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Abstract—Future deployments of wireless sensor network
(WSN) infrastructures for environmental or event monitoring are
expected to be equipped with energy harvesters (e.g. piezoelectric,
thermal, photovoltaic) in order to substantially increase their
autonomy. In this paper we derive conditions for energy neutrality,
i.e. perpetual energy autonomy per sensor node, by balancing
the node’s expected energy consumption with its expected energy
harvesting capability. Our analysis assumes a uniformly-formed
WSN, i.e. a network comprising identical transmitter sensor
nodes and identical receiver/relay sensor nodes with a balanced
cluster-tree topology. The proposed framework is parametric to:
(i) the duty cycle for the network activation; (ii) the number
of nodes in the same tier of the cluster-tree topology; (iii) the
consumption rate of the receiver node(s) that collect (and possibly
relay) data along with their own; (iv) the marginal probability
density function (PDF) characterizing the data transmission rate
per node; (v) the expected amount of energy harvested by each
node. Based on our analysis, we obtain the number of nodes
leading to the minimum energy harvesting requirement for each
tier of the WSN cluster-tree topology. We also derive closed-form
expressions for the difference in the minimum energy harvesting
requirements between four transmission rate PDFs in function
of the WSN parameters.

Our analytic results are validated via experiments using
TelosB sensor nodes and an energy measurement testbed. Our
framework is useful for feasibility studies on energy harvesting
technologies in WSNs and for optimizing the operational settings
of hierarchical WSN-based monitoring infrastructures prior to
time-consuming testing and deployment within the application
environment.

Keywords—wireless sensor networks, energy harvesting, energy
neutrality, analytic modeling

I. INTRODUCTION

ENERGY AUTONOMY is widely recognized as one of
the key challenges for monitoring infrastructures based on

wireless sensor networks (WSNs) [1]. Several works approach
the problem of energy efficiency focusing on a particular
aspect of the WSN-based monitoring [2]. Technology-oriented
approaches design new circuits and systems for more efficient
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harvesting [3], [4], [5], or strive for more efficient scheduling
and transmission protocols [6], [7], [8], [9], [10]. These try
to bridge the gap between data sensing and transmission
requirements and the corresponding energy harvesting and
energy storage capability of the underlying hardware. Other
approaches propose optimal energy management policies under
given energy harvesting, sensing and transmission capabilities
[11], [12], [13], [14], [15]. Such policies optimize the man-
ner each sensor node performs its data gathering and buffer
management in order to minimize the required energy con-
sumption. For a node that has an energy storage unit (battery)
that can store hundreds of hours worth of operating energy,
if the expected energy dissipation over a time interval, e.g.
24 hours, is matched with the amount of energy expected to
be harvested from the environment within the same interval, it
can be said that the sensor node achieves energy neutrality [2].
That is, the node is expected to be able to operate in perpetuity
without the requirement for human intervention. Due to the
physical limitations of harvesting technology, practical energy
neutrality is achievable today under the notion of duty cycling
[16], where sensor nodes are suspended during long periods
of inactivity in order to preserve (and replenish) their battery
resources.

In this paper, we approach the problem of energy neutrality
in a more holistic, system-oriented, manner. Specifically, we
focus on the common application scenario of a monitoring
infrastructure where sensor nodes follow a periodic duty cycle
in order to capture and transmit measurements to a base
station, or to another node that relays the information to a base
station. We derive a parametric model for energy neutrality
in function of the system settings under the assumption of
a uniformly-formed WSN, i.e. a network of identical sensor
nodes that are: (i) producing data traffic with the same sta-
tistical characterization and (ii) connected to the base station
via a cluster-tree topology [8] represented by a symmetric
and acyclic graph with balanced bandwidth allocation per
link. Within this framework, the key advance of our work in
comparison to previous work on optimal energy management
policies [2] [11], [12], [13], [14] is that we provide closed-
form expressions for the minimum-required harvested energy
in order for each node to remain energy neutral. Our specific
contributions are:

• For each tier of a WSN cluster-tree topology, analytic
derivation of the number of nodes that leads to the
minimum requirement for harvested energy under four
commonly encountered marginal PDFs for the data
transmission rate per sensor.
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• Analytic comparison of the minimum requirements for
energy harvesting under different application parameters
and different data transmission rates.

• Validation of the theoretical results via: (i) an energy
measurement testbed and TelosB nodes employing a
recently-proposed collision-free protocol (TFDMA [6])
(ii) establishment of optimal operational parameters
within two application scenarios for WSN-based moni-
toring.

In Section II, we present the system model corresponding
to the application scenarios under consideration. The analytic
derivations characterizing energy-neutral operation under dif-
ferent data transmission rates are presented in Section III,
where we also derive the minimum requirement for harvested
energy under various widely-used statistical characterizations
for the data transmission rate. Section IV presents the exper-
imental validation of the proposed analytic formulations for
energy-neutral operation, Section V presents results within two
applications and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a set of wireless sensor nodes connected to a
“sink” node, which represents the collecting unit, i.e. a base
station with power supply. This connection could be direct;
alternatively, under a symmetric and balanced cluster-tree
topology [1], [17], each node could be linked to a “relay” node
that conveys its measurements (along with its own) to another
relay node or, eventually, to the base station. Interference
between neighboring nodes can be avoided by using simple
heuristics or graph coloring approaches in conjunction with
transmission and reception in different channels. For example,
a node can listen to Channel X and transmit in Channel Y ,
with X 6= Y [6], [18], [19], [20], [21], [22], [23], [24]. We
illustrate such examples in Figure 1. The ellipses indicate the
coverage of each receiver, with their channel allocated such
that, under appropriate scheduling of transmissions within each
tier, no interference is caused. The links indicate the bandwidth
available to each transmitting sensor node. The figure shows
that the essentials of the problem boil down to the analysis of
the interaction between each sensor node and its corresponding
base station or relay node at the same tier of the cluster-tree
topology.

A. System Description

For our analysis, we assume that, for harvesting interval of
T seconds, the sensor nodes are continuously active for Tact

seconds. This defines the duty cycle

c =
Tact

T
. (1)

The network activation can be triggered by external events
or by scheduled data gathering with rate c over the duration
of the application, 0 < c < 1. Examples are: data acquisition
and transmission in environmental monitoring [1], event-driven
activation for surveillance [2], and adaptive control of duty
cycling for energy management [12] [16]. Thus, the value of

c can be adjusted statically or dynamically, depending on the
application environment.

When the sensor nodes are activated, they first converge
into a balanced time-frequency steady-state mode, where each
node joins the base station (or a relay node) on a particular
channel such that: (i) the number of nodes coupled to the
base station or each relay node is balanced; (ii) each cluster-
tree tier accommodates transmissions from n nodes without
collisions. Several low-energy (centralized or distributed) WSN
protocols, such as EM-MAC [7], wirelessHART [19], IEEE
802.15.4 GTS [8] and TFDMA [6] can achieve this goal. For
example, TFDMA achieves this for 16 nodes and 4 channels
within 3-5 seconds [6], while the centralized IEEE 802.15.4
GTS can establish collision-free single-channel time division
multiple access (TDMA) within 1-2 seconds [8]. While energy
is consumed for the protocol setup and the establishment
of the cluster-tree configuration, the payoff for the WSN
is the achievement of balanced, collision-free, steady-state
operation with predictable characteristics during the active
period. Examples of several uniformly-formed topologies that
can operate in collision-free steady-state mode are given in
Figure 1.

