7 research outputs found

    Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model

    Get PDF
    Photonic spiking neural networks (PSNNs) potentially offer exceptionally high throughput and energy efficiency compared to their electronic neuromorphic counterparts while maintaining their benefits in terms of event-driven computing capability. While state-of-the-art PSNN designs require a continuous laser pump, this paper presents a monolithic optoelectronic PSNN hardware design consisting of an MZI mesh incoherent network and event-driven laser spiking neurons. We designed, prototyped, and experimentally demonstrated this event-driven neuron inspired by the Izhikevich model incorporating both excitatory and inhibitory optical spiking inputs and producing optical spiking outputs accordingly. The optoelectronic neurons consist of two photodetectors for excitatory and inhibitory optical spiking inputs, electrical transistors’ circuits providing spiking nonlinearity, and a laser for optical spiking outputs. Additional inclusion of capacitors and resistors complete the Izhikevich-inspired optoelectronic neurons, which receive excitatory and inhibitory optical spikes as inputs from other optoelectronic neurons. We developed a detailed optoelectronic neuron model in Verilog-A and simulated the circuit-level operation of various cases with excitatory input and inhibitory input signals. The experimental results closely resemble the simulated results and demonstrate how the excitatory inputs trigger the optical spiking outputs while the inhibitory inputs suppress the outputs. The nanoscale neuron designed in our monolithic PSNN utilizes quantum impedance conversion. It shows that estimated 21.09 fJ/spike input can trigger the output from on-chip nanolasers running at a maximum of 10 Gspike/second in the neural network. Utilizing the simulated neuron model, we conducted simulations on MNIST handwritten digits recognition using fully connected (FC) and convolutional neural networks (CNN). The simulation results show 90% accuracy on unsupervised learning and 97% accuracy on a supervised modified FC neural network. The benchmark shows our PSNN can achieve 50 TOP/J energy efficiency, which corresponds to 100 × throughputs and 1000 × energy-efficiency improvements compared to state-of-art electrical neuromorphic hardware such as Loihi and NeuroGrid

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Memristor: Modeling, Simulation and Usage in Neuromorphic Computation

    Get PDF
    Memristor, the fourth passive circuit element, has attracted increased attention from various areas since the first real device was discovered in 2008. Its distinctive characteristic to record the historic profile of the voltage/current through itself creates great potential in future circuit design. Inspired by its high Scalability, ultra low power consumption and similar functionality to biology synapse, using memristor to build high density, high power efficiency neuromorphic circuits becomes one of most promising and also challenging applications. The challenges can be concluded into three levels: device level, circuit level and application level. At device level, we studied different memristor models and process variations, then we carried out three independent variation models to describe the variation and stochastic behavior of TiO2 memristors. These models can also extend to other memristor models. Meanwhile, these models are also compact enough for large-scale circuit simulation. At circuit level, inspired by the large-scale and unique requirement of memristor-based neuromorphic circuits, we designed a circuit simulator for efficient memristor cross-point array simulations. Out simulator is 4~5 orders of magnitude faster than tradition SPICE simulators. Both linear and nonlinear memristor cross-point arrays are studied for level-based and spike-based neuromorphic circuits, respectively. At application level, we first designed a few compact memristor-based neuromorphic components, including ``Macro cell'' for efficient and high definition weight storage, memristor-based stochastic neuron and memristor-based spatio temporal synapse. We then studied three typical neural network models and their hardware realization on memristor-based neuromorphic circuits: Brain-State-in-a-Box (BSB) model stands for level-based neural network, and STDP/ReSuMe models stand for spiking neural network for temporal learning. Our result demonstrates the high resilience to variation of memristor-based circuits and ultra-low power consumption. In this thesis, we have proposed a complete and detailed analysis for memristor-based neuromorphic circuit design from the device level to the application level. In each level, both theoretical analysis and experimental data versification are applied to ensure the completeness and accuracy of the work

    Optoelectronics – Devices and Applications

    Get PDF
    Optoelectronics - Devices and Applications is the second part of an edited anthology on the multifaced areas of optoelectronics by a selected group of authors including promising novices to experts in the field. Photonics and optoelectronics are making an impact multiple times as the semiconductor revolution made on the quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy harvesting, medical instrumentation, materials and device characterization and scores of other areas of R&D the science of optics and electronics get coupled by fine technology advances to make incredibly large strides. The technology of light has advanced to a stage where disciplines sans boundaries are finding it indispensable. New design concepts are fast emerging and being tested and applications developed in an unimaginable pace and speed. The wide spectrum of topics related to optoelectronics and photonics presented here is sure to make this collection of essays extremely useful to students and other stake holders in the field such as researchers and device designers

    Microscopy and Analysis

    Get PDF
    Microscopes represent tools of the utmost importance for a wide range of disciplines. Without them, it would have been impossible to stand where we stand today in terms of understanding the structure and functions of organelles and cells, tissue composition and metabolism, or the causes behind various pathologies and their progression. Our knowledge on basic and advanced materials is also intimately intertwined to the realm of microscopy, and progress in key fields of micro- and nanotechnologies critically depends on high-resolution imaging systems. This volume includes a series of chapters that address highly significant scientific subjects from diverse areas of microscopy and analysis. Authoritative voices in their fields present in this volume their work or review recent trends, concepts, and applications, in a manner that is accessible to a broad readership audience from both within and outside their specialist area
    corecore