
High Frequency Trading System Design and Process Management

By

Xiangguang Xiao

Bachelor of Engineering, Tianjin University (1996)

Master of Science in Computer Science, Boston University (2006)

Submitted to the System Design and Management Program in Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Engineering and Management

At the

Massachusetts Institute of Technology

May 2009

0 2009 Massachusetts Institute of Technology
All rights reserved

ARCHIVES

MASSACHUSETTS INSTITUtTE
OF TECHNOLOGY

SEP 2 3 2009

LIBRARIES

Signature of Author
Xiangguang Xiao

System Design and Management Program
May 2009

Certified by
Prdfssor Roy E. Welsch

Thesis Supervisor
Professor of Management Science, Statistics, and Engineering Systems

Sloan School of Management and Engring Systems DiviiAp

Certified by

Director
System Design and Management Program

High Frequency Trading System Design and Process Management

By
Xiangguang Xiao

Submitted to the System Design and Management Program
on May 22, 2009 in Partial Fulfillment of the Requirements for the Degree of Master of Science

in Engineering and Management

ABSTRACT

Trading firms nowadays are highly reliant on data mining, computer modeling and software

development. Financial analysts perform many similar tasks to those in software and

manufacturing industries. However, the finance industry has not yet fully adopted high-standard

systems engineering frameworks and process management approaches that have been successful

in the software and manufacturing industries. Many of the traditional methodologies for product

design, quality control, systematic innovation, and continuous improvement found in engineering

disciplines can be applied to the finance field.

This thesis shows how the knowledge acquired from engineering disciplines can improve the

design and processes management of high frequency trading systems. High frequency trading

systems are computation-based. These systems are automatic or semi-automatic software

systems that are inherently complex and require a high degree of design precision. The design of

a high frequency trading system links multiple fields, including quantitative finance, system

design and software engineering. In the finance industry, where mathematical theories and

trading models are relatively well researched, the ability to implement these designs in real

trading practices is one of the key elements of an investment firm's competitiveness. The

capability of converting investment ideas into high performance trading systems effectively and

efficiently can give an investment firm a huge competitive advantage.

This thesis provides a detailed study composed of high frequency trading system design, system

modeling and principles, and processes management for system development. Particular

emphasis is given to backtesting and optimization, which are considered the most important parts

in building a trading system. This research builds system engineering models that guide the

development process. It also uses experimental trading systems to verify and validate principles

addressed in this thesis. Finally, this thesis concludes that systems engineering principles and

frameworks can be the key to success for implementing high frequency trading or quantitative

investment systems.

Thesis Supervisor: Professor Roy E. Welsch

Title: Professor of Management Science, Statistics, and Engineering Systems, Sloan School of

Management and Engineering Systems Division, Massachusetts Institute of Technology

Acknowledgments

I would like to thank IBM for giving me the opportunity to study at MIT. I owe a debt of

gratitude to Masha Maule and Steffi Diamond at IBM for their support and confidence in me.

I especially would like to thank Professor Roy E. Welsch for providing guidance and knowledge.

I feel grateful and fortunate to receive his advice and to listen to his wisdom.

The System Design and Management (SDM) faculty and staff have been very helpful throughout

the program. I must acknowledge Pat Hale and Bill Foley for being there for me as always. My

classmates and friends at MIT have made my experience at MIT an enjoyable, memorable and

rewarding one. I learned a great deal from both professors and my fellow classmates.

Finally, I would like to thank my fiancee, Yu Wei for her love, support and advice. Without that

support my academic work and thesis would not have been possible.

Table of Contents

High Frequency Trading System Design and Process Management..1

Acknowledgm ents ... 5

Table of Contents .. 7

Table of Figures...9

1. Introduction..11
1.1. W hat is a trading system ?... 12

1.2. W hy are system s im portant?... 14

1.3. H igh frequency financial data .. 15
1.4. Contributions of this thesis... 16

1.4.1. Trading system design fram ew ork and processes... 16
1.4.2. Backtesting and optim ization strategies.. 16

2. Literature reviews .. 17
2.1. D iscretionary versus nondiscretionary system s ... 17
2.2. W hat is a good trading system ... 18
2.3. Sim ple system versus com plex system .. 19
2.4. Data sources and data characteristics .. 20

3. System design and developm ent process... 21
3.1. Design with Model-Based Systems Engineering (MBSE) .. 22

3.1.1. System Com ponents.. 24
3.1.2. U sers ... 25
3.1.3. Live trading Process... 27
3.1.1. System Developm ent Process overview ... 28
3.1.2. Research phase: generate ideas.. 29

3.1.2.1. Research m ethods .. 30

3.1.2.2. Design docum ent .. 31

3.1.2.3. Case studies ... 32

3.1.3. Prototype phase.. 37
3.1.3.1. Gather data... 39

3.1.3.2. Data type... 40

3.1.3.3. Data cleaning process ... 42

3.1.3.4. Datapartition ... 43

3.1.3.5. Coding in m odeling softw are ... 44

3.1.3.6. Prototype quality assurance .. 45

3.1.3.7. Backtest and Optim ization.. 46

3.1.4. Production... 46
3.1.4.1. Production program m ing.. 47

3.1.4.2. Developm ent team and tool... 49

3.1.4.3. Production quality assurance ... 49

4. System backtest 50
4.1. Testing process...51

4.1.1. Decide value range.. 51
4.1.2. Decide value distribution.. 52
4.1.3. Rank param eters.. 53
4.1.4. Decide trading cost ... 53

4.2. In-sam ple and out-of-sam ple test ... 54
4.3. Avoid overfitting ... 55

4.3.1. Save out-of-sample/test data 55
4 .. . pif r n t m h o i n s 54.3.2. Different tim e horizons.. 55

4.3.3. Differenttim e fram es... 56
4.3.4. Different Instrum ents .. 56
4.3.5. Different asset classes.. .. 56
4.3.6. Student T-test 56

4.4. Trading statistical data.. 59

5. Optimization 59
5. 1. M ethods of optim ization. .. 60

5.1.1. W hole s aopoei i ai 60
5.1.2. Out-of-Sam ple analysis... 61
5.1.3. Step forward analysis.. 61

6. Systems m easurem ents 62
6.1. Robustness of system 62
6.2. Profit ne s of s e ... 62

6.2.1. Absolute m etrics 63
6.2.2. Trade statistics .. 64
6.2.3. Benchm arking with index... 66
6.2.4. Correlations with index.. 66

6.3. Investm ent capacity.. 67

7. Conclusion...68

Appendix I: Trading System Developm ent Process... 70
Appendix II: Trading System Modeling with Object-Process Methodology...................................71

Bibliography..78

8

Table of Figures

Figure 1: Six Rings of a Trading System... 13

Figure 2: Trading System Components ... 24

Figure 3: Trading system user cases .. 26

Figure 4: Live trading internal process diagram... 27

Figure 5: R esearch phase ... 31

Figure 6: Short term trend... 35

Figure 7: Prototype phase .. 38

Figure 8: Most influential market moving indicators .. 41

Figure 9: Times of important economic releases ... 41

Figure 10: Production Phase .. 47

Figure 11: Three trading types.. 50

Figure 12: Test time (minutes) for USDCHF on short term trend trading 52

Figure 13: Different time frames for USDJPY on short term trend trading 57

Figure 14: Returns of different currency pairs.. 58

Figure 15: Returns of different currency pairs after eliminating hard-coded values................. 59

Figure 16: Sample distribution of trading order types .. 65

Figure 17: Portfolio performance comparing to stock indexes.. 66

Figure 18: Correlations with stock indexes .. 67

Figure 19: Market depth for EURUSD.. 68

Figure 20: Trading system development framework and process (SysML).............................. 70

Figure 21: Trading system development framework and process (OPM)................................ 71

Figure 22: Trading system development framework and process - Unfolded (OPM)............. 72

Figure 23: Trading diagram - zoomed-in (OPM) .. 73

Figure 24: Trading strategies developing diagram - Zoomed-in (OPM) 74

Figure 25: Trading application - Unfolded (OPM).. 74

Figure 26: Data cleaning - Zoomed-in (OPM).. 75

Figure 27: Trading strategies/models developing - Zoomed-in (OPM).................................... 76

Figure 28: Backtesting process - Zoomed-in (OPM).. 77

Figure 29: Production/Deploy process - Zoomed-in (OPM) .. 77

1. Introduction

The financial market is getting more competitive every day. In the trading sector, a competitive

edge is razor thin. To achieve even a 50 basis point excess return is often extremely difficult.

Trading firms today depend on data mining, computer modeling and software development.

Quantitative analysts in the financial industry conduct many day-to-day tasks similar to those in

the software and manufacturing industries. Although the term "financial engineering" is well

known, there still exists a large gap between financial and engineering disciplines. Quantitative

finance has not yet fully adopted the high quality engineering framework and processes that have

succeeded in the software and manufacturing industries.

Financial firms that do not value and implement software engineering processes, such as version

controls or quality assurance processes, often prove to be ineffective and inefficient in the

production and management of their code bases. In academics, quantitative finance classes prefer

to teach students mathematical theories and financial modeling. Also, in engineering school,

system architecture and product development classes focus on physical products such as a robot

design or a new mobile application. This thesis demonstrates that many ideas of product design,

quality control, systematic innovation and continuous improvement processes used in systems

engineering disciplines can be applied to improving the business of trading firms.

This thesis shows how the processes employed by engineering disciplines can improve the

design of high frequency trading. It aims to integrate methods and concepts from various fields,

including quantitative finance, system science, software engineering and data mining. Using

cases of high frequency trading system design and foreign exchange markets, the findings in this

paper can also be applied to non-high frequency trading system design and other financial market

segments.

This paper demonstrates how the guiding system design principles and process management,

especially backtesting processes, are crucial elements in the development of a successful

financial trading system.

1.1. What is a trading system?

Quoting from Wikipedia, "A system is a set of interacting or interdependent entities, real or

abstract, forming an integrated whole." The concept of an "integrated whole" can also be

expressed in terms of a system embodying a set of relationships that are differentiated from

relationships of the set to other elements, and from relationships between an element of the set

and elements that are not part of the relational regime. Sharing the same common characteristics,

most systems:

" Are abstractions of reality

* Have a structure that is defined by its parts and their composition

* Have behavior, which involves inputs, processing and outputs of material, information or

energy

* Have parts with functional as well as structural relationships between each other

* May also refer to a set of rules that govern behavior or structure

A financial trading system is generally considered to be a set of trading rules that control when

and at which price you open and close the trade. "A system is simply a plan or set of rules of

when to buy and sell securities". (Charles D. Kirkpatrick, Julier R. Dahlquist. Technical

Analysis) An example of a rule would be "buy when a moving average crosses above another".

Variables are the quantities used in the rules - two moving averages, and the parameters are the

actual values used in the variables - 5 minutes and 15 minutes. "A system lets us determine a

priori how it will react to particular market situations." In an ever-challenging financial market, a

trading system is more complex than just a set of trading rules. The system must also include the

means of controlling the risks of losing capital, mathematical models, historic data, and

sometimes specialized software. A system is an "integrated whole" that consists of key elements,

relationship between internal elements and relationships with external elements. A U.S. military

strategist, John A. Warden III, introduced the Five Ring System model in The Air

Campaign contending that any complex system could be broken down into five concentric rings.

Each ring - Leadership, Processes, Infrastructure, Population and Action Units - could be used to

isolate key elements of any system that needed change. The model was used effectively by Air

Force planners in the First Gulf War. Using Warden's book as a model, I will break down a

trading system into the following levels:

. Investment philosophy

. Trading strategies and mathematical models

. Risk management and money Management

. Disciplined processes

* Backtest and Optimization

* Financial data and trading software

Consider each level of system or "ring" as one of the trading system's centers of gravity. The

principal idea behind the six rings is to develop a trading system that earns a desired profit in a

targeted time frame. To accomplish this goal, we need to address each of the rings individually

and collectively to build a robust and profitable trading system. The system developer needs to

engage as many rings as possible with more emphasis on the inner rings.

