7,000 research outputs found

    Source-Channel Coding under Energy, Delay and Buffer Constraints

    Get PDF
    Source-channel coding for an energy limited wireless sensor node is investigated. The sensor node observes independent Gaussian source samples with variances changing over time slots and transmits to a destination over a flat fading channel. The fading is constant during each time slot. The compressed samples are stored in a finite size data buffer and need to be delivered in at most dd time slots. The objective is to design optimal transmission policies, namely, optimal power and distortion allocation, over the time slots such that the average distortion at destination is minimized. In particular, optimal transmission policies with various energy constraints are studied. First, a battery operated system in which sensor node has a finite amount of energy at the beginning of transmission is investigated. Then, the impact of energy harvesting, energy cost of processing and sampling are considered. For each energy constraint, a convex optimization problem is formulated, and the properties of optimal transmission policies are identified. For the strict delay case, d=1d=1, 2D2D waterfilling interpretation is provided. Numerical results are presented to illustrate the structure of the optimal transmission policy, to analyze the effect of delay constraints, data buffer size, energy harvesting, processing and sampling costs.Comment: 30 pages, 15 figures. Submitted to IEEE Transactions on Wireless Communication

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Optimal power control in green wireless sensor networks with wireless energy harvesting, wake-up radio and transmission control

    Get PDF
    Wireless sensor networks (WSNs) are autonomous networks of spatially distributed sensor nodes which are capable of wirelessly communicating with each other in a multi-hop fashion. Among different metrics, network lifetime and utility and energy consumption in terms of carbon footprint are key parameters that determine the performance of such a network and entail a sophisticated design at different abstraction levels. In this paper, wireless energy harvesting (WEH), wake-up radio (WUR) scheme and error control coding (ECC) are investigated as enabling solutions to enhance the performance of WSNs while reducing its carbon footprint. Specifically, a utility-lifetime maximization problem incorporating WEH, WUR and ECC, is formulated and solved using distributed dual subgradient algorithm based on Lagrange multiplier method. It is discussed and verified through simulation results to show how the proposed solutions improve network utility, prolong the lifetime and pave the way for a greener WSN by reducing its carbon footprint

    Viking '75 spacecraft design and test summary. Volume 1: Lander design

    Get PDF
    The Viking Mars program is summarized. The design of the Viking lander spacecraft is described
    • …
    corecore