,1)
75
76 # weight − m u l t i p l y each metadata f e a t u r e map with the g l o b a l average f e a t u r e map
77 aw_mfm_1 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_1 , final_ga_fm ] )
78 aw_mfm_2 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_2 , final_ga_fm ] )
79 aw_mfm_3 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_3 , final_ga_fm ] )
80 aw_mfm_4 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_4 , final_ga_fm ] )
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81 aw_mfm_5 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_5 , final_ga_fm ] )
82 aw_mfm_6 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_6 , final_ga_fm ] )
83 aw_mfm_7 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_7 , final_ga_fm ] )
84 aw_mfm_8 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_8 , final_ga_fm ] )
85 aw_mfm_9 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_9 , final_ga_fm ] )
86 aw_mfm_10 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_10 , final_ga_fm ] )
87 aw_mfm_11 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_11 , final_ga_fm ] )
88 aw_mfm_12 = k e r a s . l a y e r s . m u l t i p l y ( [ mfm_input_12 , final_ga_fm ] )
89
90 # b u l i d − metadata f e a t u r e map t e n s o r by use o f the d e f a u l t metedata f e a t u r e map
91 mfm_tensor = k e r a s . l a y e r s . c o n c a t e n a t e ( [ mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt ,

mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt ,
mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , mfm_dflt , aw_mfm_1,
aw_mfm_2, aw_mfm_3, aw_mfm_4, aw_mfm_5, aw_mfm_6, aw_mfm_7, aw_mfm_8, aw_mfm_9,
aw_mfm_10, aw_mfm_11, aw_mfm_12 ] ) # shape ( − ,64 ,64 ,32)

92
93 # element−wise product − metadata f e a t u r e map t e n s o r and " conv_out " t e n s o r with i d e n t i c a l

shapes
94 conv_mfm = k e r a s . l a y e r s . m u l t i p l y ( [ conv_out , mfm_tensor ] )
95
96 # c r e a t e − c o n v o l u t i o n a l n e u r a l network model
97 cnn = Conv2D ( 6 4 , ( 3 , 3) , padding= ’ same ’ , a c t i v a t i o n= ’ r e l u ’ ) (conv_mfm) # conv_3
98 cnn = BatchNormalization ( ) ( cnn ) # batch_3
99 cnn = MaxPooling2D ( p o o l _ s i z e =(2 , 2) , s t r i d e s =2, padding= ’ same ’ ) ( cnn ) # pool_3

100
101 cnn = Conv2D ( 1 2 8 , ( 3 , 3) , padding= ’ same ’ , a c t i v a t i o n= ’ r e l u ’ ) ( cnn ) # conv_4
102 cnn = BatchNormalization ( ) ( cnn ) # batch_4
103 cnn = MaxPooling2D ( p o o l _ s i z e =(2 , 2) , s t r i d e s =2, padding= ’ same ’ ) ( cnn ) # pool_4
104
105 cnn = Conv2D ( 2 5 6 , ( 3 , 3) , padding= ’ same ’ , a c t i v a t i o n= ’ r e l u ’ ) ( cnn ) # conv_5
106 cnn = BatchNormalization ( ) ( cnn ) # batch_5
107 cnn = MaxPooling2D ( p o o l _ s i z e =(2 , 2) , s t r i d e s =2, padding= ’ same ’ ) ( cnn ) # pool_5
108
109 cnn = F l a t t e n ( ) ( cnn ) # f l a t t e n _ 1
110
111 cnn = Dropout ( 0 . 5 ) ( cnn ) # drop_1
112 cnn = Dense (10 24 , a c t i v a t i o n= ’ r e l u ’ ) ( cnn ) # fc_1
113
114 cnn = Dropout ( 0 . 5 ) ( cnn ) # drop_2
115 cnn = Dense (10 24 , a c t i v a t i o n= ’ r e l u ’ ) ( cnn ) # fc_2
116
117 vec_out = Dense ( image_size ) ( cnn ) # output_1
118
119 # s e t − model i n p u t s and model outputs
120 model = Model ( i n p u t s = [ img_input , mfm_input_1 , mfm_input_2 , mfm_input_3 , mfm_input_4 ,

mfm_input_5 , mfm_input_6 , mfm_input_7 , mfm_input_8 , mfm_input_9 , mfm_input_10 ,
mfm_input_11 , mfm_input_12 , mfm_dflt ] , outputs = vec_out )