Figure 1: Six Rings of a Trading System

1.2. Why are systems important?

Among the various reasons that traders employ trading systems, the ability to backtest for

hypothetical performance using historical data is a key reason. Quantitative funds particularly

like the fact that they can quickly validate their new trading ideas. Although there can be a

significant difference between hypothetical and actual results, the backtest result can give the

financial engineers some idea how their trading systems would work in reality. If the trading

system is properly built, financial engineers can leverage the optimization and feedback process

to refine their investment ideas, and eventually improve the trading systems.

Another important reason that traders utilize trading systems is that it helps to reduce the

emotions involved in making difficult trading decisions. The human emotions of greed and fear

sometimes prevent human beings from making timely decisions in the financial market. Trading

systems provide a disciplined way to overcome mistakes that can be caused by greed and fear.

With a well-designed trading system, you can expect consistency in trading execution and

repeatable trading results.

Arguably, a trading system is more important than profit models. Many traders believe that

simple and well known trading models can work with successful implementations - good risk

control and emotion control. Conceivably, a trading system that implements a naive model could

make profits if it includes a solid risk management strategy and reacts to the market in a timely

manner.

For high frequency trading firms that depend on the "instant" analysis of data ticks, the use of a

trading system is the only way to implement successful investment strategies. Using a trading

system fully engages the computing power of IT systems, saving time and reducing human

mistakes. Many high frequency trading firms hold the philosophy of "do not predict the market,
react to the market". Realizing this philosophy requires a mechanical trading system that

captures short time market movements and makes corresponding decisions rapidly.

1.3. High frequency financial data

The original form of market data is tick data which shows every price change and volume.

Finance markets generate enormous tick data every trading day. "The number of observations in

one single day of a liquid market is equivalent to the number of daily data within 30 years."

(Michel M. Dacorogna, Ramazan Gengay, Ulrich MUller, Richard B. Olsen, Olivier V. Pictet.

2001) With advances in information technology, large amounts of high frequency financial data

including intraday tick data have become more available. We can now analyze financial time

series and markets at almost any desired frequency. Many traders make their trading decisions

based upon high-frequency data such as one-minute bar' data or even tick-by-tick data. "High

frequency data can provide a desirable experimental bench for practitioners to understand market

microstructure and for analyzing financial markets." (Dacorogna et al., 2001)

Processing large amounts of data offers both opportunities and challenges for a trading system

designer. Statistically, larger amounts of available data result in higher degrees of freedom and

bring a new level of significance.2 From the backtest perspective, more sample trades are

generated in the backtest using shorter time scales with the same models. However, challenges

also come with the large data size. High frequency data is noisy which can cause problems for

modeling as the model may reflect the noise as opposed to the underlying market dynamics.

Dealing with large amounts of high frequency data requires the right mathematical tools, models

and techniques, which the system designer has to consider when developing their high frequency

trading system and backtesting strategies.

The foreign exchange (FX) market is the largest and most liquid financial market in the world. It

is attractive for high frequency trading because of its high liquidity, small spreads and low

I A bar is a graphical representation of a financial instrument's movement that usually contains the open, high, low and closing

prices for a set period of time.
2 A thorough discussion of high-frequency data can be found in Michel M. Dacorogna, Ramazan Gengay, Ulrich Miller, Richard

B. Olsen, Olivier V. Pictet. An introduction to High-Frequency Finance. San Diego: Academic Pres. 2001

transaction cost. Since 2008, I have worked with a few other students on building high frequency

trading systems on the foreign exchange. This thesis will use the FX market in most studies to

leverage the research we have done and the lessons we have learned.

1.4. Contributions of this thesis

1.4.1. Trading system design framework and processes

In the financial market, extensive research is conducted to develop sophisticated mathematical

trading models. Equally important, if not more, is the framework of implementation - the design

of the production system surrounding the existing financial research/models. The design and

processes is the linkage of best practices in engineering disciplines and quantitative finance. In

today's trading world, "the key determinant of sustainable competitive advantage is the ability to

continually discover, build, and operate better trading systems." (Andrew Kumiega and

Benjamin Van Vliet, 2008) Converting an investment idea into mathematical models and then a

working trading system in a fast and high quality manner is critical for one to compete in the

market place. This thesis identifies the guiding principles and processes for a high frequency

trading system design with emphasis on the quality of design and the robustness of the system.

1.4.2. Backtesting and optimization strategies

Among all the components, backtesting and optimization without overfitting are the most

important parts in building a trading system. Often misunderstood and misused, backtest and

optimization with right strategies to avoid overfitting in the processes are the keys to building a

successful trading system. Many trading systems backed by great investment ideas are

abandoned during the backtesting phase as they were not tested properly. Other strategies/models

with good backtesting performance failed miserably in live trading and caused a huge capital loss

because they were improperly optimized. Many financial engineers argue that backtesting and

optimization are more important than the mathematical and financial theories behind the trading

strategies when building high frequency trading systems. You can build a good trading system

with a very simple and straightforward model if backtested well and optimized to control risks

properly. With inappropriate testing and optimization, you can convert even a good trading

model into a capital disaster. This thesis discusses effective testing and optimization methods to

avoid over-fitting with backtesting and optimization.

2. Literature reviews

2.1. Discretionary versus nondiscretionary systems

Trading systems can be discretionary and non-discretionary (mechanical), sometimes both.

Discretionary trading systems require traders to determine entries and exits, by intuition, or by

their own judgment of the importance of technical or fundamental signals that they receive. The

number of signals is potentially unlimited. So in a discretionary trading system, traders exercise

some discretion in making trades. Nondiscretionary trading systems operate mechanically.

Entries and exists are determined mechanically by the system as opposed to traders. The trading

decisions are based upon a fixed number of pre-defined technical or fundamental signals without

the participation of the trader. Discretionary trading systems require the knowledge and

experience from individual traders who must constantly apply their creativity under changing

market conditions. A non-discretionary trading system, however, requires creativity from the

trader and system designer only in the system design and development phase.

Discretionary trading systems are best used by highly experienced traders with an abundance of

practical market knowledge that lets them determine the validity and true meaning of market

signals. These traders typically have intuition and have internalized a large number of different

historical patterns that they can compare to the current market conditions. They generally have to

maintain their mental power and self-discipline to perform consistently under different situations.

In essence, discretionary traders develop their brains as a natural trading system.

Nondiscretionary traders, however, often take highly systematic approaches. They build the

seasoned market insights and knowledge of traders into a working strategy in a software program

format. A fully nondiscretionary trading system is one that runs on its own. This type of trading

system reads the live market data which is continually fed in by brokers and makes trading

decisions automatically based on the pre-determined rules. Trading system designers tend to

have an engineering background - good at modeling and programming and familiar with

statistics and systems. These designers study the market, read research papers and build models

and test their trading ideas using statistical methods. In many firms, financial engineers work

with skillful programmers on system design and development and they leverage each other's

strengths. The developed trading system usually has been fully backtested on both in-sample and

out-of-sample data before it is put into live trading. Starting a mechanical trading system in

production without full backtesting is considered to be highly risky. Having a mechanical trading

system in place that adheres to a well built plan can prevent haphazard emotional trading. A

nondiscretionary trading system enforces discipline. Without strict adherence to a proven

nondiscretionary trading system, human emotions can enter into the trading decisions and cause

unquantifiable errors. The comparison between discretionary and nondiscretionary systems was

performed by Kirkpatrick and Dahlquist in their book Technical Analysis (FT press, 2008) and

summarized in this section. Authors in this book fully discussed the benefits of nondiscretionary

systems. "Researchers have showed that the majority of successful traders and investors use

nondiscretionary systems" (Kirkpatrick and Dahlquist, 2008). "A mechanical approach to the

markets can be successful and this is backed up by the fact that approximately 80% of the $30

billion in the managed futures industry is traded by exact systematic methods" (John R. Hill,

George Pruitt, and Lundy Hill. The Ultimate Trading Guide, 2000).

2.2. What is a good trading system

There are common characteristics of good trading systems. In Beyond Technical Analysis (Wiley

2001), Tushar Chande, the author, discusses "Six Cardinal" Rules in trading system design.

Kirkpatrick and Dahlquist, in their book Technical Analysis (FT press, 2008), consider these

rules as the characteristics of a good trading system:

" Positive expectation

* Small number of trading rules - ten rules or less

* Robust parameter values, usable over many different time periods and markets. Being

able to trade on different markets is a great indication of trading system robustness.

* Able to trade multiple contracts

* Use risk control, money management, and portfolio design

* Fully mechanical.

These characteristics are regarded as common criteria of a good trading system. However, most

trading systems are not evaluated individually. The later sections of this thesis consider trading

systems from other perspectives such as their portfolio diversification potential, the liquidity they

require and the investment capacity they can provide.

2.3. Simple system versus complex system

Many traders believe that simple trading systems with fewer parameters give comparably good

performance and are more robust than the complex trading systems that have many parameters.

In The Alchemy of Trading Systems (BookSurge Publishing, 2005), Matthew Hanson, the author,

explains why simple trading systems work better. With little data, one tends to favor the simpler

trading models because they contain fewer parameters and because tests like the likelihood ratio

test would strongly penalize the increase of parameters.

In An introduction to High-Frequency Finance (Dacorogna et al., 2001), authors had discussion

on simplicity versus complexity. "If simplicity is a desirable feature of theoretical models, one

should not necessarily seek simplicity at the cost of missing important features of the data-

generating process. Sometimes, it is useful to explore more complicated (nonlinear) models that

contain more parameters" (Dacorogna et al., 2001). According to the authors, increasing

complexity is strongly penalized when explored with low-frequency data because of the loss of

degrees of freedom. With high-frequency data, however, the penalty is relatively small because

of the abundance of samples even in a limited sampling period thus high-frequency studies can

be done for short periods. The results are less affected by structural change in the overall

economy than low-frequency studies with samples of many years. This gives us a better

opportunity to explore complex trading models. "High-frequency data paves the way for

studying financial markets at very different time scales, from minutes to years, and represents an

aggregation factor of four to five orders of magnitude." (Dacorogna et al., 2001). Market

behaviors observed on low-frequency data can be better validated by the fact that the same

behaviors are also observed with high significance on intraday data. This enables the

development of more complex trading models, such as those that simultaneously characterize

market patterns on different time scales.

Although it is feasible to develop more complex trading systems on high frequency data, it also

introduces the risk of overfitting, which increases when factoring in more rules, variables and

different timeframes.

2.4. Data sources and data characteristics

High frequency trading is equivalent to high frequency analysis. High frequency trading is more

about the analysis of high frequency data than it is about trading frequently.

In An introduction to High-Frequency Finance (Dacorogna et al., 2001), the authors provided a

thorough discussion of high frequency financial data. A few key points of high frequency data

presented by the authors are summarized in the discussion of previous sections (1.3 and 2.3).

Yan and Zivot, in Analysis of High-Frequency Financial Data with S-Plus (2003), also discussed

high frequency data characteristics "These high-frequency financial data sets have been widely

used to study various market microstructure related issues, including price discovery,

competition among related markets, strategic behavior of market participants, and modeling of

real time market dynamics. Moreover, high-frequency data are also useful for studying the

statistical properties, volatility in particular, of asset returns at lower frequencies."

According to Yan and Zivot (2003), high-frequency financial data possess unique features absent

in data measured at lower frequencies:

e The number of observations in high-frequency data sets can be enormous. The average

daily number of quotes in the EURUSD spot market could easily exceed 20,000. You

must handle and analyze a vast amount of data for any high frequency trading system.

* High frequency data are very noisy. High-frequency data is noisy and the data needs to

be cleaned skillfully before it can be used for modeling.

" Tick data by nature is irregularly spaced and with random daily numbers of observations.

This tremendously increases the complexity of data cleaning and system development.