Each sensor captures, processes and transmits (and poten-
tially relays) data. We assume that the transmission data rate
varies; it will thus be modeled as a random variable. The
rate variability may stem from: adaptive sensing strategies
[25], packet retransmissions or protocol adaptivity to mitigate
interference effects [7], and variable-rate data encoding [26]
to reduce the transmission bitrate and ensure robustness to
packet erasures [27]. Thus, due to these factors, the number of
bits sent within each transmission slot of the utilized protocol
varies, despite the fact that the physical layer rate is fixed for
most WSN systems using the IEEE 802.15.4 PHY.

Within each tier of the cluster-tree topology, depending on
the amount of data to be transmitted, a node may need to:
(i) stay awake (beaconing and radio on) if less bits have to
be sent than what is possible within its transmission slot; (ii)
buffer the residual data if more bits must be sent than what
its slot permits. Once the active period of Tact seconds lapses,
each node suspends its activity (i.e. goes into “sleep” mode)
in order to conserve energy. Figure 2 shows two examples of
TDMA transmission slots during the active period. During both
the active and sleep modes, each sensor harvests energy based
on its on-board harvesting unit (e.g. piezoelectric harvester or
solar cell).

Concerning the on-board battery of each sensor, given
that modern IEEE 802.15.4 compliant sensors (e.g. TelosB,
micaZ, STM32W motes, etc.) can be powered by their on-
board batteries for very long time intervals (e.g. hundreds of
hours of continuous operation), the battery capacity can be
assumed to be infinite compared to the energy budget spent
and harvested within each interval of T seconds [2], [10], [15].
In addition, due to the assumption of infinite battery capacity,
issues such as leakage current and battery aging do not need
to be considered.

We remark that practical WSN transceiver hardware reacts
in intervals proportional to one packet transmission (or to
the utilized time-frequency slotting mechanism). Thus, the
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Figure 1: Three interference-free uniformly-formed topologies within a WSN comprising six identical sensor nodes and one base
station, with a indicating the consumption rate of each receiver/relay node (in bits-per-second); (a): direct (one-tier) connection to
the base station using a single channel. (b): two-tier cluster-tree topology using two channels. (c): three-tier cluster-tree topology
using three channels. For illustration purposes the channel number coincides with the tier number, with the highest tier containing
the base station. We indicate (via d) the additional nodes whose traffic is relayed by each node, as well as the number of nodes
in the same tier of the cluster-tree topology (via n).

transmission and reception of data is not strictly a continuous
process. However, energy consumption within each sensor
node is strictly continuous as, regardless of the transceiver,
each sensor node is active for the entire duration of Tact

seconds by sensing, processing data (e.g. to remove noise or
to perform data encoding) and other runtime operations related
to data gathering, processing and transmission (such as buffer
management at the application, medium access and physical
layers and service interrupts of the runtime environment).

B. Definitions

When the WSN goes into the active state, we assume that k
Joule is consumed by each sensor node in order to reach the
balanced, collision-free, steady-state operation via one of the
well-known centralized or distributed mechanisms suitable for
this purpose [6], [18], [19], [17], [7]. During the steady-state
operation of each node, the average energy rate consumed to
process and transmit data is g Joule-per-bit.

1) Data Production and Energy Harvesting : Because the
data production and transmission by each sensor node is a
non-deterministic process, the data transmission rate (in bits-
per-second) is modeled by random variable (RV) Ψ with PDF
P (ψ). The statistical modeling of this rate can be gained
by observing the occurred physical phenomena and analyzing
the behavior of each node when it captures, processes and
transmits bits, in conjunction with the data relayed by other
nodes of the same tier (if the node is also a relay in the WSN).
Alternatively, the data production and transmission rate can be
controlled (or “shaped”) by the system designer in order to

achieve a certain goal, such as limiting the occurring latency or,
in our case, to minimize the harvested energy required in order
to operate each node in perpetuity. Examples of systems with
variable data transmission rates include visual sensor networks
transmitting compressed video frames or image features [28],
[29], [30], [31], as well as activity monitoring or localization
networks where the data acquisition is irregular and depends
on the events occurring in the monitored area [32], [33], [34].

The energy harvesting process is also a non-deterministic
process. This means that the harvested energy profile changes
over time, depending on the surrounding environmental con-
ditions and availability of the energy source [3]. For example,
solar panel or piezoelectric energy scavenging mechanisms
produce different levels of power at different times of the day,
depending on the environmental conditions and on whether
they are placed indoors or outdoors [3], [35]. Therefore,
the power (Watt) produced by the harvesting mechanism is
modeled by RV X ∼ P (χ).

Since both the data rate and the power produced by the
harvester may be non-stationary, we assume their marginal
statistics for P (ψ) and P (χ), which are derived starting from
a doubly stochastic model for these processes. Specifically,
such marginal statistics can be obtained by [36], [37]: (i) fitting
PDFs to sets of past measurements of data rates and power,
with the statistical moments (parameters) of such distributions
characterized by another PDF; (ii) integrating over the param-
eter space to derive the final form of P (ψ) and P (χ). For
example, if the data transmission rate is modeled as a Half-
Gaussian distribution with variance parameter that is itself
exponentially distributed, by integrating over the parameter
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space, the marginal statistics of the data rate become Laplacian
[36], [37]. The disadvantage of using marginal statistics for
the data transmission rate and the power produced by the
harvester is the removal of the stochastic dependencies to
transient physical properties of these quantities. However, in
this work we are interested in the expected requirements for
energy harvesting to maintain energy neutrality over a lengthy
time interval (e.g. several hours) and not in the variations of
energy harvesting over short time intervals. Such variations are
irrelevant since the on-board batteries of each node can support
its stand-alone operation for hundreds of hours if needed. Thus,
a mean-based analysis using the marginal statistics is suitable
for this purpose.

2) Data Consumption and Energy Penalties : The data
consumption rate of the application layer of each receiver
under the employed collision-free steady-state operation is a
bits-per-second (bps). For example, under the IEEE 802.15.4
physical layer and the CC2420 transceiver, a ∼= 144 kbps
at the application layer under the NullMAC and NullRDC
options of Contiki operating system1. Since n identical sensor
nodes transmit data at the same tier of the cluster-tree topology
(Figure 1), we define the ratio a

n
as the coupling point of

each receiver within each tier. This means that, in the ideal
case, each sensor node should transmit its captured data at
the rate of a

n
bps. However, given the time-varying nature of

the data transmission rate per node, beyond the energy for
data processing (e.g. encoding) and transmission we encounter
the following two cases: (i) receiver underloading, where
Ψ < a

n
and “idle” energy is consumed by the node with

rate b Joule-per-bit (J/b) by staying active during transmission
opportunities for synchronization and other runtime purposes
(e.g. transmitting beacon messages [17], [6]); (ii) receiver
overloading, where Ψ > a

n
and “penalty” energy is consumed

with rate p J/b by the sensor to buffer (and retrieve) the data
prior to transmission. Examples of both are illustrated in Figure
2 for TDMA-based collision-free transmission [6], [38]. The
nomenclature summary of our system model is given in Table
I.