121
122 # s e t − backward propagat ion a l g o r i t h m hyper−parameters
123 sgd = SGD( l r= 0 . 0 0 0 0 5 , decay= 0 . 0 , momentum=0.9 , n e s t e r o v=True )
124
125 # s e t − model l o s s f u n c t i o n , o p i m i s a t i o n algorithm , and m e t r i c s
126 model . compile ( l o s s= ’ mean_squared_error ’ ,
127 o p t i m i z e r= sgd ,
128 m e t r i c s =[pred_rmse ] )
129
130 # t r a i n − c o n v o l u t i o n a l n e u r a l network with i t s a d d i t i o n a l hyper−parameters
131 model . f i t ( [ image_train , mfm_train_1 , mfm_train_2 , mfm_train_3 , mfm_train_4 , mfm_train_5 ,

mfm_train_6 , mfm_train_7 , mfm_train_8 , mfm_train_9 , mfm_train_10 , mfm_train_11 ,
mfm_train_11 , mfm_train_default ] , v e c t o r _ t r a i n , epochs =125 , batch_size =200 , s h u f f l e=
True , v e r b o s e =2)

132
133 # t e s t − t r a i n e d c o n v o l u t i o n a l n e u r a l network model
134 e v a l u a t i o n _ r e s u l t s = model . e v a l u a t e ( [ image_test , mfm_test_1 , mfm_test_2 , mfm_test_3 ,

mfm_test_4 , mfm_test_5 , mfm_test_6 , mfm_test_7 , mfm_test_8 , mfm_test_9 , mfm_test_10 ,
mfm_test_11 , mfm_test_12 , mfm_test_default ] , v e c t o r _ t e s t , batch_size =200)

135
136 # show − e v a l u a t i o n l o s s and rmse r e s u l t s
137 p r i n t ( " Evaluat ion Result : " + s t r ( e v a l u a t i o n _ r e s u l t s ) )
138
139 # p r e d i c t − t e s t output o f the t r a i n e d c o n v o l u t i o n a l n e u r a l network model
140 test_output = model . p r e d i c t ( [ image_test , mfm_test_1 , mfm_test_2 , mfm_test_3 , mfm_test_4 ,

mfm_test_5 , mfm_test_6 , mfm_test_7 , mfm_test_8 , mfm_test_9 , mfm_test_10 , mfm_test_11 ,
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mfm_test_12 , mfm_test_default ] , batch_size =200 , v e r b o s e =0, s t e p s=d f l t e )
141
142 # save − p r e d i c t e d t e s t ouptput as ∗ . png image which i n c l u d e s a l l t e s t s e q u e n c e s
143 temp_img = Image . fromarray ( test_output )
144 i f temp_img . mode != ’RGB’ :
145 temp_img = temp_img . c o n v e r t ( ’RGB’ )
146 save_name = " CNN_Deep_Metadata_Fusion_Layer_2_Test_Output_full_Dataset_v1 . png "
147 temp_img . save ( save_name )
148
149 # d e l e t e − r e l e a s e GPU memory and c l e a r s e s s i o n
150 d e l model
151 K. c l e a r _ s e s s i o n ( )

Listing 7.1 Deep metadata fusion approach implementation in python code by means of
the Keras and TensorFlow framework with a deep fusion in convolutional fusion
layer two and an AlexNet CNN topology.

7.9 High Performance Computing and Processing Time

This work used GPU high performance computing with two NVIDIA GTX 1080 Ti
graphic cards. Moreover, the dataset preparation was implemented on a parallel CPU
computing cluster with two Intel Xeon E5-2640 v4, each with ten physical cores.
The average processing time per CNN simulation was about two hours per GPU.

The total number of simulations (training and testing) was 420: 30 (deep metadata
fusion approach investigation of the fusion operator), 60 (deep metadata fusion approach
investigation of the metadata effect), 25 (deep metadata fusion approach investigation
of the fusion layer), 30 (deep metadata fusion approach configuration of the adaptive
weighting), 180 (development of the sequence approach), 10 (only-vision approach),
25 (only-vision approach investigation of the training dataset size) and 60 (only-vision
approach investigation of the CNN topology and image size).

The total processing time for the dataset preparations was about 72 hours with all 20
CPU cores for the complete ETL-process41.

Here, initial CNN simulations, failed CNN simulations due to wrong hyper-parameter
setups, and dataset preparations to validate the implementations are not included.