The above characteristics of high frequency financial data substantially complicate the process of

statistical analysis and trading systems development. This may require specialized statistics and

econometrics software packages, more powerful development platforms and rigorous

implementation processes.

3. System design and development process

Trading firms can face many obstacles when managing the development and operation of trading

systems and the challenges are not unique to financial systems. 3 A trading system in essence is a

complex software system. Software engineering is a discipline that leverages systematic and

quantifiable approaches to the design, development, operation and reengineering of software

systems. Traders and financial analysts can learn to be engineers, although trading models are

even less tangible and constructs and stresses are measured in different ways.

3 Andrew Kumiega, Benjamin Van Vliet, Quality Money Management, San Diego: Academic Press. 2008. See quality principles

and best practices of managing the development and operation of investment systems in this book.

3.1. Design with Model-Based Systems Engineering (MBSE)

Systems engineering is an interdisciplinary field of engineering that focuses on how complex

engineering projects should be designed and managed. A high frequency financial trading system

is complex yet needs speed, reliability and robustness. It inherently requires high design

precision and design integration. Systems engineering deals with work-processes and tools to

handle this kind of project and it overlaps with both technical and human-centered disciplines,

such as control engineering and management processes.

Other engineering disciplines are transitioning from a document-based approach to a model-base

approach. Friedenthal, Moore and Steiner (A Practical Guide to SysML, 2008) asserts that

significant benefits of MBSE are to "enhance communications, specification and design

precision, design integration, and reuse that can improve design quality, productivity and reduce

the development risk" and MBSE places emphasis on "producing and controlling a coherent

system model, and using this model to specify and design the system."

Many MBSE system modeling languages are available. I have used SysML4 and Object-Process

Methodology 5 during my research for high frequency trading system architecture. Both are

capable of modeling high frequency trading systems and have different logical processes but

serve the same goal: calibrate, bound, and validate your designs.

SysML is a general purpose graphical modeling language that supports the analysis,

specification, design, verification and validation of complex systems. SysML provides a

means to capture the system modeling information as part of an MBSE approach without

imposing a specific method on how this is performed. The selected method determines

which activities are performed, their ordering, and which modeling artifacts are created to

represent the system.

4 See more details of SysML in Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The Systems

Modeling Language. Morgan Kaufmann . 2008

5 See more details of OPM in Dov Dori, Object-Process Methodology. Springer. 2002

* Object-Process Methodology, or OPM, is a new approach to modeling complex systems

that consist of humans, physical objects and information. It is a formal paradigm for

system development, lifecycle support, and evolution. OPM combines formal yet simple

graphics with natural language sentences to express the function, structure, and behavior

of systems in an integrated, single model. The name Object-Process methodology comes

from its two major building blocks: objects and processes. A third OPM entity is state,

which is a situation at which an object can be. Object, processes and states are the only

bricks involved in building systems.

SysML is useful for people with a software design background. I found it is easy to describe

system-wide processes and function loops in the system design. It is easier to use than OPM

when explaining high level processes to financial engineers, traders and other stakeholders who

do not necessarily have the knowledge of system architecture. OPM is a great tool that identifies

all building blocks (objects) of the system and the internal relationship (process) among these

objects. It drills down, zooms in and out so that we can capture the dynamics between different

components and sub-systems. OPM may scare you a little with the appearance of complexity, but

it is very easy to learn and understand. OPM is especially good for building conceptual models.

Both modeling languages are capable of modeling the system architecture and processes of a

trading system design. Which system modeling tool is better for you? It depends. You may

prefer one to the other, depending on different backgrounds, the preference of thinking processes

and the nature of your project. The most important thing is to adopt a system modeling

methodology in your trading system and process management. A high quality coherent system

model and design framework helps maintain consistency and achieve repeatable success.

Working with Robert Scanlon, a student of system design and management program'09 at MIT, I

modeled a high frequency trading system using Object-Process Methodology (OPM). The model

was split into several separate diagrams, each representing a process in different levels of the

OPM. A high level view of the separate diagrams shows the relationships that exist between

them. Each successive diagram is a zoom-in of a process represented in a higher level diagram.

All diagrams are in Appendix II for reference. This system model is an experimental model for

research purposes and not applicable to building a proper trading system. This thesis uses SysML

modeling as the tool to explain system components, processes and design framework. Appendix

I has the complete diagram of a trading system design framework and its processes. The purpose

of this model is strictly for research and is not applicable to any real world trading systems.

3.1.1. System Components

bW POoc*] Tradng System ISystem Componerts)

Figure 2: Trading System Components

In Chapter 2.1, a trading system is decomposed into the following six levels:

. Investment Philosophy

. Trading Strategies/Mathematical models

. Risk Management/Money Management

. Disciplined processes

. Backtest and Optimization

. Financial data and trading software

The six levels of a trading system can be absorbed into the system design - risk management,

trading strategies, financial data and trading software are components/object of a system and the

investment philosophy, backtesting and optimization are processes in the design. Figure 2,

following the MBSE approach, displays a first level decomposition:

* Trading strategies/model (the implementation of the investment ideas)

" Data (used to develop trading strategies and backtest)

" Risk Control model

" Application platform (either proprietary software or commercial products)

3.1.2. Users

There are many users directly or indirectly involved in every trading system. The four direct

users who are involved into trading system design process are:

Traders, who generally execute trades and may contribute trading ideas and have special domain

knowledge that is built into the trading system. Traders are generally the end users of a live

trading system. Automatic mechanical trading systems require very minimal human intervention

and traders will only monitor the systems and trade by phone as a back-up plan under certain

circumstances. Traders may work with programmers to generate a regular basis trade report that

contains trading statistics. Later chapters discuss how to measure trading system performance by

analyzing trade statistics.

Financial Analysts/Engineers spend most of their time on research and developing strategies,

backtesting and optimization. In some firms they are responsible for cleaning data but with help

from other teams such as IT support. They primarily focus on algorithm development and

prototyping in modeling languages such as SAS, MATLAB, and S-PLUS. They may leave pure

technology issues such as error handling and database design for programmers as they usually do

not program for production.

Programmers perform production programming. They are skillful with programming in C++, C#

or Java. They convert proofed prototypes into real time trading systems. They do not need to

understand financial markets, only to create fast, high quality production code. Programmers in

have a relatively flexible positions in the trading firm. They may help traders to generate trade

reports, or help financial engineers with data preparation.

IT support provides support functions, such as installation and configuration of the trading

system and ensuring network stability and security.

ut P~ocki Tr.a*g System DOmebhu(MEJob Roim I I

smkTOut

Tft-e

Figure 3: Trading system user cases

Figure 3 describes the major user cases for building and running a trading system in an

investment firm. A real firm does not necessarily categorize the team the same way as we do in

Figure 3, and job tasks can be overlapped. For instance, financial engineers may code for

production in a hedge fund startup, while an established trading firm may even add a separate

quality assurance team to test production programs.

.....

3.1.3. Live trading Process

ibd [Elock] Tradng System Domain[IAppcaion Layout]

(4bocka

Aplcto dm

<4ck: c~ck ccblcb
:DaCleaning listoric Da Proider API - iri Da Providers

:d DknkaA

<1cbkx'- Broker API

-k I ~ o h - - - - - - - - -- - a er

Traing Models

Trader

Figure 4: Live trading internal process diagram

The diagram in figure 4 displays a high level overview of the live trading process: the historical

data provided by data providers (it can be the firm's proprietary data or the data from live

traders) goes through a data cleaning process, which can be used to calculate realized volatility

and other market behaviors. The mathematical models of calculation are built into trading

models and well tested. Trading models must read the live trading data from the brokers. Usually

the live trading data goes through the exact same data cleaning process as for historical data. The

live data carries the current market information and the trading model reacts to that information

by factoring the quantified historical market behaviors. All trading decisions are evaluated by the

risk control model that is also based on historical and live market data. Ultimately, all orders are

sent to the Brokers API and executed.

In general, the high-frequency trading system is "a fully-automated process of electronically

receiving data, processing that data through decision logic, generating orders, communicating

those orders electronically and finally, receiving confirmation of transactions."' The trader adds

no value in terms of normal operation of the world of systematic trading and investment and

6 Thomas Neal Falkenberry, High Frequency Data Filtering, Tickdata Inc. 2002, [Online]. Available:

http://www.tickdata.com/pdf/TickDataFilteringWhitePaper.pdf

automated executions. The trader's job is to monitor and oversee the trading/investment systems.

When a machine breaks down and the algorithm stops working, the trader must steps in and

decide either to stop trading or process orders manually using a back-up system or by phone. The

trader role is critical to the firm.

In addition, Figure 4 shows the components of the application platform, which can be

decomposed into its own objects, including the API Module, Data Cleaning Module in live trade,

Visualization Module, and Execution Engine. The API Module exists simply to connect the Data

Providers to the Trading System. The Data Providers object can be broken into two other objects,

Historic Data Providers and Live Data Providers, which each are used as instruments to

differentiate sub-processes of Trading.

3.1.1. System Development Process overview

Trading system development can be divided into three major phases: research, prototype and

production. Each phase has its own internal processes and sub-systems respectively (See

Appendix I):

" Research phase - Every trading system starts with its own investment philosophy and

trading ideas that are generated by research. There are a variety of method one could use to

perform this research. Typically, one generates trading ideas based on market study,

literature review, reviewing existing models, or reverse engineering. The outcome of the

research phase is a design document of your trading system.

* Prototype phase - Prototyping is the phase to verify and validate your investment ideas. In

this stage you prepare and partition the historical high frequency data. You also build your

models in modeling software, such as MATLAB or S-PLUS. Finally, you backtest your

models and optimize them on different data partitions. By analyzing the backtesting

performance, you decide to either accept or reject an investment idea. If a trading model is

accepted, a detail design specification must be created so that the production team can code

precisely.

* Production phase - Production is the product realization process of the trading system. It

usually follows a software development and quality process and the implementation is based

on the detail design specification from the product prototyping. In addition to checking the

software quality attributes, paper trading and experimental trading will be performed during

the production phase and before launching the live trading service.

Trading system development does not necessarily follow a strict waterfall process. There can be

iterations or loops over each design phase as problems arise or new discoveries are made. While

Six Sigma or Agile Development may be useful, there is no standard or best approach to

implement the trading systems. As in every design project, the approach used and the tools

chosen is dependent on the problem, skill of the engineers, development time available, and

budget. However, the chosen design approach should provide structure and discipline while

being compatible with the abilities of financial engineers and programmers. Failure is most likely

to result without such design discipline.

3.1.2. Research phase: generate ideas

The investment philosophy and investment ideas generated by sound research are the foundation

for building any investment/trading system. There are various ways to perform this research.

Before discussing research approaches, let's look into more fundamental ideas that are the

principles and mindset of researching and designing a high frequency trading system:

e The investment philosophy and investment idea is the foundation for any trading system. If

there is a flaw in our investment philosophy or any logic error with our trading ideas, you are

risking capital.

e Understand the difference between discretionary and nondiscretionary systems. The high

frequency trading system design leans toward a nondiscretionary, automatic system that can

be quantified precisely with trading rules and parameters that are explicit and constant.

" Do not have an opinion of the market. For a lot of high frequency mechanical trading

systems, profits are made from reacting to markets quickly, not by predicting the future of

the market.

e Understand the downside of your investment idea and consider risk management in the

research phase. Start building your risk control model when you begin generating investment

ideas.

" Discipline is a key. An automatic trading system helps you stay disciplined and away from

greed and fear.

" Develop and customize your own processes. No existing process fits your research, design

and development precisely. Use frameworks and general guidance but customize them and

develop your own processes.

" Test often and without overfitting. Any research results must be backtested and proved. Test

often and avoid overfitting.