III. CHARACTERIZATION OF ENERGY NEUTRALITY

We derive the analytic conditions that correspond to the min-
imum energy harvesting required in order to maintain energy
neutrality in the system model described previously. There are
two modes of operation with complementary energy profiles:
the active mode, where energy is (primarily) consumed, and
the sleep (or suspend) mode, where each node is suspended
and energy is harvested in order to replenish the node’s battery
resources. During both the sleep and the active modes, each
sensor node is expected to harvest T

∫∞

0
χP (χ) dχ = TE[X]

Joule from the surrounding environment.
During the active mode period of cT seconds we define five

components for the energy consumption for each sensor node,
most of which are pictorially illustrated in Figure 2:

1https://github.com/kb2ma/contiki/wiki/Change-mac-or-radio-duty-cycling-protocols

contains more details; the NullMAC mechanism does not do any MAC-level
processing and leads to the maximum energy efficiency, assuming that the
application layer handles the transmission opportunities and data buffering.

Figure 2: Energy profile of a TelosB sensor node within an
undercoupled and an overcoupled TDMA slot during the active
period. The indicated metrics (in Joule-per-bit) are defined in
Table I.

Table I: Nomenclature table.

Symbol Unit Definition

c – Duty cycle

T , Tact s Harvesting time interval, active time interval

n – Number of transmitting sensor nodes at the same tier of

the cluster-tree topology

d – Number of additional sensor nodes whose traffic is

relayed by each node at a given tier of the cluster-tree

topology

k J Energy consumed for wake-up, set-up and convergence

g J/b Energy for processing and transmitting one bit

p J/b Penalty energy for storing one bit during receiver

overloading

b J/b Energy during idle periods for the time interval

corresponding to one bit transmission

h J/b Energy for receiving and temporary buffering one bit

under the relay case

a bps Data consumption rate of a relay node (or base station)

r bps Average data transmission rate per node

Ψ ∼
Pd+1 (ψ)

bps RV modeling the data production and transmission rate

per node that is also relaying data from d other nodes

Ed+1 [Ψ] bps Expected data production and transmission rate per node

that is also relaying data from d other nodes

X ∼
P (χ)

W RV modeling the power harvested by each node

E [X] W Expected power harvested by each node

En J Node residual energy (harvested minus consumed) over

the harvesting time interval T

1) Setup and convergence energy. Each node is activated
once during the harvesting time interval. Thus the
energy to converge to steady state is k J. We remark that
the convergence time is at least two orders of magnitude
smaller than Tact (e.g. 1−5 s vs. Tact = 400 s) and can
be considered negligible in comparison to Tact.

https://github.com/kb2ma/contiki/wiki/Change-mac-or-radio-duty-cycling-protocols
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2) Energy for processing and transmitting the node’s own
data and the data relayed to it from d other nodes,
given by cTg

∫∞

0
ψPd+1 (ψ) dψ = cTgEd+1[Ψ] J,

with Ed+1[Ψ] ≡ (d+ 1)E[Ψ] and E[Ψ] the expected
transmission rate of each node that is not a relay. If
Ed+1[Ψ] > a

n
(i.e. the mean transmission rate is higher

than the coupling point), then Tact includes the time
each node has to remain active without producing new
data, in order to complete the transmission of the data
buffered in its flash memory.

3) Energy for receiving and buffering data (in low-power
on-chip memory) from d nodes prior to relaying it,
given by cTh

∫∞

0
ψPd (ψ) dψ = cThEd[Ψ] J. This

energy is dominated by the receiver power require-
ments. Moreover, for a node that has an energy storage
unit (battery) that can store hundreds of hours worth
of operating energy, if the expected energy dissipation
over a time interval, e.g. 24 hours, is matched with
the amount of energy expected to be harvested from
the environment within the same interval, it can be
said that the sensor node achieves energy neutrality
[2]. In practical IEEE 802.15.4 hardware, the average
transceiver power under receive mode is virtually the
same whether the node is actually receiving data or not.
It is thus irrelevant to the receiver power whether the
transmitting node used its entire transmission slot or
not.

4) Idle energy, consumed when the data rate Ψ
is smaller than the receiver coupling point a

n
:

cTb
∫ a

n

0

(
a
n
− ψ

)
Pd+1 (ψ) dψ J. This energy corre-

sponds to beaconing for synchronization and other run-
time operations carried out during the transmit mode.

5) Penalty energy, consumed when the data rate Ψ is
larger than the receiver coupling point a

n
and the data

is buffered in high-power, typically off-chip, memory
prior to transmission at the next available opportunity:
cTp

∫∞
a
n

(
ψ − a

n

)
Pd+1 (ψ) dψ J.

Notice that, apart from the setup and convergence energy, the
energy consumption for all the remaining components is af-
fected by the total number of additional nodes (d) relaying their
traffic via the current node. Example cluster-tree topologies
providing instantiations for d and n in WSNs are given in
Figure 1.

The residual energy of each node in a tier of the cluster-
tree topology is defined as the difference between the produced
(harvested) energy and the consumed energy over the harvest-
ing time interval. It can be calculated for each sensor node
by:

En = TE [X] − k − cT ×
[

Ed+1 [Ψ]

(

g +
hd

d+ 1

)

+ b

∫ a
n

0

(a

n
− ψ

)

Pd+1 (ψ) dψ (2)

+ p

∫ ∞

a
n

(

ψ − a

n

)

Pd+1 (ψ) dψ

]

.

Clearly, En < 0 corresponds to energy deficit (the expected

energy produced by the harvesting process is lower than the
expected consumption during the harvesting time interval),
En > 0 corresponds to energy surplus, and En = 0
corresponds to energy neutrality. Notice that we used the
relationship ∀d > 0 : Ed+1 [Ψ] = d+1

d
Ed [Ψ] in (2), since

the expected transmission rate of each node increases linearly
with respect to d in a uniformly-formed WSN. Adding and

subtracting cTp
∫ a

n

0

(
ψ − a

n

)
Pd+1 (ψ) dψ in En, we get:

En = TE [X] − k − cT

×
[

Ed+1 [Ψ]

(

g +
hd

d+ 1
+ p

)

− ap

n
(3)

+ (b+ p)

∫ a
n

0

(a

n
− ψ

)

Pd+1 (ψ) dψ

]

.

Evidently, the residual energy depends on the coupling
point, a

n
, as well as on the PDF of the data transmission rate

per sensor node, Pd+1 (ψ). In the remainder of this section,
we consider different cases for Pd+1 (ψ) to derive the residual
energy under different statistical characterizations for the data
transmission rate of each node and examine the conditions
under which En = 0, i.e. energy neutrality is achieved.

