346,461 research outputs found

    Lecture Notes in Electrical Engineering vol. 365

    Get PDF
    This book includes the original, peer-reviewed research papers from the 2nd International Conference on Electrical Systems, Technology and Information (ICESTI 2015), held during 9–12 September 2015, at Patra Jasa Resort & Villas Bali, Indonesia. The primary objective of this book is to provide references for dissemination and discussion of the topics that have been presented in the conference. This volume is unique in that it includes work related to Electrical Engineering, Technology and Information towards their sustainable development. Engineers, researchers as well as lecturers from universities and professionals in industry and government will gain valuable insights into interdisciplinary solutions in the field of Electrical Systems, Technology and Information, and its applications. The topics of ICESTI 2015 provide a forum for accessing the most up-to-date and authoritative knowledge and the best practices in the field of Electrical Engineering, Technology and Information towards their sustainable development. The editors selected high quality papers from the conference that passed through a minimum of three reviewers, with an acceptance rate of 50.6 %. In the conference there were three invited papers from keynote speakers, whose papers are also included in this book, entitled: “Computational Intelligence based Regulation of the DC bus in the On-Grid Photovoltaic System”, “Virtual Prototyping of a Compliant Spindle for Robotic Deburring” and “A Concept of Multi Rough Sets Defined on Multi-Contextual Information Systems”. The conference also classified the technology innovation topics into five parts: “Technology Innovation in Robotics, Image Recognition and Computational Intelligence Applications”, “Technology Innovation in Electrical Engineering, Electric Vehicle and Energy Management”, “Technology Innovation in Electronic, Manufacturing, Instrumentation and Material Engineering”, “Technology Innovation in Internet of Things and Its Applications” and “Technology Innovation in Information, Modeling and Mobile Applications”

    An EPIIC Vision to Evolve Project Integration, Innovation, and Collaboration with Broad Impact for How NASA Executes Complex Projects

    Get PDF
    Evolving Project Integration, Innovation, and Collaboration (EPIIC) is a vision defined to transform the way projects manage information to support real-time decisions, capture best practices and lessons learned, perform assessments, and manage risk across a portfolio of projects. The foundational project management needs for data and information will be revolutionized through innovations on how we manage and access that data, implement configuration control, and certify compliance. The embedded intelligence of new interactive data interfaces integrate technical and programmatic data such that near real time analytics can be accomplished to more efficiently and accurately complete systems engineering and project management tasks. The system-wide data analytics that are integrated into customized data interfaces allows the growing team of engineers and managers required to develop and implement major NASA missions the ability to access authoritative source(s) of system information while greatly reducing the labor required to complete system assessments. This would allow, for example, much of what is accomplished in a scheduled design review to take place as needed, between any team members, at any time. An intelligent data interface that rigorously integrates systems engineering and project management information in near real time can provide substantially greater insight for systems engineers, project managers, and the large diverse teams required to complete a complex project. System engineers, programmatic personnel (those who focus on cost, schedule, and risk), the technical engineering disciplines, and project management can realize immediate benefit from the shared vision described herein. Implementation of the vision also enables significant improvements in the performance of the engineered system being developed

    Brain & Art: a ripple in the (cyber)space

    Get PDF
    In my text I refer to contemporary art practices, including my own artistic investigations and intuitions; questioning creative powers of the human brain-mind system in the world increasingly dependent on and transformed by Big Data. Currently, with the global revolution of knowledge, driven by scientific and technological progress, creativity and innovation acquire special economic and social values. Research on biochemical processes accompanying creative behaviour stimulates the synergy between artistic, scientific and engineering communities. The acquired knowledge is used in medicine, biotechnology and various types of therapies as well as in deep learning methods. Increasing the efficiency of artificial intelligence systems that quickly take control over all areas of our lives. Will the nascent Internet-of-all-Things transform itself into the Internet-of-all Minds? As an artist, I pose myself a question, which artistic practices may emerge from the marriage of biological and digital algorithms? The future has many scenarios and shades
In my text I refer to contemporary art practices, including my own artistic investigations and intuitions; questioning creative powers of the human brain-mind system in the world increasingly dependent on and transformed by Big Data. Currently, with the global revolution of knowledge, driven by scientific and technological progress, creativity and innovation acquire special economic and social values. Research on biochemical processes accompanying creative behaviour stimulates the synergy between artistic, scientific and engineering communities. The acquired knowledge is used in medicine, biotechnology and various types of therapies as well as in deep learning methods. Increasing the efficiency of artificial intelligence systems that quickly take control over all areas of our lives. Will the nascent Internet--of-all-Things transform itself into the Internet-of-all Minds? As an artist, I pose myself a question, which artistic practices may emerge from the marriage of biological and digital algorithms? The future has many scenarios and shades