3.1.2.1. Research methods

The first decision you make for trading system design is that of trading philosophy and premises

built from research. There are various ways to do your investment research. Figure 5 shows that

research may include the literature review of academic papers, new perspectives on existing

models, market study, and even reverse engineering. "Reverse engineering initiates the redesign

process, wherein a product is observed, tracked and analyzed and tested in terms of its

performance, trade statistics and other characteristics." (Kumeiga and Van Vliet, 2008) The new

design could be a replica of the original or a new adaptation of its underlying trading system(s).

Backtesting and optimization will never discover new trading methods. Simply trying different

combinations of parameters and trade rules in backtesting typically results in overfitting your

strategy to historical data and are destined to fail in live trading.

Figure 5: Research phase

3.1.2.2. Design document

The outcome of the research phase is the design document that describes all relevant aspects of

our trading ideas. The design document will be used as the blueprint for prototyping in the next

phase. The design document can include:

" Description of your investment philosophy and investment ideas

" The intended market

* Specific instruments you will trade on

" How much volatility and liquidity is required

* Trade selection algorithms for both position opening and closing

" Trade execution algorithms

e Data requirements

" Optimization routines

" Time horizon for the system

* Risk management logic

* Performance metrics

ucsly Research[Resech)

4sAN*MIN

............

" Design alternatives

e Design pitfalls

" Future enhancements

When the design document is created, a team meeting can be held to go through the details.

Financial engineers may present their multiple designs in the team meeting and team members

can help each other validate the trading philosophy and premises and verify the design. The team

meeting acts as a gate meeting - control the quality of the design and decide whether it is good

enough to go to the next phase.

3.1.2.3. Case studies

As discussed in 3.1.2.1, there are several approaches to researching and generating

trading/investment ideas. For intraday trading strategies, the primary market study approach for

is to examine the intra-day patterns of the exchange rate behavior, using the "firm" bid-ask

quotes and transactions of currency pairs recorded in the electronic broking system of the spot

foreign exchange markets. Once trading ideas emerge, you can document them and generate

design documents for prototyping. The following sections discuss two case studies for trading

strategies formation.

3.1.2.3.1. Trading the non-farm payroll report

This trading idea originates from the article of "Trading the Non-Farm Payroll Report" by Cory

Mitchell (http://www.investopedia.com/articles/forex/09/non-farm-payroll-report.asp). The non-

farm payroll (NFP) report is a key economic indicator for the United States. It represents the

total number of paid workers in the U.S. exclusive of farm employees, government employees,
private household employees and employees of nonprofit organizations.

Of all news announcements, the NFP report consistently causes one of the largest rate

movements in the forex market. Upon release, the market is very volatile. Traders usually wait

for the wild rate swings to subside, and then attempt to capitalize on the real market move after

the speculators have been wiped out or have taken profits or losses. Traders attempt to capture

rational movement after the announcement, instead of the irrational volatility that pervades the

first few minutes after a news release. The release of the NFP generally occurs on the first Friday

of every month at 8:30am EST. This news release creates a favorable environment for active

traders in that it provides a near guarantee of a tradable move following the announcement. As

with all aspects of trading, whether you make money on it is not assured. Approaching the trade

from a logical standpoint based on how the market is reacting can provide you with more

consistent results than simply anticipating the market movement.

This section expands the outline of the design document as follows:

" Description of your investment philosophy and investment ideas:

o Of all news announcements, the NFP report consistently causes one of the largest rate

movements in the forex market. Trading the NFP report is based on waiting for a

small consolidation- the inside bar. After the initial volatility of the report has

subsided, the market chooses which direction it will go. By controlling risk with a

moderate stop, you are poised to make a potentially large profit from a huge move

that almost always occurs each time the NFP is released.

" The intended market

o Foreign Exchange

e Specific Instruments you will trade on

o Three currency pairs: USDJPY, USDEUR and GBPUSD

" How much volatility and liquidity is required

o Realized volatility < 10 basis points. The 10 basis points is the initial default value

based on market observation.

o Accumulated tradable size > 1OM US$

" Trade execution algorithms

o Nothing is done during the first bar after the NFP report (8:30-8:45am in the case of

the 15-minute chart).

o The bar created at 8:30-8:45 will be wide ranging; wait for an inside bar to occur after

this initial bar. Wait for the most recent bar's range to be completely inside the

previous bar's range.

o This inside bar's high and low rate set potential trade triggers. When a subsequent bar

closes above or below the inside bar, make a trade in the direction of the

breakout. You can also enter a trade as soon as the bar moves past the high or low

without waiting for the bar to close.

o Place a 30 pips' stop loss order on the trade you entered.

* Data requirements

o 15-minutes data from January 2, 2000 to April 30, 2009

o Economic data

o Calendar data

" Optimization routines

o Quarterly

o Optimize on G7 currency pairs

" Time horizon for the system

o 15 minutes

" Risk management logic

o Stop loss order: Place a 30- pips stop loss order on the trade you entered.

o Time based hard exit: Most of the move occurs within four hours. Exit four hours

after your entry time.

o Maximum trades: Make up to a maximum of two trades. If both get stopped out, do

not re-enter. The inside bar's high and low are used again for a second trade, if

needed.

o Leverage: No leverage

* Performance metrics

o Compounded Total Return

o Average net return per trade

o Maximum Intraday Drawdown

o Sharpe Ratio

o Sortino Ratio

" Design alternatives

o Use 5 minutes bar instead

o A trailing stop is an alternative to exit

*J. A pip is the last decimal point of a quotation. In the Forex market prices are quoted to the fourth decimal point. If the

EURUSD moves from 1.4319 to 1.4320, that is one pip.

3.1.2.3.2. Trading on short term momentum/trend

Trend analysis is the basis for many successful trading programs. Whether these programs are

trend following, taking positions in the direction of the trend, or mean reverting, taking positions

contrary to price moment, identification of the trend is an essential component. Trend system

works because "Prices are not normally distributed but have a fat tail. The fat tail means that

there are an unusually large number of directional price moves that are longer than would be

expected if prices were randomly distributed." (Perry J. Kaufman. New Trading Systems and

Methods). The fat tail is a statistical phenomenon caused by a combination of market

fundamentals and human behaviors. The net effect is that prices persist in movement in one

direction much longer than can be explained by random distribution. Based upon this theory, a

"naYve" high frequency strategy can be created - capture the short term momentum/trend in 5

minutes bar. See Figure 6 below. The logic behind this strategy is that whenever the price moves

very fast in a short time, there may be a positive feedback of the price action to push the price

further.

Figure 6: Short term trend

This section is my outline of the design document based upon current thinking:

* Description of your investment philosophy and investment ideas:

...........

o Whenever the price moves very fast in a short time, there may be a positive feedback

of the price action to push the price further. Capture the short term price trend.

" The intended market

o Foreign Exchange

" Specific Instruments you will trade on

o USDCHF

" How much volatility and liquidity is required

o Realized volatility < 12 basis points. The 12 basis points is the initial default value

based on market observation.

o Accumulated tradable size > 15M US$

e Trade execution algorithms

o Estimate the historic volatility of the past 2 hours by using simple moving average

o If the historic volatility < 12 basis points, trade is allowed

o Enter long position when price > 2 hour's high

o Enter short position when price < 2 hour's low

o Place a 15-pips stop loss order on the trade you entered

e Data requirements

o 5-minutes price data from January 2, 2000 to April 30, 2009

o Economic data

o Calendar data

e Optimization routines

o Monthly

o Optimize on G7 currency pairs

" Time horizon for the system

o 5 minutes

" Risk management logic

o Stop loss order: Place a 15-pips stop loss order on the trade you entered.

o Time based hard exit: Exit 2 hours after the entry time.

o Maximum trades: One trade at most for each direction at any given time

e Performance metrics

o Compounded Total Return

o Average net return per trade

o Maximum Intraday Drawdown

o Sharpe Ratio

o Sortino Ratio

" Design alternatives

o Use 1-minute bar instead

o A trailing stop is an alternative to exit

" Implementation Shortfall

o Stop orders may have big slippage

o The spread and slippage during the news may be huge, so avoid trade around the

economic news release

" Future enhancements

o Implement an accelerator indicator in order to reduce return volatility - focus not only

on the momentum (trend in the underlying), but also on the trend in the momentum

signal itself (acceleration).

o Perform trend survival analysis and statistical calculations to determine if there is a

way to find an optimal point (duration or return) to get out of the current position and

wait for the next signal.

3.1.3. Prototype phase

Before the prototype, the idea in its abstract format may contain logic errors and flaws in the

math. Prototyping proves investment ideas and mathematics before moving on. Prototyping

allows you to validate investment philosophy, detect logic errors and evaluate alternative

methods and help others understand the math behind investment/trading ideas. The primary

reason for prototyping is to resolve uncertainties early in the process. With prototyping, you

know whether the mathematical models are feasible and if the system is robust enough to profit

under different market conditions. And you can also get a good estimation about the workload of

the implementation for live trading applications. As Figure 7 shows, prototyping starts with data

preparation and partition, goes through the trading model coding process and finally the

backtesting and optimization.

"Prototyping is an exploratory and interactive process." (Kumeiga and Van Vliet, 2008) It

follows the requirements of a design document that consists of the investment philosophy,

mathematics, data requirements, and so on. The prototyping process forces the team to clearly

define the mathematical models and addresses all related issues, such as data issues in the early

stage of the process. The result of the prototyping will be a clear definitive requirements

specification on which the development of production software will be based. (Kumeiga and Van

Vliet, 2008) The document of detail design specification is created in this phase.

Prototype Phase

Clean Historical Data Data Parition Coding Backtest and Optimize

Production
Begins

<ddatastore>J
Raw Data

Clean Data <Adatastore> Data Paritioning Coding based Trading Modellstrategy
Cleaned Data on Design Doc

result <<structuredo

datastore~ n-Sample Test
Train Data

<edatastore>. Optimization
Validation Data

dat-castore>> Out-of-Sample

Test Dat Test Yes

Preformance
-- - - - - - Review

Acceptdal?

1'es

Create Detal

Specification

jYes
Managemert

- Review -
Accepted?

Figure 7: Prototype phase

3.1.3.1. Gather data

The cleaned historical data is the foundation of successful backtesting and optimization. Backtest

may itself create problems due to known and unknown errors in the data. Gathering high quality

historical data is not just a case of buying and integrating them into the system. For a trading

firm, once they decide which asset class they are going to invest or trade, the important first step

is to investigate the availability of data needed. They need to decide what kind of data they need,

where to get and how to clean the data so that the data fits the needs of their trading systems.

There are three sources for historical data:

Purchasing data from historic data providers, sometimes the historical data can be

provided by your brokers if you meet certain criteria. When purchasing data, you need to

identify the need for data (tick based, 1-minute based, etc.) and data availability. "You

also need to consider the experience of vendors, their references from their past

customers, their financial viability and compliance" (Kumeiga and Van Vliet, 2008)

Lastly, you must judge data quality independent of the claims of data providers. If you

have existing trading systems with some known high quality data, run a backtest on both

your data and the data from the vendors and do a comparison.

e There are free data to download from internet. Some companies or organizations offer

free data downloads. This approach is not recommended since you do not have control of

the data quality. Unreliable data can lead to the wrong microstructure calculation

resulting in bad trades in which the money lost would be more than the price of the better

quality data. Using high quality, more expensive data can be cost efficient. However,

even high quality data may have problems so checking data quality and the cleaning

process cannot be skipped.

* You can also start collecting data by recording the market price using programs and

cleaning and converting the data into the formats you really need. Brokers often provide

an application programming interface (API) that can feed in live trading data. Some

commercial trading platform provide a function called record market data and replay so

you can 'save' today's data and test your trading system in the future using today's data.

This approach requires the financial engineers to have sophisticated programming and

database administration skill.

Olsen & Associates has a high frequency currency database. NYSE TAQ provides Equity

historical high frequency data, and Berkeley Options database provides Options high frequency

data. There are also commercial redistributors such as (wrds.wharton.upenn.edu) and QAI Fast-

Tick (www.qaisoftware.com)

3.1.3.2. Data type

"Sophisticated trading/investment systems may potentially incorporate several different types of

data." (Kumeiga and Van Vliet, 2008) Data types include:

" Price data 7usually consists of the read bid/ask price, trade, and volume data. For high

frequency trading system, the tick data might be flat ticket which means multiple trades

going off at the same price. Some financial derivatives don't have historical trade price

data, instead, they use valuation data8.