A. Illustrative Case: Uniform Distribution

When no knowledge of the underlying statistics of the data
generation process exists, one can assume that Pd+1 (ψ) is
uniform over the interval [0, 2(d+ 1)r]:

Pd+1,U (ψ) =

{
1

2(d+1)r ,

0,
0 ≤ ψ ≤ 2(d+ 1)r

otherwise
. (4)

The expected value of Ψ is Ed+1,U [Ψ] = (d+1)r bps. If a
n
>

2(d+ 1)r, then the coupling point is always overprovisioned;
thus, each node will remain in idle state consuming energy for
beaconing and radio on, which cannot lead to optimal energy
efficiency. Thus, this case is not detailed here. For a

n
≤ 2(d+

1)r, by using (4) in (3), we obtain:

En,U = TE [X] − k − cT

×
[

(d+ 1) r

(

g +
hd

d+ 1
+ p

)

(5)

− ap

n
+

a2 (b+ p)

4(d+ 1)rn2

]

If p = 0 then En,U is monotonically increasing with n as there
is no energy penalty for buffering data and the optimal number
of nodes is (trivially) infinity. Moreover, if b = p = 0, then (3)
is independent of n as this assumes no energy penalties. Given
that these cases lead to trivial solutions, we do not investigate
them further. For b, p 6= 0, the first derivative of En,U to n is

dEn,U

dn
= cT

[

−ap
n2

+
a2 (b+ p)

2(d+ 1)rn3

]

. (6)

For n ∈ (0,∞), the number of nodes for which
dEn,U

dn
= 0 is

n0,U =
a (b+ p)

2p(d+ 1)r
(7)
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As (7) is the only admissible solution of
dEn,U

dn
= 0 and En,U

is differentiable for n ∈ (0,∞), n0,U is the global extremum
or inflection point of En,U. The second derivative of En,U is

d2En,U

dn2
= cT

[
2ap

n3
− 3a2 (b+ p)

2(d+ 1)rn4

]

. (8)

By evaluating
d2En,U

dn2 for n0,U nodes, we obtain

d2En,U

dn2
(n0,U) = −8cT (d+ 1)

3
p4r3

a2 (b+ p)
3 , (9)

which is negative (since all the variables are positive). Thus,
the maximum-possible residual energy for n ∈ (0,∞) is
achieved under n = n0,U, and it is:

max {En,U} = TE [X] − k − cT (d+ 1) r

×
[

g +
hd

d+ 1
+

pb

b+ p

]

. (10)

The last equation demonstrates that the maximum residual
energy obtained is zero, i.e. we achieve balanced consumption
and production over the harvesting interval, under energy
harvesting with rate given by:

min {E [X]}U =
k

T
+ c (d+ 1) r

×
(

g +
hd

d+ 1
+

pb

b+ p

)

. (11)

Hence, if the energy harvester of the node achieves at least
min {E [X]}U W (averaged over the interval of T seconds),
this suffices for perpetual (energy-neutral) operation of a WSN
comprising n0,U nodes at the same tier of the cluster-tree
topology, with each node transmitting data with uniform rate
between [0, 2(d+ 1)r] bps. The minimum power shown in
(11) is obtained under the operational parameters: c, T , d,
k, g, h, b, p (see Table I), n0,U nodes and E [Ψ] = r. These
parameters can be derived based on the utilized technology
and the application specifics, as we shall show in Section IV
and Section V.

The value derived for n0,U by (7) is a real number. Within
a practical setting, we have to select ⌊n0,U⌋ (if greater than
zero) or ⌈n0,U⌉, depending on which one derives the highest
residual energy value in (5). Since the minimum harvested
power required for energy neutral operation and the number
of nodes achieving it have a critical dependence on the data
transmission rate and its characteristics, in the next subsection
we derive this result under various characterizations for Ψ that
are encountered often in practical data gathering applications
based on WSNs. Similarly as for this subsection, once the
result for the continuous case is derived, we can immediately
derive the discrete-case equivalent by converting the optimal
value of n to the nearest integer that provides for the highest
residual energy.

B. Minimum Harvested Power Required for Data Transmis-
sion Rate Modeled by the Pareto, Exponential and Half-
Gaussian Distributions

We can now generalize the previous calculation to other
distributions expressing commonly observed data transmission
rates in practical applications. We consider three additional
PDFs for Ψ that have been used to model the marginal
statistics of many real-world data transmission applications.
We provide the obtained analytic results in this subsection.
Since the proofs follow the same process as for the uniform
distribution, they are given in Appendix I in summary form.
For each distribution, we couple its parameters to the average
transmission rate of the uniform distribution, (d+ 1) r, such
that it is possible to achieve the same average data transmission
rate over any uniformly-formed WSN cluster-tree topology
where each node relays data from d additional nodes. This
facilitates comparisons of the minimum power-harvesting ca-
pability required under different characterizations for the data
rate.

1) Pareto distribution and fixed data rate: This distribution
has been used, amongst others, to model the marginal data size
distribution of TCP sessions that contain substantial number
of small files and a few very large ones [39], [40]. Consider
Pd+1,P (ψ) as the Pareto distribution with scale v and shape
α ≥ 2 (α ∈ N),

Pd+1,P (ψ) =

{
α vα

ψα+1 ,

0,
ψ ≥ v

otherwise
. (12)

The expected value of Ψ is Ed+1,P [Ψ] = αv
α−1 bps. Thus, if

we set

v =
α− 1

α
(d+ 1)r (13)

we obtain Ed+1,P [Ψ] = (d + 1)r bps, i.e. we match the
expected data transmission rate to that of the Uniform dis-
tribution. For the case of the Pareto distribution, if a

n
< v, this

corresponds to each node always attempting to transmit more
data than what is allowed by the coupling point. This case
will always incur energy penalty for buffering the residual bits
beyond the coupling point and it is thus not investigated further
as it will not lead to an optimal solution. For a

n
≥ v, we obtain

via (3):

En,P = TE [X] − k − cT

[

αv
g + hd

d+1 + p

α− 1
(14)

+
ab

n
+ (b+ p)

(
vαnα−1

aα−1 (α− 1)
− αv

α− 1

)]

.

Since b+p 6= 0, the number of nodes that derives the minimum
power from the harvester to allow for energy neutrality under
data transmission rate following the Pareto distribution of (12)
is

n0,P =
a

v

(
b

b+ p

) 1
α

(15)

The minimum harvested power required under (15) is:
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min {E [X]}P =
k

T
+ c (d+ 1) r

[

g +
hd

d+ 1

− b+ b
α−1

α (b+ p)
1
α

]

(16)

A special case for this distribution is when α = r, which
leads to v = (d+ 1) (r − 1) from (13). Then, the expected
value of Ψ is Ed+1,F [Ψ] = (d + 1)r bps and its standard

deviation is σd+1,F [ψ] = (d+ 1)
√

r
r−2 . For r > 150 bps, the

standard deviation is less than 0.7% of the mean value. Thus,
in practice this case corresponds to transmission with fixed rate
of (d+ 1) r bps. This scenario occurs in WSNs capturing and
transmitting data with fixed rate during their active time, e.g.
in periodic temperature or humidity measurements gathered by
WSNs [33], [32]. For this case, the number of nodes leading
to the minimum harvested power is:

n0,F =
a

(d+ 1) (r − 1)

(
b

b+ p

) 1
r

(17)

For the vast majority of values for a, d and r used in

practical WSN applications, n0,F is equal to either
⌊

a
(d+1)r

⌋

(if

greater than zero) or
⌈

a
(d+1)r

⌉

when converted into an integer.

