9,154 research outputs found

    Proactive Location-Based Scheduling of Delay-Constrained Traffic Over Fading Channels

    Full text link
    In this paper, proactive resource allocation based on user location for point-to-point communication over fading channels is introduced, whereby the source must transmit a packet when the user requests it within a deadline of a single time slot. We introduce a prediction model in which the source predicts the request arrival TpT_p slots ahead, where TpT_p denotes the prediction window (PW) size. The source allocates energy to transmit some bits proactively for each time slot of the PW with the objective of reducing the transmission energy over the non-predictive case. The requests are predicted based on the user location utilizing the prior statistics about the user requests at each location. We also assume that the prediction is not perfect. We propose proactive scheduling policies to minimize the expected energy consumption required to transmit the requested packets under two different assumptions on the channel state information at the source. In the first scenario, offline scheduling, we assume the channel states are known a-priori at the source at the beginning of the PW. In the second scenario, online scheduling, it is assumed that the source has causal knowledge of the channel state. Numerical results are presented showing the gains achieved by using proactive scheduling policies compared with classical (reactive) networks. Simulation results also show that increasing the PW size leads to a significant reduction in the consumed transmission energy even with imperfect prediction.Comment: Conference: VTC2016-Fall, At Montreal-Canad

    Supervisory Control Optimization for a Series Hybrid Electric Vehicle with Consideration of Battery Thermal Management and Aging

    Get PDF
    This dissertation integrates battery thermal management and aging into the supervisory control optimization for a heavy-duty series hybrid electric vehicle (HEV). The framework for multi-objective optimization relies on novel implementation of the Dynamic Programing algorithm, and predictive models of critical phenomena. Electrochemistry based battery aging model is integrated into the framework to assesses the battery aging rate by considering instantaneous lithium ion (Li+) surface concentration rather than average concentration. This creates a large state-action space. Therefore, the computational effort required to solve a Deterministic or Stochastic Dynamic Programming becomes prohibitively intense, and a neuro-dynamic programming approach is proposed to remove the ‘curse of dimensionality’ in classical dynamic programming. First, unified simulation framework is developed for in-depth studies of series HEV system. The integration of a refrigerant system model enables prediction of energy use for cooling the battery pack. Side reaction, electrolyte decomposition, is considered as the main aging mechanism of LiFePO4/Graphite battery, and an electrochemical model is integrated to predict side reaction rate and the resulting fading of capacity and power. An approximate analytical solution is used to solve the partial difference equations (PDEs) for Li+ diffusion. Comparing with finite difference method, it largely reduces the number of states with only a slight penalty on prediction accuracy. This improves computational efficiency, and enables inclusion of the electrochemistry based aging model in the power management optimization framework. Next, a stochastic dynamic programming (SDP) approach is applied to the optimization of supervisory control. Auxiliary cooling power is included in addition to vehicle propulsion. Two objectives, fuel economy and battery life, are optimized by weighted sum method. To reduce the computation load, a simplified battery aging model coupled with equivalent circuit model is used in SDP optimization; Li+ diffusion dynamics are disregarded, and surface concentration is represented by the average concentration. This reduces the system state number to four with two control inputs. A real-time implementable strategy is generated and embedded into the supervisory controller. The result shows that SDP strategy can improve fuel economy and battery life simultaneously, comparing with Thermostatic SOC strategy. Further, the tradeoff between fuel consumption and active Li+ loss is studied under different battery temperature. Finally, the accuracy of battery aging model for optimization is improved by adding Li+ diffusion dynamics. This increases the number of states and brings challenges to classical dynamic programming algorithms. Hence, a neuro-dynamic programming (NDP) approach is proposed for the problem with large state-action space. It combines the idea of functional approximation and temporal difference learning with dynamic programming; in that case the computation load increases linearly with the number of parameters in the approximate function, rather than exponentially with state space. The result shows that ability of NDP to solve the complex control optimization problem reliably and efficiently. The battery-aging conscientious strategy generated by NDP optimization framework further improves battery life by 3.8% without penalty on fuel economy, compared to SDP strategy. Improvements of battery life compared to the heuristic strategy are much larger, on the order of 65%. This leads to progressively larger fuel economy gains over time

    Online games: a novel approach to explore how partial information influences human random searches

    Full text link
    Many natural processes rely on optimizing the success ratio of a search process. We use an experimental setup consisting of a simple online game in which players have to find a target hidden on a board, to investigate the how the rounds are influenced by the detection of cues. We focus on the search duration and the statistics of the trajectories traced on the board. The experimental data are explained by a family of random-walk-based models and probabilistic analytical approximations. If no initial information is given to the players, the search is optimized for cues that cover an intermediate spatial scale. In addition, initial information about the extension of the cues results, in general, in faster searches. Finally, strategies used by informed players turn into non-stationary processes in which the length of each displacement evolves to show a well-defined characteristic scale that is not found in non-informed searches.Comment: 17 pages, 10 figure
    corecore