* Economic data tends to be one of the most important factors for short-term market

movements and this is particularly true in the currency market. High frequency trading

systems are sensitive to short term price movements so economic data is important to the

systems. For currency trading, the most important economic releases are: Non-Farm

Payrolls, Interest rates, retail sales, inflation (CPI), trade balance and manufacturing PMI.

Some economic data is extremely important to short time price movement. The list in

Figure 8 ranks the most market-moving data for the U.S. dollar in 2007, 2006 and 2004,

on a 20-minute basis.

7 Definition of Price data is based on Quality Money Management (Kumeiga and Van Vliet, 2008). See more details

of different data types from this book.
8 Definition of Valuation data (next page) is based on Quality Money Management (Kumeiga and Van Vliet, 2008)

Ti isiipiors -Ca S -0us T _p kdci Ci1 ANrs (Zi uisTF-T pI 0Miior-s Mnl64 b0 s)
Non-FaIn Payrok 69pips 1 Non-Fm Paynds - 1 FaP s

T- kiOnestRas (Fi) 57 Pips 2 kinirestais(F0MC) 2 WiieRsFond
3 in(CPOi 39 pips 3 Trade Balanw 3 Foreign Pudiases US Treas (11C)
4 Reba Sales 35pips 4 innafn(CP) 4 TradeBalace
5 PrdurPdidR 35 pips 5 Reil Sales 5 CureAOunt

New HOe Sales 34pips 6 FoigPurdiaseiU li Duale Goods
Exg Home Sales 34Pps 7 ISMMamfadiing 7 Rel Sales

8 Durabl Goods Ors 33 Psi 8 PrduePin IdeX 8 hdlan(CPI)
9 Non-F Pards 32 pips 9 Nonfain Papnls 9 NonFan Payrs

Figure 8: Most influential market moving indicators

Source: John Kicklighter, Top 5 Most Market Moving Indicators for the US Dollar, DailyFx.com, 2008

Calendar data consists of the release date/time of the most important economic data. Some

high frequency trading systems are purely built based on price data. Even these systems need

to be aware of economic calendars by either avoid trading on that period, or take advantage

of it such as "trading on new" strategies. Figure 9 lists the approximate times (EST) at which

the most important economic releases for most traded currencies. These are also the times at

which you and your trading models should be paying extra attention to the markets.

U.S. USD 8:30 - 10:00
Japan JPY 18:50 - 23:30

Canada CAD 7:00 - 8:30
U.K. GBP 2:00 - 4:30
Italy EUR 3:45 - 5:00

Germany EUR 2:00 - 6:00
France EUR 2:45 - 4:00

Switzerland CHF 1:45 - 5:30
New Zealand NZD 16:45 - 21:00

Australia AUD 17:30 - 19:30

Figure 9: Times of important economic releases

Source: Kathy Lien, Trading On News Releases, Investopedia.com, 2008

e Valuation data is different from price data. For over-the-counter (OTC) derivatives, no

historical trade price data exists. The price of these assets exists only in theory, so it is a

valuation price.

* Fundamental data consists of key business items, such as earnings, sales, inventories, and

rents. It can be calculated data based on fundamental facts such as P/E Ratio, ROE, and

Free Cash Flow etc.

3.1.3.3. Data cleaning process

Algorithm creation, backtesting and risk management requires good and clean data. High

frequency tick raw data is noisy, and the data cleaning and filtering process is partially important.

The importance of data cleaning is underestimated quite often by financial engineers who might

spend days on backtesting before realizing the data is not good enough. Bad data can lead to bad

models and losing investment capital. High-frequency trading is data sensitive so spending time

on cleaning is vital.

Price data is most often used in high frequency data. A high frequency currency trading system

relies on four major sub-processes to clean the price data.

" Check timestamps. Some timestamps are not in the correct order and require sorting. .

* Eliminate outliners. To reduce the effect of data errors and outliners, search and

replace/delete bad ticks in the original time series.

" Filter out non-trading days, including weekends, holidays and special events. For foreign

exchanges, filter weekend data (5pm Friday - 5pm Sunday).

* Converting into different timeframes such as 1 minute, 5 minutes, 15 minutes, and 30

minutes so traders can use this data based on the requirements of their trading strategies.

According Kirkpatrick and Dahlquist (2008), the historical data vendor should always be

consistent with the data vendor of live trading in practice because different vendors may have

different data feeding; The authors also pointed out that "dirty" data can happen on a live feed

thus data cleaning is also necessary in live trading. So, in practice, the live trading system also

has an internal function for data cleaning, as Figure 4 shows.

3.1.3.4. Data partition

When using the entire data set for developing the model, you may introduce overfitting. Given a

set of random data, you may be able to create a model that generates good performance. Using

the whole data set to build out the model, you may be able to generate a superior model, but in

most case you are creating overfitting. To address this problem, use data partitioning - divide

cleaned historical data into three partitions that include training data, validation data and test

data.

" Training data (sometimes called the In-Sample data) typically is the largest partition and

contains the data used to build models. The amount of data required depends on the

periods of the system. A general rule is that the data set can "generate at least 30 to 50

trades and cover where the market traveled up, down and sideways" (Kirkpatrick and

Dahlquist, 2008) After confirming the parameters and trading rules with training data, run

optimization on it. Alternatively, re-divide data by following the optimization methods

described in Chapter 6.

" Validation data is used to assess the performance of each model so you can compare

different models. You can also compare the performance on validation data to the one

generated based upon training data. If a model with good performance on training data

immediately fails with validation data, you know there is overfitting. Use the validation

data for fine-tuning to improve the model.

e Test data (sometimes called the Out-of-Sample data) is used to re-verify the models and

ensure everything is working properly, with no adjustment anymore.

For high frequency systems, the in-sample test is on training data. Optimization is done on both

training and validation data.

3.1.3.5. Coding in modeling software

For practitioners, MATLAB, SAS, S-PLUS are great tools for prototype programming. Many

financial engineers use Excel, but it may not be powerful enough to handle vast amount of high

frequency data. If your models require high computation power, you may have to either upgrade

your hardware or have your in-house developed system support the modeling. Usually in-house

systems leverage the power of C++ or C# to develop specific software tools to support certain

file handling or computation in a much faster manner. However, C++ and C# require higher

programming skills compared to MATLAB and other typical modeling languages. There are

always decisions and tradeoffs to make when considering different aspects of your project.

In general, prototyping coding is totally separated from production programs. People who

perform this task can be in totally different groups. The first group of people can be traders,

financial analysts and financial engineers. The prototyping will be based on widely used

financial modeling tools, such as MATLAB and SAS. The second group can be software

engineers, who do not have any opinions on the models. These people implement the production

code in C++ and C# based on the definitive requirements specification generated from the

prototyping. The argument is that prototyping focuses on speed and financial engineers need to

explore individual requirements, design and implementation options as quickly as possible. Fast

exploration is often at the expense of reliability, program performance, robustness and program

maintainability, but the whole prototyping process involves many rapid iterations. These

sacrifices (the lack of reliability, robustness, etc.) actually enable developers to explore design

alternatives and detect design flaws in a cheap way. Another argument to support this approach

is that the financial engineers' strength is in the quantitative side and may not have the

programming skill to generate high quality production code with the robustness and reliability

required in live trading. Conversely, highly experienced programmers may not have sufficient

investment knowledge to generate good investment ideas. Some trading firms prefer to have

good "pure" programmers who do not have much financial knowledge so "they are able to resist

the temptation to change your idea and add some extra 'features' in production". This seems

more like an organization management issue to me.

Another approach is called "Evolutionary Prototypes" (Andrew Kumiega, Benjamin Van Vliet.

Quality Money Management) which means the product team prototypes selected parts of a

system first, and then evolves the rest of the system from those parts. This approach does not

discard the prototyping code. Rather, it evolves the code into the production application that will

be used in live trading. That is, prototyping evolves into the production software. The working

system is the final product of a series of evolutionary prototypes. In this approach, prototyping

must be built on high quality code from the very beginning. Evolutionary prototyping requires

strong management and it works well for a highly experienced and well organized team. It may

slow down the process if the team lacks necessary skills. According to Quality Money

Management, the evolutionary prototyping should start with riskiest areas. Prototyping the

riskiest part first helps you identify the biggest obstacle so you can estimate the efforts and

feasibility of the project. This approach may work well with a small agile team with solid skills

in both finance and software engineering. Or the project is a cumulative development project.

The team starts with a simple working model and gradually builds more comprehensive models

on the top the working model in the previous iteration by either modifying/adding new features

or integrating other systems.

Modeling language such as MATLAB provide features that convert prototyping codes into C++

or C# format. This kind of feature enables you to reuse the prototyping code in production and

facilitates evolutionary prototypes.

3.1.3.6. Prototype quality assurance

During the prototyping phase, the most important aspect of programming quality assurance is to

be sure that all calculations are correct. This sounds simple, but it is surprisingly overlooked.

Before backtesting and optimization, always ensure the correctness of modeling code.

Backtest and Optimization

According to Kumiega and Van Vliet (Quality Money Management, 2008), a backtest is a test of

the ability of trading/investment strategies to meet the requirements of the design document and

"simulation and statistical analysis of a trading/investment strategies' input and output based on

cleaned historical data by factoring in transaction costs and slippage in execution." A trading

strategy will be accepted and sent to production if it generates acceptable performance, otherwise

it will be rejected. For the 'rejected' trading models, either it will be re-investigated at the

research phase, or it is discarded for good.

Optimizing is a process to achieve the best result (may not necessarily be the best return) by

changing the parameters of a trading strategy/model. Designing experiments is one of the most

important benefits of optimization. The designer might find parameters and trading rules that do

not work under any circumstance and can be eliminated.

Backtest and optimization can be performed at two stages - the prototyping phase and the

production phase. Backtesting and optimization at the prototyping phase is "essentially the make

or break stage of the trading/system design and development project." (Kumiega and Van Vliet

2008) The project either gets killed or moves forward to the prototyping stage. The backtesting

and optimization at the production phase is a verification and validation process for the quality of

the production - the implementation of prototype. The right methodologies and processes of

backtesting and optimization are vital and are a focus point of this thesis. Chapters 4 and Chapter

5 will discuss backtesting and optimization respectively.

3.1.4. Production

Once the prototypes of trading and risk models are accepted, production is the last procedure to

convert a trading/investment ideas into live trading strategies/models. The detailed design

specification from the prototyping phase and the accepted prototypes will be the material the

implementation is based on.

3.1.3.7.

a-ce y Producton[=Production 1)

Figure 10: Production Phase

3.1.4.1. Production programming

Production programming should follow software engineering processes and the best practices of

the software industry. Some companies may depend on highly skilled software engineers for the

implementation/coding without a systematic design approach. The assumption is that good

engineers can make the design work without any process. Extraordinary people, who are highly

experienced and motivated, can get the job done, but dream teams are rare and companies risk

burning out their best employees. Heroics in software development are an indication of process

ILsuesTrn TcaT

PIser Treenr&T

b Od

failure that can lead to dysfunctional behavior in both organizations and individuals (Yourdon,

Edward. Death March: The Complete Software Developer's Guide to Surviving "Mission

Impossible" Projects, Prentice Hall, Englewood Cliffs, NJ, 1997.) Software engineering

practices are designed to make the development of software less chaotic and reliably repeatable.

One of the most important characteristics of a trading system is it must have high quality. No

functional bug is allowed. A small error can cause a large capital loss or simply a disaster. Some

coding strategies, such as 'code, release and fix later', used by some internet startups will not

work with trading firms. You need adopt a suitable programming process and apply the best

practices of software engineering to form your own (most comfortable) approach to achieve

superior quality of coding. The methodology and practices that were used to code experimental

systems of this research are Test-driven development (TDD) and Pair trading.