This agrees with the intuitive answer for balancing fixed-rate
transmission of (d+ 1) r bps to consumption rate of a bps.
The minimum harvested power required under (17) is:

min {E [X]}F =
k

T
+ c (d+ 1) r

[

g +
hd

d+ 1

− b+ b
r−1

r (b+ p)
1
r

]

(18)

2) Exponential distribution : The marginal statistics of
MPEG video traffic have often been modeled as exponentially
decaying [41]. Consider Pd+1,E (ψ) as the Exponential distri-
bution with rate parameter 1

(d+1)r

Pd+1,E (ψ) =
1

(d+ 1)r
exp

(

− 1

(d+ 1)r
ψ

)

(19)

for ψ ≥ 0. In this case, the expected value of Ψ is
Ed+1,E [Ψ] = (d+ 1)r bps. Via (3), we obtain

En,E = TE [X] − k − cT

[

(d+ 1) r

(

g +
hd

d+ 1
+ p

)

+
ab

n
+ (d+ 1) r (b+ p) (20)

×
[

exp

(

− a

n (d+ 1) r

)

− 1

]]

.

Assuming b 6= 0, the value of

n0,E =
a

(d+ 1)r ln
(
b+p
b

) (21)

is the number of nodes that requires the minimum power
from the harvester to allow for the system to maintain energy

neutrality under data transmission following the exponential
distribution of (19). The minimum harvested power required
under this number of nodes is:

min {E [X]}E =
k

T
+ c (d+ 1) r

×
[

bln

(
b+ p

b

)

+ g +
hd

d+ 1

]

. (22)

3) Half-Gaussian distribution : We conclude this part by
considering Pd+1,H (ψ) as the Half-Gaussian distribution with
mean Ed+1,H [Ψ] = (d+ 1) r

Pd+1,H (ψ) =

{
0, ψ < 0

2
π(d+1)r exp

(

− ψ2

π(d+1)2r2

)

, ψw ≥ 0
(23)

This distribution has been widely used in data gathering
problems in science and engineering when the modeled data
has non-negativity constraints. Some recent examples include
the statistical characterization of motion vector data rates in
Wyner-Ziv video coding algorithms suitable for WSNs [30], or
the statistical characterization of sample amplitudes captured
by an image sensor [36], [42]. Via (3), we obtain

En,H = TE [X] − k − cT

[

(d+ 1)r

(

g +
hd

d+ 1
+ p

)

− ap

n
+ (b+ p)

[

(d+ 1)r

[

exp

(

− a2

π(d+ 1)2r2n2

)

− 1] +
a

n
erf

(
a√

π(d+ 1)rn

)]]

, (24)

with erf (·) the error function that can be approximated by
its Taylor series expansion. Under b 6= 0 and p 6= 0, the
number of nodes that leads to the minimum power required
from the harvester in order for the system to maintain energy
neutrality under data transmission rate (per node) characterized
by Pd+1,H (ψ) is

n0,H =
a

√
π(d+ 1)rerf−1

(
p
b+p

) , (25)

with erf−1 (·) the inverse error function, which can be approx-
imated by its series expansion. The minimum harvested power
required under (25) is:

min {E [X]}H =
k

T
+ c (d+ 1) r

[

g +
hd

d+ 1
− b (26)

+ (b+ p) exp

(

−
[

erf−1

(
p

b+ p

)]2
)]

.

C. Considering the Relay Case under a Multi-hop Topology

When expanding this analysis to multi-layer topologies, one
can consider a variety of settings as illustrated in Figure 1.
Here we distinguish three cases, which are discussed in the
following.
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Firstly, when each node shapes its overall data transmission
rate (which includes their own data and the data received from
other nodes) according to one of the distributions considered
in the previous subsection, the results will follow what was
discussed before.

Secondly, when each node simply aggregates the received
data with its own data within each TFDMA transmission
opportunity, thereby leading to a new data production rate
PDF, one must consider this new distribution in the proposed
analytic framework. Such distributions will be the convolutions
of identical Uniform, Pareto, Exponential and Half-Gaussian
distributions. For small values of d, e.g. 1 ≤ d ≤ 3, the results
can be derived following the steps given in Subsection III-A
and III-B if functions

Pd+1,Z (ψ) = PZ (ψ) ⋆ . . . ⋆ PZ (ψ)
︸ ︷︷ ︸

d times

, Z ∈ {U,P,E,H}

are derived. Given that Pd+1,Z (ψ) and the
∫ a

n

0

(
a
n
− ψ

)
Pd+1,Z (ψ) dψ term of (3) can be computed

with the help of a numerical package (e.g. Mathematica or
Matlab Symbolic) and that these will vary for each value of
d, we do not expand on these cases further.

Finally, when d ≥ 4, according to the central limit theorem
[43], all data rate PDFs will begin to converge to a Gaus-
sian distribution. By considering Pd+1,N (ψ) as the Gaussian
distribution with mean Ed+1,N [Ψ] = (d+ 1) r and standard
deviation σ

Pd+1,N (ψ) =
1

σ
√

2π
exp

(

− (ψ − (d+ 1) r)
2

2σ2

)

, (27)

via (3), we obtain (see Appendix I for details on this deriva-
tion):

En,N = TE [X] − k − cT

[

(d+ 1) r

(

g +
hd

d+ 1
+ p

)

− ap

n
+ (b+ p)

[

n (d+ 1) r − a

2n

×
[

erf

(
(d+ 1) r − a

n√
2σ

)

− erf

(
(d+ 1) r√

2σ

)]

(28)

+
σ√
2π

[

exp

(

−
(
(d+ 1) r − a

n

)2

2σ2

)

− exp

(

− ((d+ 1) r)
2

2σ2

)]]]

.

The residual energy of (28) has a global maximum for n ∈
(0,∞), i.e. a global minimum in the required harvesting power
E [χ], if: (i) b 6= 0 or p 6= 0 and (ii) the following condition
is satisfied:

∣
∣
∣
∣
erf

(
(d+ 1) r√

2σ

)

− 2p

b+ p

∣
∣
∣
∣
< 1. (29)

Then, the number of nodes that leads to the minimum power
required in order for the system to maintain energy neutrality
under data transmission (per node) following Pd+1,N (ψ) is

n0,N =
a

(d+ 1) r −
√

2σcN

, (30)

with (d+ 1) r 6=
√

2σcN,

cN = erf−1

(

erf

(
(d+ 1) r√

2σ

)

− 2p

b+ p

)

. (31)

The minimum harvested power required under (30) is:

min {E [X]}N =
k

T
+ c (d+ 1) r

[

g +
hd

d+ 1

+
σ (b+ p)√
2π (d+ 1) r

[
exp

(
−c2N

)
(32)

− exp

(

− ((d+ 1) r)
2

2σ2

)]]

.