    High frequency trading system design and process management

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 78-79).Trading firms nowadays are highly reliant on data mining, computer modeling and software development. Financial analysts perform many similar tasks to those in software and manufacturing industries. However, the finance industry has not yet fully adopted high-standard systems engineering frameworks and process management approaches that have been successful in the software and manufacturing industries. Many of the traditional methodologies for product design, quality control, systematic innovation, and continuous improvement found in engineering disciplines can be applied to the finance field. This thesis shows how the knowledge acquired from engineering disciplines can improve the design and processes management of high frequency trading systems. High frequency trading systems are computation-based. These systems are automatic or semi-automatic software systems that are inherently complex and require a high degree of design precision. The design of a high frequency trading system links multiple fields, including quantitative finance, system design and software engineering. In the finance industry, where mathematical theories and trading models are relatively well researched, the ability to implement these designs in real trading practices is one of the key elements of an investment firm's competitiveness. The capability of converting investment ideas into high performance trading systems effectively and efficiently can give an investment firm a huge competitive advantage.(cont.) This thesis provides a detailed study composed of high frequency trading system design, system modeling and principles, and processes management for system development. Particular emphasis is given to backtesting and optimization, which are considered the most important parts in building a trading system. This research builds system engineering models that guide the development process. It also uses experimental trading systems to verify and validate principles addressed in this thesis. Finally, this thesis concludes that systems engineering principles and frameworks can be the key to success for implementing high frequency trading or quantitative investment systems.by Xiangguang Xiao.S.M

    Managing digital coordination of design: emerging hybrid practices in an institutionalized project setting

    Get PDF
    What happens when digital coordination practices are introduced into the institutionalized setting of an engineering project? This question is addressed through an interpretive study that examines how a shared digital model becomes used in the late design stages of a major station refurbishment project. The paper contributes by mobilizing the idea of ‘hybrid practices’ to understand the diverse patterns of activity that emerge to manage digital coordination of design. It articulates how engineering and architecture professions develop different relationships with the shared model; the design team negotiates paper-based practices across organizational boundaries; and diverse practitioners probe the potential and limitations of the digital infrastructure. While different software packages and tools have become linked together into an integrated digital infrastructure, these emerging hybrid practices contrast with the interactions anticipated in practice and policy guidance and presenting new opportunities and challenges for managing project delivery. The study has implications for researchers working in the growing field of empirical work on engineering project organizations as it shows the importance of considering, and suggests new ways to theorise, the introduction of digital coordination practices into these institutionalized settings

    Multidisciplinary Engineering Systems 2nd and 3rd Year College-Wide Courses

    Get PDF
    Undergraduate engineering education today is ineffective in preparing students for multidisciplinary system integration and optimization - exactly what is needed by companies to become innovative and gain a competitive advantage in this global economy. While there is some movement in engineering education to change that, this change is not easy, as it involves a cultural change from the silo approach to a holistic approach. The ABET-required senior capstone multidisciplinary design course too often becomes a design-build-test exercise with the emphasis on just getting something done. Students rarely break out of their disciplinary comfort zone and thus fail to experience true multidisciplinary system design. What is needed are multidisciplinary systems courses, with a balance between theory and practice, between academic rigor and the best practices of industry, presented in an integrated way in the 2nd and 3rd years that prepares students for true multidisciplinary systems engineering at the senior level and beyond. The two courses presented here represent a significant curriculum improvement in response to this urgent need

    Principles for aerospace manufacturing engineering in integrated new product introduction

    Get PDF
    This article investigates the value-adding practices of Manufacturing Engineering for integrated New Product Introduction. A model representing how current practices align to support lean integration in Manufacturing Engineering has been defined. The results are used to identify a novel set of guiding principles for integrated Manufacturing Engineering. These are as follows: (1) use a data-driven process, (2) build from core capabilities, (3) develop the standard, (4) deliver through responsive processes and (5) align cross-functional and customer requirements. The investigation used a mixed-method approach. This comprises case studies to identify current practice and a survey to understand implementation in a sample of component development projects within a major aerospace manufacturer. The research contribution is an illustration of aerospace Manufacturing Engineering practices for New Product Introduction. The conclusions will be used to indicate new priorities for New Product Introduction and the cross-functional interactions to support flawless and innovative New Product Introduction. The final principles have been validated through a series of consultations with experts in the sponsoring company to ensure that correct and relevant content has been defined

    Launching the Grand Challenges for Ocean Conservation

    Get PDF
    The ten most pressing Grand Challenges in Oceans Conservation were identified at the Oceans Big Think and described in a detailed working document:A Blue Revolution for Oceans: Reengineering Aquaculture for SustainabilityEnding and Recovering from Marine DebrisTransparency and Traceability from Sea to Shore:  Ending OverfishingProtecting Critical Ocean Habitats: New Tools for Marine ProtectionEngineering Ecological Resilience in Near Shore and Coastal AreasReducing the Ecological Footprint of Fishing through Smarter GearArresting the Alien Invasion: Combating Invasive SpeciesCombatting the Effects of Ocean AcidificationEnding Marine Wildlife TraffickingReviving Dead Zones: Combating Ocean Deoxygenation and Nutrient Runof

    Who Let the Humanists into the Lab?

    Get PDF
    • 

    corecore