" TDD is a software development technique that uses short development iterations based on

pre-written test cases that define desired improvements or new functions. Each iteration

produces the code necessary to pass that iteration's tests. Finally, programmers re-factor the

code to accommodate changes. A key TDD concept is that preparing tests before coding

facilitates rapid feedback changes (Quoted from Wikipedia).

" Pair programming is a software development technique in which two programmers work

together at one work station. One types in code while the other reviews each line of code as it

is typed in. The person typing is called the driver. The person reviewing the code is called the

navigator. The two programmers switch roles frequently (possibly every 30 minutes). While

reviewing, the observer also considers the strategic direction of the work, coming up with

ideas for improvements and likely future problems to address. This frees the driver to focus

all of his or her attention on the "tactical" aspects of completing the current task, using the

observer as a safety net and guide (Quoted from Wikipedia).

At first glance, TDD and Pair programming appears to take longer and cost more. Research,

however, has shown the opposite result - these processes and techniques increase discipline,

provide better time management, and the coding quality is much improved. Again, there is no

standard best approach for production programming. You need to create your own development

process that best fits your team.

As Figure 10 shows, besides implementing software quality processes, financial engineers run

backtest for the production version of trading system to ensure it achieves the expected

performance on historical data. For some cases, financial engineers run optimization against the

production code to see if there is any difference between the prototypes and the production.

3.1.4.2. Development team and tool

The competitive advantage of real time high frequency trading system is speed. For some high

frequency trading systems, fast computation and execution are critical. Unlike the programming

in prototypes, the programming during the production phase shifts from fast iterations that

validate mathematical models, to robustness, reliability and fast execution in live trading.

Programming tools used will be C++, C# or others that generate fast-execution at runtime.

Prototyping usually is done by financial engineers while production is performed by 'pure'

programmers with the right skill set.

3.1.4.3. Production quality assurance

For production code, there are three phases of quality assurance. First, the software coding

quality has to be assured. Software quality assurance methodologies apply here and can include

test-driven development, scenario based testing and test automation. As is true for development

process, you can adopt the right approach for software quality assurance, considering the

extremely high quality requirement for trading systems. Second, the testing will include the

backtesting and sometimes optimization. The major purpose of the backtesting at this stage is not

to prove the validity of investment ideas and the math as you do in prototyping. Instead,

backtesting compares the performance of the production code to one of the prototypes so you

know if the production code was implemented successfully or not. With the same historical data,

one would expect similar performance. During certain circumstances, the testing result can be

different between prototyping and production. However, the gap should be in an acceptable

range and the reason for the gap should be fully investigated. Finally, there is a live trading test

before you start the full trading. This test includes:

" Paper trading test. This is simulated trading where a trading system generates real-time

signals based on the live data, but only trades with virtual money and executes dummy orders.

Paper backtesting is helpful to uncover algorithm failures under extreme market conditions.

" Experimental trading test. This is live trading with small amounts of money. Experimental

trading helps you detect algorithm flaws in the live market and helps identify operational

issues.

Figure 11: Three trading types

After evaluating the performance generated by paper trading and experimental trading

(performance measurement is discussed in Chapter 6) and deciding to go or kill, the trading

system will be either sent back for rework, or be launched for a full live trading. For high

frequency trading strategies, it is best to start paper trading first, and then small money

experimental trading before final launch of full live trading (see figure 11). For low-frequency

data, it may not be feasible to go through all three types of trading because it may wait too long

to accumulate enough paper trades and experimental trades that represent a good sample.

4. System backtest

A backtest is a simulation of a trading/investment strategy on historical data. It is a validation

and verification process for model assumptions and parameters. It is essentially a quality

assurance test against the detailed design document generated in the prototyping phase. After

financial engineers determine what data to use, it is then necessary to partition data into test data,

validation data, and test data, run an in-sample test, optimize and finally run an out-of-sample

test. Financial engineers will then analyze the outputs of tests in order to validate against the

design document for the strategy developing. The outcome of tests will help you decide whether

to accept the trading strategies or reject them. 9

4.1. Testing process

The testing process must be carefully defined before testing can begin. The process is more

important than the actual testing. Correctly defined, the final system will have realistic goals and

predictive qualities. Incorrectly done, it will look successful but fail in live trading. Although this

chapter discusses backtest, we start with emphasizing the importance of investment philosophy -

everything starts with ideas. Backtesting should be the process of validating your investment

ideas. If the test results confirm your ideas and investment philosophy then you can have

confidence in the trading strategy. If you indiscriminately test all indicator combinations, you

will have no idea whether you are finding a good trading strategy or simply overfitting the data.

Re-emphasizing the importance of investment philosophy is to underline the importance of

backtesting to validate mathematical models and the investment ideas behind the math. Numbers

are like people; torture them enough and they will tell you anything (Anonymous - quoted by

John Ehlers in Rocket Science for Traders). So before fully kicking-off the testing, you should

have the design document in place and fully understand the investment ideas and expectations.

The following ideas of deciding value range, value distribution and ranking parameters were

adopted from Perry J. Kaufman's book, New Trading Systems and Methods (Wiley, 2005).

4.1.1. Decide value range

There are a large number of tests with high frequency data if you have multiple parameters. Due

to the vast amount of data, each sample run on minutes-based high frequency data may take

much longer than on daily data. If the trading strategy is based on the tick data, the time each run

takes is significantly larger than the 1-minute data. See Figure 12, the estimated test time for

USDCHF short term momentum trading system.

9 Definitions of backtest are based on Quality Money Management (Kumiega and Van Vliet, 2008)

40000

35000

30000

25000

20000

15000

10000

5000

0

Daily Hourly 30 min15 min 5 min Ticket

Figure 12: Test time (minutes) for USDCHF on short term trend trading

You must select fewer values to test for each parameter so choose them carefully and wisely

based on the statistics from market studies. Tests with many parameters on high frequency data

can be extremely time-consuming. In New Trading Systems and Methods (Wiley, 2005),

Kaufman pointed out that limiting the test is actually an advantage because the value selection

process forces you to find the most reasonable value ranges for the trading strategy. "Without

these restrictions, the test process gets closer to indiscriminant exploration, and less of a

validation process."

4.1.2. Decide value distribution

After deciding the value range, you should also examine the values in the range and decide if you

really need them all. For most cases, it is not necessary or practical to test all the values for a

valid parameter, considering you have large amounts of intraday data. The values do not need to

be spaced evenly apart. 10 For instance: 1, 2, 3, 5, 10, 15, 30, 60 would be a better choice of

values than using all numbers between 1 and 60, because, in terms of percentage of change, the

10 See more details of identifying parameters including deciding value range, value distribution and ranking parameters (next

page) from New Trading Systems and Methods (Perry J. Kaufman, 2005)

difference between 1 and 2 will be significant, but the difference between 59 and 60 minutes is

negligible. Using equal increments will weight this set of tests heavily towards the long end;

therefore, the comparison is not very reasonable to some extent. In practice, you can use methods

like exponential smoothing to reduce the number of tests. You will achieve significant benefits

by limiting the values used in the test.

4.1.3. Rank parameters

Testing one parameter at a time can give you a better understanding of the dynamics of a system.

It is hard to understand the dynamics between different parameters when testing a few

parameters simultaneously. The most important parameter should be tested first, and a parameter

ranking system is needed. This ranking should be based on the trading model logic and the

correlations with historical performance. For instance, risk control using the stop-loss, or time-

based exit should improve the final model at the later stage of trading model research. However,

it is not likely that simply cutting losses will generate net profits, so it does not make sense to

rank the stop-loss point as the first parameter tested. Ranking parameters also gives you a good

chance to rethink and validate all parameters used by the trading algorithm. When ranking

parameters in practice, you can close out some parameters if they turn out to be insignificant

statistically. You should capture relevant parameters that impact the trading algorithm but be

aware that the more parameters you have, the greater the risk of overfitting.

4.1.4. Decide trading cost

High frequency trading has the advantages of smaller actual loses and more trades. A high

frequency trading system that performs well with more trades will give more confidence of

future performance. On the negative side, high frequency trading has to fight against slippage

and overall trading cost. The trading cost has a significant impact on high frequency trading

models and can change the appearance of the multiple-test performance pattern. The trading cost

usually includes the spread, slippage and brokers' commission. Before you run backtesting, you

should have a reasonable estimation for the trading costs you may encounter during live trading.

Unrealistic estimation of trading costs can lead to the failure of live trading.

4.2. In-sample and out-of-sample test

"Performing proper in-sample test and out-of-sample tests is perhaps the most critical step in the

development process of a trading system."(Kumiega and Van Vliet, 2008) Once you decide the

test size, the parameters and value range, you can start performing the in-sample and out-of-

sample tests. In-sample will be run on both train and validation data. Out-of-sample will be

allowed on out-of-sample/test data only. "Financial engineers are aware of the extent to which

in-sample results may differ from out-of-sample results." (Kumiega and Van Vliet, 2008) When

this happens, the trading algorithm must be examined and its parameters and trading rules need

to be re-verified. A robust system should be profitable on both in-sample and out-of sample.

Always save the test partition and never tune your system based on test data. A backtest result

will yield one of three possible outcomes.'"

* Profitable in both in-sample and out-of-sample. In this case, trading models will be

accepted and the production will start as soon as possible.

* Profitable only for in-sample but not out-of-sample. A three-step approach needs to be

taken. First, check the prototype code and make sure there are no programming errors.

Next, tune the parameters and re-test the models to see if you can achieve profitability in

both in-sample and out-of-sample. After a few rounds of testing and if the model is still

profitable in one test and not the other, you reject the model and move to the third step

which sends the 'rejected' model back to the strategy developing phase and continues the

research.

e Unprofitable in both in-sample and out-of-sample. The model will be rejected and for

most cases it will be discarded for good, unless the investment/trading idea is very solid

and supported by premier research. In this case, you may send the models to the strategy

developing phase for continuing research.

" See the discussion of three possible outcomes of a backtest in Quality Money Management (Kumiega and Van Vliet, 2008)

4.3. Avoid overfitting

4.3.1. Save out-of-sample/test data

As discussed previously, you need to partition the data into separate pieces. You can then build a

model using one dataset ("training dataset" or "In-Sample") and evaluate its fit by applying the

model to another set ("test dataset" or "Out-of-Sample"). Invariably the out-of-sample

performance will be considerably less than the performance generated in the optimization. A

tendency for system designers when they see unsatisfactory out-of-sample results is to repeat the

optimization process until the out-of-sample results 'become' better. Eventually the out-of-

sample data becomes the same as in-sample data and the process gets closer to overfitting. Thus

you might alternatively want to use three sets: training dataset (to build the initial model),

validation dataset (to guide the progression of the model), and a test dataset to gauge the

accuracy of the final model. A method to check whether a good performance is truly generated

from the model, or simply just because of overfitting, is that you can test the same model with

different currency pairs, or even different asset classes. If the same parameter set works in

different markets then you have a reliable and robust system. This seems counter-intuitive

because you would expect that each currency pair or each market is different and requires

different parameters and values. However, if a high frequency trading system needs different

parameters for different currency pairs, it might be an indication of overfitting.

4.3.2. Different time horizons

During a backtest, returns over different periods should be consistent. For instance, a high

frequency model with parameters optimized over a 3 year holding period should have a similar

return over 6 months, 1 year, 2 year and 5 years. Other measurements such as sharpe ratio,

standard deviation and daily maximum drawdown should be consistent in different holding

periods. If a high frequency trading model does not work or is not consistent in different time

horizons, it is a sign of over-fitting and you should reject the model. Many high frequency

models are market neutral and are able to deliver consistent returns during different time

horizons.