D. Comparison of Minimum Required Harvested Power under
the Same Expected Data Transmission Rate per Node

We can now address two interesting questions for a
uniformly-formed WSN with application parameters given in
Table I: What is difference of the minimum-required harvested
power under the various data transmission rate distributions
studied in Section III? Can we rank these distributions with
respect to their incurred energy efficiency? We use the Uniform
distribution as the basis of our comparisons and include all
distributions except of the Gaussian PDF that emerges as the
convergence of any data rate PDF when d ≥ 4. To match all
cases, we can set:

n0,P ≡ sPU × n0,U

n0,F ≡ sFU × n0,U

n0,E ≡ sEU × n0,U

n0,H ≡ sHU × n0,U

(33)

and

Ed+1,U [Ψ] ≡ Ed+1,P [Ψ] ≡ Ed+1,F [Ψ] (34)

≡ Ed+1,E [Ψ] ≡ Ed+1,H [Ψ] ≡ (d+ 1)r,

where factors sPU, sFU, sEU, sHU in (33) express the ratio of
the number of nodes2 corresponding to each transmission rate
PDF and the same expected transmission rate is assumed per
node. Moreover, given that our energy expressions depend on
both the beaconing power (during idle transmission intervals)
and the penalty power (when writing residual bits to the flash
memory), without loss of generality we define their ratio as

cbp ≡
b

p
. (35)

2which can be calculated via the definition of n0,P, n0,E, n0,H and n0,U

as shown in Appendix II.
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We can then derive the conditions that make a particular PDF
preferable in terms of minimizing the required power from
the harvesting mechanism, parametrically to the operational
settings of the application. The remainder of this section
addresses this problem.

Proposition 1. (Pareto vs. Uniform PDF). The difference be-
tween the minimum harvested power required under a pareto-
distributed and a uniformly-distributed transmission rate per
node when their average WSN data rates are matched via (33)
and (34) is:

min {E [X]}P − min {E [X]}U

= c (d+ 1) rb

[(
2(d+ 1)r

sPUv
− 1

)
p

b+ p
− 1

]

. (36)

Proof: See Appendix II.
Corollary 1. For α ≥ 2 and α ∈ N:

min {E [X]}P < min {E [X]}U

iff

2 − α

√

cbp + 1

cbp
− cbp

cbp + 1
> 0. (37)

Proof: If

sPU >
2pα

(α− 1) (b+ 2p)
,

then Proposition 1 shows that the Pareto distribution requires
less harvested power in comparison to the Uniform distribution
(under the settings leading to the minimum requirement for
both). Based on (60) of Appendix II and (35), the last
inequality becomes

c
1
α

bp

(cbp + 1)
α+1

α

− 1

(cbp + 2)
> 0. (38)

Knowing that cbp > 0, the last condition can be simplified to
(37).

When enforcing the equality condition in (37), then data
transmission rates characterized by α−Pareto and Uniform
PDF (under the same mean) will lead to the same harvested
energy requirements. Since there is no closed-form solution
for (37) under the equality condition, the numerical evaluation
of cbp under this condition is provided in Figure 3 for α ∈
{2, . . . , 26}. The results demonstrate that, for the vast majority
of α values, the two distributions attain the same minimum
harvested energy only under very small values for cbp, i.e.
when the beaconing power becomes negligible in comparison
to the penalty power to write residual data to the flash memory.
Thus, for the vast majority of cases, data transmission rates
characterized by the Pareto distribution are expected to require
less harvested energy than those characterized by the Uniform
distribution (under the same mean and under the number
of nodes leading to the minimum harvesting requirements).

Finally, by comparing (16) with α < r and (18), it is
straightforward to show that min {E [X]}F < min {E [X]}P.

Proposition 2. (Exponential vs. Uniform PDF). The difference
between the minimum harvested power required under an
exponentially-distributed and a uniformly-distributed transmis-
sion rate per node when their average WSN data transmission
rates are matched via (33) and (34) is:

min {E [X]}E−min {E [X]}U = c (d+ 1) r
pb

b+ p

(
2

sEU

− 1

)

.

(39)

Proof: See Appendix II.
Corollary 2. min {E [X]}E > min {E [X]}U.

Proof: Proposition 2 shows that, under the settings
leading to the minimum power requirement, the Exponential
distribution requires more harvesting power in comparison
to the Uniform distribution if sEU < 2. Based on (62) of
Appendix II, this inequality becomes:

ln

(
cbp + 1

cbp

)

− 1

cbp + 1
> 0. (40)

By investigating the extrema and monotonicity via the first
derivative of (40), it is straightforward to verify that (40) holds
for all cbp > 0.

Proposition 3. (Half-Gaussian vs. Uniform PDF). The differ-
ence between the minimum harvested power required under
a half-Gaussian-distributed and a uniformly-distributed trans-
mission rate per node when their average WSN data rates are
matched via (33) and (34) is:

min {E [X]}H − min {E [X]}U

= c (d+ 1) r

[

p2

b+ p
− (b+ p) (41)

×
[

1 − exp

(

− 4p2

s2HUπ(b+ p)2

)]]

.

Proof: See Appendix II.
Corollary 3. min {E [X]}H > min {E [X]}U.

Proof: Proposition 3 shows that the Half-Gaussian
distribution requires more harvesting power in comparison to
the Uniform distribution when

sHU >
2p

√
π (b+ p)

√

ln
(

(b+p)2

b2+2bp

) , (42)

which, based on (64) of Appendix II, becomes:

√
√
√
√ln

(

(cbp + 1)
2

c2bp + 2cbp

)

− erf−1

(
1

cbp + 1

)

> 0. (43)

By differentiating the last expression we can verify that (43)
holds for all cbp > 0.
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Figure 3: Values obtained for cbp [ratio between beaconing and
penalty power per bit defined in (35)] by setting (37) under
the equality condition.

Given that both the Exponential and the Half-Gaussian
distribution require more power than the Uniform distribution
at the number of nodes providing for the minimum harvesting
power per PDF, it is thus beneficial to establish the difference
between these two PDFs.

Proposition 4. (Half-Gaussian vs, Exponential PDF). The dif-
ference between the minimum harvested power required under
a half-Gaussian−distributed and an exponentially-distributed
transmission rate per node when their average WSN data rates
are matched via (33) and (34) is:

min {E [X]}H − min {E [X]}E

= c (d+ 1) r

[

−b− bln

(
b+ p

b

)

+ (b+ p) (44)

× exp

(

− 1

s2HEπ

[

ln

(
b+ p

b

)]2
)]

.

with sHE ≡ n0,H

n0,E
the ratio between the number of nodes

providing for the minimum power (per PDF).

Proof: See Appendix II.

Corollary 4. min {E [X]}H < min {E [X]}E.

Proof: From (44) we establish that if

sHE <
ln
(
b+p
b

)

√

π ln

(

b+p

b+b ln( b+p

b )

)

then the Half-Gaussian distribution will require less harvested
power than the Exponential distribution (at the settings leading
to the minimum power). Via (66) of Appendix II, the last
inequality becomes:

erf−1

(
1

cbp + 1

)

−

√
√
√
√
√ln




1 + 1

cbp

ln
(

1 + 1
cbp

)

+ 1



 > 0, (45)

By differentiating the last expression we can verify that (45)
holds for all cbp > 0.

Proposition 5. The ranking of the different transmission rate
PDFs for the minimum-required harvested power to maintain
energy neutrality is (from lowest to highest requirement):

Fixed Rate≺Pareto
iff (37)
≺ Uniform ≺ Half-Gaussian

≺ Exponential

Proof: The proof follows from the combination of Corol-
laries 1−4.

Beyond the ranking of the different distributions, Propositions
1−4 show that the decrease in the required harvested power
offered by each case is proportional to the average data
transmission rate, (d+ 1) r, with a proportionality factor that
depends on the energy penalties of the system, b and p but not
on the energy rates for transmitting and receiving each bit, g
and h.