41ETL-process: extract, transform, and load data.
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Nomenclature

1 Mathematical Abbreviations

Variable Meaning

accuracy TL2LA accuracy metric
b bias of a neural network
b batch index
c single confusion matrix result (c ∈ {FN,FP, TN, TP})
d distance to the stop line
e MFM index
f frame index
f focal length
g global average (scalar)
hcam world camera height
i general control variable
imin general minimum index
imax general maximum index
j general control variable
k convolutional feature map index
l convolutional layer index
l traffic light column length in the regression vectors or indication vectors,

respectively
mv matching vector
n iteration or epoch index of a neural network, respectively
ov output regression vector or output indication vector, respectively
p tensor height index
p traffic light column starting position in regression vectors or indication

vectors, respectively
precision TL2LA precision metric
q tensor width index
r traffic light relevant result (1 7→ "relevant" and 0 7→ "non-relevant")
s sequence index
t traffic light index
tmax traffic light index with the highest traffic light relevant confidence
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Nomenclature

Variable Meaning
th128 traffic light relevant threshold
tv target regression vector or target indication vector, respectively
u camera image height index
uT top view image height index
uH virtual image horizon
v camera image width index
vT top view image width index
w camera image depth index
w weights of an artificial neural network
x input of an artificial neural network (fully connected layer)
x(v) lateral world distance in top view image
y output of an artificial neural network (fully connected layer)
ŷ target of an artificial neural network
z(u) longitudinal world distance in top view image
A metadata feature map tensor
B batch size
B(pB) Bernoulli distribution
C traffic light relevant confidence
CI 90 % confidence interval
D point cloud matrix of disparity map
Eroad plane equation of the camera image road part
EUV UV-plane equation in the camera coordinate system
EWU WU-plane equation in the camera coordinate system
E number of MFMs
F number of frames
FN false negative assigned traffic lights
FP false positive assigned traffic lights
F1score TL2LA F1score metric
H top view transformation matrix
I recorded (left) camera image
IPMconfig fixed IPM configuration parameters
J top view image
K number of convolutional feature maps
L number of lanes in the intersection scenario or sequence, respectively
M deep metadata fusion tensor
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1 Mathematical Abbreviations

Variable Meaning
Malloc traffic light to lane allocation matrix
Mrot top view rotation matrix
Mtransl top view translation matrix
N number of neurons in a specific neural network layer
ND number of training dataset images
NE number of epochs
NI number of iterations
NN total amount of neurons in a neural network
NW total amount of weights in a neural network
O IPM full panorama image
O(n) O-notation of the complexity performance
P tensor height
Q tensor width
R weight matrix (recurrent) of a convolution neural network
ROI region of interest of the camera image I
T number of traffic lights
TN true negative assigned traffic lights
TP true positive assigned traffic lights
U image height
V image width
W weights matrix of a convolution neural network
X input tensor of a convolutional layer
Y substitution of convolution result tensor
Z output tensor of a convolutional layer
0V zero vector of an LSTM layer
α flat world assumption angle
β batch normalisation shift parameter
χ independent random value of the Bernoulli distribution
ε constant with 0 < ε� 1
γ ego-vehicle yaw angle
∆ general comparison variable
η learn rate of a neural network
κ kernel size (symmetric)
λ pooling factor
µ mean
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Nomenclature

Variable Meaning
ωUT ego-vehicle velocity in top view UT dimension
ωV T ego-vehicle velocity in top view V T dimension
φ neural network activation function
Ψ neural network error loss
ρ pixel density of the imager
σ standard deviation
σ2 variance
θ batch normalisation scale parameter
ξ substitution of the forward propagation equation
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2 Abbreviations

2 Abbreviations

ADAS Advanced Driver Assistance Systems

ANN Artificial Neural Network

CCF Cross-Correlation Function

CI Confidence Interval

CNN Convolutional Neural Network

Conv. Convolutional layer

DAS Driver Assistance Systems

DF Deep Fusion

FC. Fully Connected layer

FN False Negative

FP False Positive

GPS Global Position System

GPU Graphical Processing Unit

HD-map High Definition map

IEEE Institute of Electrical and Electronics Engineers

ILSCRC ImageNet Large Scale visual Recognition Challenge

IPM Inverse Perspective Mapping

ITS Intelligent Transportation System

I2V Interface to Vehicle communication

LD Lane Detection

LiDAR Light Detection And Ranging

LSTM Long Short Term Memory

MAE Mean Absolute Error

MAP Maximum A Posteriori
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Nomenclature

Max. Pooling Maximum Pooling layer

MFF Multiscale Feature Fusion

MFM Metadata Feature Map

MLP Multi-Layer Perceptron

RaDAR Radio Detection And Ranging

RANSAC Random Sample Consensus

RA-L Robotics and Automation Letter

RGB Red Green Blue

RMSE Root Mean Square Error

SGDM Stochastic Gradient Descent with Momentum

SGM Semi Global Matching

SVM Support Vector Machine

TLA Traffic Light Assistance

TLD Traffic Light Detection

TLR Traffic Light Recognition

TL2LA Traffic Light to Lane Assignment

TN True Negative

TP True Positive

VGG Visual Geometry Group
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