4.3.3. Different time frames

Like the ideas at different time horizons, a trading system that is built on a 5-minutes bar should

work for on different timeframes such as 1-minute and 15-minutes. Returns over different

timeframes should be consistent. If a high frequency trading model works on 5-minute bar data

but totally failed on 15-minutes bar, a further investigation is needed.

4.3.4. Different Instruments

The consistency of returns on different instruments is a good indication of robustness for a

trading system. If trading system is designed and optimized for USDJPY and the same system

works for EURUSD without changing any parameter, then you know the system is robust. The

characteristic of robustness can help you detect overfitting issues for certain models. If a trading

system works well with USDJPY but fails with EURUSD, it raises a red flag and you might have

to investigate. This is especially true for high frequency trading systems that are price data based

and use technical trading strategies, such as momentum, break-out and resistance/support line.

4.3.5. Different asset classes

Another method of reducing the effect of overfitting is to use more than one market as an out-of-

sample test. It is difficult to have the same parameters set in different markets and at the same

time overfitting. This is counter-intuitive because you would expect that each market has its own

personalities and requires different parameters. However, the high specialization of a trading

system (only works for one asset class) usually indicates that the results are from overfitting, not

live trading performance. A reliable system should work in most markets.

4.3.6. Student T-test

Among tests that help determine whether the results are significant, the student t-test is the most

useful. It helps financial engineers to detect a systematic bias in the data by showing that the

mean of the data is significantly different from zero. This information helps us decide whether

the results of only a few trades represent a good system, or whether a series of losing trades

implies that a system has no value. For a series set of trades produced by backtesting and live

trading, the t-test is:

t= average trade results/1 STD of trade results * (number of trades) A 0.5

The values of t that are needed to be significant can be found in the T-Distribution table. For

instance, if you have 31 trades, the degree of freedom is 30, and the value of T must be greater

than 2.423 to achieve 99% confidence in results.

4.3.7. Case studies

The short term trend trading system is built for USDCHF on a 5-minute bar. To test for

robustness and overfitting, the two following tests were performed:

e Test the trading system on different timeframes. This original trading system is built and

optimized based on a 5-minute bar. Without changing any parameters, the out-of-sample

test was performed for 1-minute and 15-minutes bar data from 2008. See Figure 13. The

monthly returns are relatively consistent among all three time frames. The annualized

return for 1, 5 and 15 minutes are 1.62%, 4.53%, and 4.22% respectively. The trading

system is relatively robust and the chance of over fitting is small.

2.00%

1.50%

1.00%

0.50%

0.00%

-0.50%

-1.00%

-5 minutes

-1 minute

- 15 minute

-1.50%

Figure 13: Different time frames for USDJPY on short term trend trading

...

* Test on different currency pairs. The trading system was built for USDCHF. Also

performed was an out-of-sample test on the data of 2008 for USDEUR, USDJPY and

USDCAD. See Figure 14 for results. The trading system failed on EURUSD and

USDJPY. The first impression would be that the trading system has an over-fitting issue

because it only 'fits' the currency pair the system was built and optimized upon.

However, taking a closer look at the design document and production code, it seems that

the problems are related to hard-coded absolute values, such as the historical volatility

and stop-loss value.

6,00%
4.00%

2.00%

0.00%

-2.00% IqCF ERSY UDA

-4.00%A

-6.00%

Figure 14: Returns of different currency pairs

When you say "historic volatility < 12 basis points" in the design document, it introduced

the 12 basis point into the system as an absolute and hard-coded value. A better approach

is to use the relative value so the real value can be calculated against each currency in

real time. For instance, instead of saying "historic volatility < 12 basis points", say that

"historical volatility < 0.95 * simple moving average of last 40 bars". Thus the value of

historical volatility is dynamically calculated based on the simple moving average for

each currency pair in run time. The calculations of take-profit and stop-loss values can

use the same approach. See Figure 15 that presents out-of-sample test results after

eliminating a few hard-coded values and re-optimized based on USDCHF. Although the

return of USDCHF is reduced, the returns across different currency pairs are more

consistent. EURUSD and USDCAD have a similar return during the basktest without any

adjustment of parameters. However USDJPY only has a very few trades during 1 year

period in the backtest and this indicates that there is a need for future improvement in the

implementation.

3.50%
3.00%

2.50%

2.00%
1.50%
1.00%-

0.50%-+
0.00%

USDCHF EURUSD USDJPY USDCAD

Figure 15: Returns of different currency pairs after eliminating hard-coded values

Based upon the above two tests, I would argue that the implementation of a trading system

itself is vital to the robustness of a trading system and minimizes the overfitting. So when we

see signs of over fitting, it doesn't necessarily mean the investment/trading ideas are bad. The

failure may arise from the implementation itself.

4.4. Trading statistical data

After backtesting, it is important to analyze the statistical data. Not only will it help to measure

performance, it will also identify the weakest areas, such as strategies taking too much liquidity

and depending on the market conditions. Chapter 6 discusses statistical data and how to measure

systems' performance.

5. Optimization

Optimization is the process of using historical data to test the effects of changes in parameters of

a trading system to produce the maximum value of the test objective. The test objective can be

net profit, sharpe ratio or a robust solution. An important benefit of optimization is that the

designer may find parameters and rules that do not work under any circumstances and can be

eliminated. Another benefit of optimization is to maintain peak performance in a trading system

under the continuously changing market. Although often beneficial, optimization can be one of

the most misused techniques. The principal concern with optimization is the tendency to overfit.

Overfitting occurs when the optimization program finds the absolute best set of parameters to the

training data and the model is twisted to fit the data set being tested. (Kirkpatrick and Dahlquist,

2008) Avoiding overfitting was discussed in Chapter 4. There are many ways to optimize your

trading system. The most basic approach is sequential testing that tests different combinations of

parameters. The complex techniques may include genetic algorithms and Monte Carlo sampling.

For sequential testing, methods including whole sample, out-of-Sample and walk/step forward

optimization are discussed in Technical Analysis (Charles D. Kirkpatrick, Julie R. Dahlquist.

2008). They are simple and effective. I therefore summarized them in the following discussion.

5.1. Methods of optimization

5.1.1. Whole sample analysis

A whole sample analysis is to run optimizations on the entire sample data. Without out-of-

sample data for validation, this approach has a tendency of overfitting. But in some cases whole

sample optimization will be useful:

" Use whole sample on one of the currency pairs to train the model, and then test it against

other currency pairs.

" After determining the optimal parameter sets, divide the optimization period roughly into

tenths to fifteenths and run a test on each period using the optimal parameter set. Then

you can analyze the results from the ten to fifteen different test periods to see if the

system generated consistent results under all conditions. (Kirkpatrick and Dahlquist,

2008) Consistency is important. If the results are not consistent, the system has a major

problem and should be optimized using other approaches. If it still does not work, then

you need to reject this trading system.

5.1.2. Out-of-Sample analysis

Out-of-Sample analysis is a commonly used approach that divides the data into two sections, one

of 70-80% percent of the data to be used to develop the system called in-sample data, and one of

20-30% called the out-of-sample data. This concept of data partitioning is well known. The 20%-

30% out-of-sample data usually are the most recent data. This OOS method optimizes based on

the in-sample data and then tests it on the out-of-sample data. If the result of the out-of-sample

period is similar to the in-sample performance, the system is considered validated.

A key here is to include bull, bear, sideways movements and a good number of price shocks of

various sizes.12 A tendency for the system designer when they see unsatisfactory out-of-sample

results is to repeat the optimization process with different parameter values to make the out-of-

sample results 'become' better. Eventually the out-of-sample data becomes the same as in-

sample data and the process gets closer to overfitting.

For out-of-sample optimization, you can alternatively divide data into three partitions: train data,

validation data and test data. The in-sample test and optimization will never happen on test data

(otherwise, it is not out-of-sample).

5.1.3. Step forward analysis

It is close to OOS but moves the test window (in-sample). The test window moves forward until

the test reaches the most recent data. For each test window, an optimization on in-sample data is

run and an out-of-sample test is performed. The results from all testing windows will be analyzed

for profitability and consistency. The acceptable parameter sets are those that have consistent

performance across different test windows.

12 In New Trading Systems and Methods (Kaufman, 2005) and Technical Analysis (Kirkpatrick and Dahlquist, 2008), authors of

both books pointed out that sample data must cover different market circumstances

6. Systems measurements

When analyzing a trading system, you must look at the system's robustness, the profit, the risk,
and its investment capacity, and its contribution to portfolio performance.

6.1. Robustness of system

Robustness means how strong and healthy your models are - whether it will be able to perform

consistently when the market changes, because the market never exactly repeats the past, which

is already introduced into the system design as a basis. The formal definition for system

robustness from MIT's engineering system division is "Robustness - demonstrated or promised

ability to perform under a variety of circumstances; ability to deliver desired functions in spite of

changes in the environment, uses, or internal variations that are either built-in or emergent" [In

ESD Terms and Definitions, http://esd.mit.edu/WPS/esd-wp-2002-01.pdf]. Particularly for a

high frequency trading system, the system's robustness can be considered as a measurement of

counter-overfitting thus the indicators of overfitting addressed earlier serve well as the indicators

of a trading system's robustness. A quick check of a system's robustness is to determine whether

your high frequency trading system can profit consistently in:

" different time horizons

e different timeframes

" different instruments

e different asset classes/markets

6.2. Profit and risk measures

Measuring and comparing the profitability of various trading systems requires a number of

performance criteria, in order to evaluate any trading strategy during the test phase and to

compare those results to an out-of-sample period or to live trading. The major ways to measure

the profitability and risks fall into four categories described in the following sections.

6.2.1. Absolute metrics

There are a number of metrics of performance and risks, and you need to determine

measurements based on the nature of trading systems and the requirements of investors:

* Compounded Total Return. The total compounded return during the testing period. The

return is compounded in order to compare with another trading system.

* Average Return per Month: It is usually used to analyze the seasonality of return and the

consistency of trading performance. Graphical format is usually used.

* Annualized rate of return. It can be used for relating the results of a system against that of

a market benchmark.

* Maximum Drawdown: The peak-to-trough decline during a specific record period and it

is measured from the time a retrenchment begins to when a new high is reached. It gives

a rough idea of the minimum capital needed to trade in this market. For high frequency

trading systems, you can use intraday maximum drawdown due to the fact that most high

frequency trading positions are closed in a very short time period. A surprisingly small

maximum drawdown is a sign of overfitting or too small a test period. It is safer to take

the average maximum drawdown from a range of tests than the one from the best result.

" Average time to recover: A large drawdown may be inevitable in live trading; a shorter

time to recovery is most desirable.

* Average net return per trade: This is a great indicator about how sensitive the high

frequency system will be to trading cost.

* Sharpe Ratio: It tells us whether a return is due to smart investment decisions or a result

of excess risk. It is a common measure of the return versus risk of a portfolio or system,

but it has several problems when applied to trading systems. First, it penalizes upside

fluctuations as much as downside fluctuations. Second, it does not distinguish between

intermittent losses and consecutive losses.

" Sortino Ratio. It is similar to Sharpe ratio. But it uses downside deviation for the

denominator instead of standard deviation, the use of which doesn't discriminate between

up and down volatility.

" Number of Positive Return Months. During the test period, the number of months with

positive return.

* Number of Negative Return Months. During the test period, the number of months with

negative return.

* Smoothness of returns: Investors always prefer the consistency of return so a smoother

equity curve is always more desirable than one with high volatility.

A general rule with these metrics is that one would expect, in live trading, that the return will be

half of returns generated in backtesting and the risk (maximum drawdown etc) will be two times

the backtesting result.

6.2.2. Trade statistics

Trade statistics are important to understand the reliability and health of the trading systems. They

are also very useful pieces of information that can help us with understanding risk and cash

management.

* Number of trades: This indicates whether your test was statistically reliable. A high

frequency trading system generates a larger number of trades so it has a better chance of

performing up to expectation.

" Percentage winning trades: The more winning trades your trading system has, the better

chance of its being profitable in live trading.