E. Discussion

The results of this section can be used in practical appli-
cations to assess the impact in the required harvesting power
and harvesting time when the statistics of the transmission
data rate follow a certain PDF and the network parameters
are fixed. Conversely, if a particular technology, such as an
array of photovoltaic cells or a piezoelectric circuit, has been
shown to provide for certain power generation capability per
sensor, under the knowledge of the system and data gathering
parameters and the duty cycle of the network, one can establish
the appropriate network parameters per tier. Finally, for given
network and system parameters, one can assess the achiev-
able data transmission rates such that the WSN infrastructure
remains energy neutral.

Thus, as shown in Figure 4, our analytic results allow
for the linkage of network, data gathering and energy and
system parameters within uniformly-formed cluster-tree WSN
topologies. Hence, our analysis can be used for early-stage
exploration of the capabilities of a particular WSN infrastruc-
ture in conjunction with the data gathering requirements of
a particular application, prior to embarking in cumbersome
development and testing in the field. Finally, Propositions 1-5
provide the ranking of various data transmission PDFs under
the same mean rate and the number of nodes leading to the
minimum energy requirements per PDF. This can be used to
control the way data processing and compression algorithms
produce data in WSN applications aiming for energy-neutral
operation with minimum harvesting requirements.
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Figure 4: Conceptual illustration of the linkage between: network, system and data gathering via the proposed analysis. When
parameters from two out of three domains are provided, our analytic framework can tune the parameters of the third. The symbol
definitions are provided in Table I.

IV. EVALUATION OF THE ANALYTIC RESULTS

A. WSN and System Settings

We consider a typical WSN setup comprising of several
TelosB nodes (using the IEEE 802.15.4 standard with the
CC2420 transceiver) running the low-power Contiki 2.6 op-
erating system. All nodes use our recently-proposed TFDMA
protocol (which is available open source [6]) to communicate
with the receiver (or base station) existing on the same channel,
following topologies such as the ones shown in Figure 1.
The TFDMA protocol uses biology-inspired self-maintaining
algorithms in wireless sensor nodes and achieves near optimum
TDMA characteristics in a decentralized manner and over
multiple channels (frequencies). This is achieved by extending
the concept of collaborative reactive listening in order to
balance the number of nodes in all available channels of
IEEE 802.15.4 [6]. Consequently, TFDMA can be deployed at
the application layer with very low complexity and provides
for balanced multichannel coordination of multiple nodes. We
opted for its usage as it allows for quick convergence to the
steady state and permits collision-free multichannel communi-
cations once steady state has been established. It also provides
for comparable or superior bandwidth utilization to channel-
hopping approaches like TSMP and EM-MAC [7]. However,
similar results can be obtained with any other protocol offering
collision-free single- or multi-channel communications under a
cluster-tree topology, such as TSMP [18], IEEE 802.15.4 GTS
[17], [9], etc.

For the utilized TFDMA and active time Tact = 400 s,
convergence has been shown to occur in less than 1.3% of Tact

(3−5s) and, on average, the energy dissipation for convergence
has been found to be k = 165.6 mJ in our setup. Concerning
the communications side, following the default TFDMA setup,
for all our measurements we set the packet size to 114 bytes,
the DESYNC interval to 1s and the DESYNC constant to 0.95
[38]. Each node transmits 1-byte beacon packets every 8 ms
when it is not transmitting data packets during its transmission
slot to maintain connectivity and synchronization. Finally,

since the TFDMA protocol ensures no collisions occur during
the steady-state active mode, we are utilizing the very-low
complexity NullMAC and NullRDC options of Contiki OS
(see footnote 1), which lead to maximum data consumption
rate at the application layer of a = 144 kbps.

Concerning the data gathering itself, we created artificial
data via a custom Matlab function that, starting from the
rand() function, generates data with Uniform, Pareto, Expo-
nential and Half-Gaussian distributions (considered in Section
III) via rejection sampling [44], with mean transmission rate
equal to r = 24 kbps. The data is copied onto each node and it
is read from its external flash memory during the steady-state
active mode. This ensures that: (i) we match the different PDFs
under consideration and (ii) the energy to retrieve this data
from the flash memory replaces the sensing and processing
energy that would have been dissipated if the data had come
from an actual sensing process.

Under these operational settings, our energy measurement
setup comprises a high-tolerance 1 Ohm resistor placed in
series with each TelosB node. By measuring the current
consumption at the resistor and knowing that each node
operates at 3 Volt, we derive the real-time energy consumption
(see Figure 2 for examples). The utilized time resolution for
the power measurements was 12.5 KHz using a Tektronix
MDO4104-6 oscilloscope. Under this setup, we also measured
the different energy rates of Table I by enabling transmission,
listening, writing to flash memory and beaconing during the
idle state to maintain synchronization. They were found to
be: g = 2.29262 × 10−7 J/b, h = 2.92309 × 10−6 J/b,
p = 3.89392 × 10−7 J/b and b = 2.17324 × 10−7 J/b.

B. Model Validation

We consider the fully-connected (single-hop) topology
shown in Figure 1(a). Each node sends only its own data,
which corresponds to d = 0 (no relay) and we test with various
values for n (total number of nodes within a single channel).
We present the results in Figure 5. For each data production
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Figure 5: Energy consumption per node under different data
transmission PDFs. The experiments correspond to Tact = 400
s, k = 165.6 mJ and d = 0.

PDF, the “theoretical” results have been produced via (5), (14),
(20), (24) by considering only the energy dissipation part;
the energy harvesting part, TE [X], is discussed separately
in Section V. Evidently, for the vast majority of cases, the
theoretical and experimental results are in agreement, with the
maximum difference between them limited to within 0.237 J,
i.e. maximum error of 7.2%. We have observed the same level
of accuracy under a variety of different rates r and for more
than one tier (under multi-channel TFDMA operation) but omit
these repetitive experiments for brevity of exposition.

The results of Figure 5 demonstrate that each transmission
rate distribution incurs different energy consumption and the
ranking of the PDFs is precisely as predicted by Proposition 5.
Thus, even under the same mean transmission rate, the manner
the data traffic is shaped in a WSN plays an important role
in the system’s requirements for energy neutrality. Moreover,
the results show that, depending on the transmission rate PDF,
the number of nodes where the minimum energy consumption
occurs, i.e. n0,U, n0,P, n0,F, n0,E and n0,H, may differ. This is
reflected by Propositions 1−4. The accuracy of these analytic
estimations is quantified in Table II in comparison to the
experimentally-obtained values for the difference in the mini-
mum energy consumption. Following the balancing conditions
of (33) and (34), we also report the values for sPU, sFU, sEU,
sHU and sHE parameters corresponding to this experiment. The
table demonstrates that the theoretically-calculated difference
via Propositions 1-4 is very close to the experimentally-
obtained values, as the average percentile error is only 4.20%.

Finally, with respect to a multi-hop scenario, Figure 6
presents the results under d = 4 and r = 4.8 kbps (with all
other settings being the same). As expected, all experimental
curves converge towards the model results of the Gaussian
distribution. This convergence improves further when higher
values of d are considered.

Figure 6: Energy consumption per node with different data
production PDFs, d = 4 and r = 4.8 kbps; each node
aggregates the received data with its own data within each
transmission opportunity.