* Average holding period: All else being equal, a trading system that holds positions

shorter than another system is preferable.

" Averages profit each trade: A high frequency trading system is extremely sensitive to

transaction costs and this figure will tell you how sensitive your trading system will be

against the trading cost. If this value is too small, it means that your trading system is

very vulnerable to transaction costs.

* The distribution of different types of orders. The shares of the total number of trades for

Limit orders, Stop Orders and Market Orders respectively. In Figure 16, the distributions

of different types of orders are not desirable due to the fact that the majority of orders are

stop orders so the system may have very high slippage when the market become volatile

and liquidity becomes an issue.

0 Limite Orders

0 Stop Orders

a Market Orders

Figure 16: Sample distribution of trading order types

6.2.3. Benchmarking with index

Benchmarking is another way to measure the performance of a trading system or the portfolio.

First, it shows to the investors how much you out-perform or under-perform the stock indexes.

Second, it tells us the correlation between our trading systems and stock indexes. As Figure 17

shows, the performance of a portfolio of FX high frequency trading systems out-performs the

Shanghai Stock Exchange (SSE) and Dow Jones Industrial Average (DJI). The portfolio equity

curve is smooth and it is not impacted by the bullish/bearish stock markets.

1 _$:P' - 'n'

Figure 17: Portfolio performance comparing to stock indexes

6.2.4. Correlations with index

Another important measurement of a high frequency trading system is its correlation with

traditional assets classes. A lot of investors would consider high frequency trading products as a

diversification of their investment portfolio so it is useful to calculate the return correlation

between a high frequency trading system and major stock markets. As figure 18 shows, a

portfolio of FX high frequency trading systems has very low correlations with major stock

market indexes so it has great diversification potentials for investors.

DJIA -0.04

S&P 500 -0.02

NIKKEI 225 0.04

Hang Seng -0.16
DAX -0.04

FTSE 100 -0.01

Shanghai SE Composite -0.04
Figure 18: Correlations with stock indexes

6.3. Investment capacity

Investors are concerned with the capacity of your trading systems. They want to grasp how much

money you can manage. Calculation of investment capacity is not easy for any asset class. There

are different systematic approaches to calculating the investment capacity for different markets

and different investment products. A simple approach I adopted to calculate investment capacity

for high frequency currency trading systems is based on the liquidity your brokers can provide in

your trading hours and the commission they ask for. There are three factors in the calculations:

" Market Depth in broker's trading book

* Broker's commissions

* Trading hours

For instance, if a new trading system can only accept 2 pips as the maximum trading cost after

the broker's commission and spread, you need to look into your broker's trading book to see how

much liquidity you can get in 2 pips during your normal trading hours. Figure 19 is a screenshot

taken from Interactive Broker's Trader WorkStation (TWS). There is Euro $37,850,000 as the

cumulated tradable size (in Bid) for EURUSD in less than 2 pips. You can average the tradable

size in the normal trading hours of your systems so you can get a good estimation of how much

you can trade/invest for this particular trading system.

Eve Q2ds~s Quigu4 O a

6 CaoegM Imes n UGmWWe

Figure 19: Market depth for EURUSD

7. Conclusion

The goal of this research was to demonstrate how the application of academic research and the

native processes and well-established, coherent design principles of an IT engineering product

framework could improve the design, development and reliability of high frequency financial

trading systems. By nature, computation-based high frequency trading systems are highly reliant

on software engineering systems. Developing a successful high frequency trading system can

increase the competitive advantage and profitability of investment firms. Being able to convert

academic research results and mathematical equations into a profitable trading system quickly is

critical. From a systems and a business perspective, the ability to implement high frequency

trading algorithms in a real-world trading environment efficiently and effectively is a key

competitive advantage. Investment firms that succeed acquire great leverage in the new world of

global, high-speed trading. A major point of emphasis in my research is to point out and

demonstrate how the application of a coherent system design framework and rigorous

implementation processes, such as backtesting and optimization, is the most important part of

high frequency trading system development.

My research used two approaches (SysML and OPM) of model-based systems engineering

(MBSE) to architect and create development process models for a high frequency trading system.

My thesis shows that well-defined system models and processes are fundamental to ensuring

repeatable success and consistent performance. Because a high frequency trading system is

inherently complex and requires precise calculation and fast execution, MBSE offers significant

potential benefits to facilitate a high quality design, improve productivity and reduce the

development risk. Arguably, without any system modeling, exceptional people may still build a

good trading system. However, making success highly dependent on extraordinary individuals is

risky, unsustainable and does not scale. Although there is no one standard system design

framework and set of processes, as is true for all engineering disciplines, the approach selected

and the tools chosen depend on the nature of the problem, the skill of the engineers, and the

development time and budget. To maximize the chance of success and minimize the risk of

failure, this thesis shows that building a high frequency trading system requires the application of

a proven design framework and process management principles.

High frequency trading systems deal with large amounts of data and are extremely calculation-

intensive. You must have a strategic plan to backtest effectively and efficiently. Without using

appropriate backtest techniques, the differences in system performance can be enormous. My

research also points out that backtesting and optimization is more important than the trading

algorithms used in developing a system. You can build a good trading system with a naive model

if you backtest and optimize it correctly. With the right backtesting approaches and techniques,

you can prove that your models will not work if they are incapable of avoiding the loss of capital

in live trading. Similarly, the misuse of backtesting and optimization can lead to trading failures,

even if the underlying trading algorithms and rules are sound.

Lastly, my research concludes that flexible, continuous system improvement is also fundamental

to success. The design framework, development processes and backtesting techniques employed

in system development need to be constantly reviewed and improved. Rigid design principles

and processes do not optimize chances of success. The inherent nature of high frequency trading

requires systematic innovation, development and continuous improvement to guarantee the

quality of design and performance of processes of high frequency trading systems.

Appendix I: Trading System Development Process

[r r

Figure 20: Trading system development framework and process (SysML)

................ NNOMEMO

Appendix II: Trading System Modeling with Object-Process
Methodology

Trading Strategy Set

FinancialI Engineer Programmer Trader

Trading Application Strategy Developing and Trading TaigSrtg

Portfolio

Market Studies & Research Broke Data Vendor IT System
- - - - - - - - - - - - - - - - . . rN Market Value

Figure 21: Trading system development framework and process (OPM)

Figure 21 to Figure 28 represent trading system models generated in Object-Process

Methodology (OPM). This first diagram is the highest level diagram and the following diagrams

are created by zooming in or unfolding on this diagram, each of the following diagrams

represents the sub-systems and their internal process. This highest level diagram represents the

primary process and components (objects) in which it interacts. The system does two things.

First, it creates and modifies Trading Strategies, which is used within the system. Also, it is

possible that the trading strategies/models developed by his or her system could be exported into

another system. The Trading process also alters the Portfolio object, which is a representation of

all the positions held by those using the trading system. The entire purpose of the system is to

alter the Portfolio over time, such that its Market Value (a characteristic exhibited by the

Portfolio) is hopefully being increased over time.

In order to function, Trading also requires IT Systems, Data Providers, and Brokers as

instruments. These are all considered external to the system, since they typically exist and the

people implementing this system do not have control of them. The IT System is managed by the

IT Staff. This relationship is not represented with an explicit process, because it is not of much

importance when describing this system. Financial engineer, programmer and trader also are

involved in the Trading strategies and live trading process.

Figure 22: Trading system development framework and process - Unfolded (OPM)

This diagram displays a first level decomposition of the trading system. The two major functions

of such a trading system are separated. One part focuses on strategies and the other is for live

trading.

Figure 23: Trading diagram - zoomed-in (OPM)

This trading diagram is a zoom-in from figure 23 which represents the live trading process. And

the next figure (Figure 24) is another zoom represents the strategy developing process.

..........

Figure 24: Trading strategies developing diagram - Zoomed-in (OPM)

This diagram is a zoom-in of strategy developing from the upper level diagram. It is composed

of four sub-processes, including Data Cleaning, Strategy Developing, Backtesting, and

Executing. Typically, Executing is constantly acting, while the other three processes are running

in sequence to develop trading strategies.

Trading Application

Date C eaning Module - -

Visualization Module

Backtesting Module

I API Module :

Figure 25: Trading application - Unfolded (OPM)

74

In addition, the Proprietary software is decomposed into its own objects, which include API

Module, Data Cleaning Module, Visualization Module, Execution Engine, and Backtesting

Module. The API Module exists simply to connect the Data Providers to the Trading System,

which we did not believe warranted the introduction of a specific process. Therefore, it is

connected directly to the Data Provider using a structural link. The other four objects each are

directly related to sub-processes of Trading. This is intentional - since we are creating software it

makes the most sense to organize the application around the primary processes of the application

to facilitate development.

The Data Providers object can be specialized into two other objects, Historic Data Providers and

Live Data Providers. Each are used as instruments for different sub-processes of Trading.

Figure 26: Data cleaning - Zoomed-in (OPM)

This is a zoomed-in OPM diagram for data cleaning that contains sub-processes we have

discussed in early chapters based on SysML.

Matket Studie-

Figure 27: Trading strategies/models developing - Zoomed-in (OPM)

This diagram shows the process of how financial engineers generate investment ideas and risk

management models based on research. Then financial engineers create a design document that

will be used by prototyping. This process has been discussed in chapter 3.

The next two diagrams are Backtesting and Production, respectively. The processes themselves

are explained in chapters 3 and 4 and these two diagrams are presentations of the same processes

but in OPM format.

As discussed earlier, both SysML and OPM are powerful and capable. Choosing between them

depends on our background, the nature of the projects and your personal thinking process

preference.

Figure 28: Backtesting process - Zoomed-in (OPM)

Figure 29: Production/Deploy process - Zoomed-in (OPM)

......................

Bibliography

Michel M. Dacorogna, Ramazan Gengay, Ulrich M6ller, Richard B. Olsen, Olivier V. Pictet. An
introduction to High-Frequency Finance. Academic Pres. 2001

Perry J. Kaufman. New Trading Systems and Methods, Wiley. 2005

Andrew Kumiega, Benjamin Van Vliet. Quality Money Management: Process Engineering and
Best Practices for Systematic Trading and Investment. Academic Press. 2008

Charles D. Kirkpatrick, Julie R. Dahlquist. Technical Analysis: The Complete Resource for
Financial Market Technicians. FT Press. 2008.

Lawrence Bernstein, C. M. Yuhas. Trustworthy Systems Through Quantitative Software
Engineering. Wiley-IEEE Computer Society Press. 2005

John R. Wolberg. Expert Trading Systems: Modeling Financial Markets with Kernel Regression.
Wiley. 2000.

Tushar Chande. Beyond Technical Analysis: How to Develop and Implement a Winning Trading
System, 2nd Edition. Wiley. 2001

Bingcheng Yan, Eric Zivot. "Analysis of High-Frequency Financial Data with S-Plus"
Department of Economics, University of Washington. 2003

Galit Shmueli, Nitin R. Patel, Peter C. Bruce. Data Miningfor Business Intelligence: Concepts,
Techniques, and Applications in Microsoft Office Excel with XL Miner. Wiley-Interscience 2006

Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann . 2008

Dov Dori , Object-Process Methodology. Springer. 2002

Edited by Christian Dunis and Bin Zhou. Nonlinear modelling of high frequency financial time
series. Wiley. 1998.

Edited by Pierre Lequeux. Financial markets tick by tick: insights in financial markets
microstructure. Wiley. 1999.

Thomas Stridsman, Trading systems that work: building and evaluating effective trading
systems. McGraw Hill. 2001.

John Kicklighter. "Top 5 Most Market Moving Indicators for the US Dollar". DailyFx.com. 2008

Cory Mitchell. "Trading The Non-Farm Payroll Report". Investopedia.com. 2009

Kathy Lien. "Trading On News Releases ". Investopedia.com. 2008

Free Online Forex Trading Course. FOREXHIT.com
http://www.forexhit.com/learn-forex/free-online-forex-trading-course.html#chart