V. APPLICATIONS

A. Maximizing Active Time Interval under Given Energy Har-
vesting Capability

The first application concerns WSNs where every sensor
is equipped with certain energy harvesting technology, e.g. a
piezoelectric unit or solar panel. Under given data transmission
rate PDF with mean r (fitted to the experimentally-observed
data rate histogram), the aim is to derive the optimal number
of sensors (n0) and the maximum duty cycle (c0) so that
the network performs data gathering and transmission for the
maximum amount of active time under energy neutrality. Such
a scenario occurs in energy management systems for WSNs
and indoor or outdoor monitoring systems that are expected to
be active for the maximum amount of time possible. [14], [2],
[33].

We utilize the expected power produced by harvesting,
E [χ], for photovoltaic and piezoelectric technologies under
stable indoor conditions (as reported in the relevant literature)
and consider a single-tier network topology [Figure 1(a)]. The
goal is to match the expected energy harvested within T s with
the expected energy consumption within Tact s and report what
are the highest-possible values for the duty cycle c and Tact.

For the data rate PDFs considered in this paper and the
system settings of Section IV, we present the obtained results
in Table III under harvesting time T = 21600 s (6 hr)
and r = 3000 bps. Under the given value for TE [X], the
values for n0 were derived using: (7), (15), (17), (21) and
(25); c0 (and Tact) were derived solving: (11), (16), (18), (22)
and (26) for c. Evidently, depending on the technology used
and the utilized PDF, the results can vary, i.e. from energy
neutrality achieved with c0 = 0.112 and Tact = 2424 s for
exponentially-distributed data gathering and transmission rate,
to c0 = 0.279 and Tact = 6038 s for Pareto-distributed (or
fixed) data gathering and transmission. In an application that
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Table II: Differences in the minimum harvested energy required amongst the considered PDFs under the settings of Figure 5.

Proposition
Theoretical Experimental Percentile

difference (J) difference (J) error (%)

1, (Pareto α = 4 vs. Uniform), sPU = 1.3 -0.729 -0.742 1.81

1, (Pareto α = 20 vs. Uniform), sPU = 1.3 -1.229 -1.176 4.32

1, [Fixed-rate (Pareto α = r) vs. Uniform], sFU = 1.3 -1.339 -1.223 8.63

2 (Exponential vs. Uniform), sEU = 1.2 +0.803 +0.775 3.45

3 (Half-Gaussian vs. Uniform), sHU = 1.1 +0.394 +0.372 5.54

4 (Half-Gaussian vs. Exponential), sHE = 0.9 -0.409 -0.403 1.44

Table III: Maximum active time Tact and duty cycle c (in
parentheses) required by two different harvesting technologies
under harvesting time T = 21600 s (6 hr) and with mean data
rate r = 3000 bps.

Production 16 cm2 Solar Panel Piezoelectric Unit

Rate PDF E [X] = 160µW [35] E [X] = 200µW [3]

Uniform, n0 = 37 2975 s (0.138) 3755 s (0.174)

Pareto (α = 4), n0 = 50 3754 s (0.173) 4729 s (0.219)

Pareto (α = 20), n0 = 48 4556 s (0.211) 5753 s (0.266)

Fixed rate, n0 = 48 4782 s (0.221) 6038 s (0.279)

Exponential, n0 = 47 2424 s (0.112) 3061 s (0.142)

Half-Gaussian, n0 = 42 2677 s (0.124) 3380 s (0.156)

requires c0 = 1 (continuous monitoring), based on the results
of Table III we can calculate how many independent sets of
n0 nodes to install so that continuous monitoring is achieved
under energy neutrality. For example, since c0 > 0.25 under
the Pareto PDF (with α ≥ 20) and piezoelectric harvesting, we
can predict that, by installing four independently-operating sets
of 48 nodes and imposing that only one set is active at any
given time, constant monitoring and transmission is ensured
under energy neutrality.

Our framework allows for such studies to be done at early
design stages and can incorporate all the relevant parameters of
the WSN (protocol-related parameters, system settings, active
time, etc.) in order to meet the requirements imposed by each
application.

B. Minimizing Power Harvesting Requirements under a Fixed
Network Setup

In the second application example, we consider a typical
structural monitoring system, such as the one proposed by
Notay and Safdar [45]. In such WSN-based systems, several
sensors are embedded into a structure (e.g. sensors embedded
within an airplane’s wings or within the steel structure of a
suspension bridge) in order to gather and transmit measure-
ments to collection points. These collection points relay these
measurements (along with their own) to WiFi-equipped access
points [45] that have power supply. The sensors can harvest
energy via the vibrations of the structure (e.g. airplane wing
vibrations during flight) but energy neutrality must be ensured
with the minimum possible power harvesting as the sensors
are placed in difficult-to-service areas and must be able to
operate in perpetuity. In such applications there is no strict
real-time constraint for the data collection, as a volume of
Vfixed bytes of measurements is collected from each sensor for

batch off-line analysis of structural properties and the reaction
times are in the order of hours or even days. Finally, the
harvesting time interval is imposed by the application context,
e.g. the average duration of a flight or the structural vibrations
occurring in a suspension bridge during peak usage hours each
day. Thus, the mean data transmission rate can be adjusted so
as to minimize the required power harvesting under the pre-
established network setup and harvesting time interval.

Under a given two-tier cluster-tree topology, such as the one
shown in Figure 1(b), with [45]:

• fixed number of sensors and fixed relay configuration
per tier (n ≡ nfixed, d ≡ dfixed),

• fixed requirements for the harvesting time and the vol-
ume of data to be collected by each node, i.e.

T ≡ Tfixed and r × c× Tfixed ≡ Vfixed, (46)

• the assumption of Pareto-distributed or fixed data trans-
mission rate (i.e. α ≡ αfixed),

we derive the mean rate and duty cycle setting per tier that
minimize the harvested power requirements. This is achieved
by: (i) deriving v0 by solving (15) for v under n ≡ nfixed;
(ii) deriving r0 by solving (13) for r under v ≡ v0 and d ≡
dfixed; (iii) deriving c0 ≡ Vfixed

r0Tfixed
. This effectively “tunes” the

duty cycle and the mean data rate so that the fixed network
and data transmission settings listed above become optimal,
i.e. they lead to the minimum power harvesting that ensures
energy neutrality. Under: the system settings of Section IV,
Vfixed = 25 Mbit per sensor and Tfixed = 86400 s, Table IV
shows the derived minimum power harvesting requirements in
comparison to the results obtained under an ad-hoc allocation
of data rates and duty cycles per tier.

Both the ad-hoc and the proposed settings satisfy the condi-
tions imposed by (46) and lead to energy neutrality. However,
deriving the mean rate and duty cycle per tier under the
proposed framework meets these constraints with substantial
savings in the required power harvesting, which were experi-
mentally found to range between 19% and 37% in comparison
to the ad-hoc settings. Hence, under piezoelectric harvesting
providing E [χ] = 200 µW

cm2 [3] the proposed approach requires

an active harvesting area of only 2.7 - 3.0 cm2 per node of
Tier 2 while the ad-hoc approach requires 3.6 - 3.7 cm2.

VI. CONCLUSIONS

We proposed an analytic framework for characterizing prac-
tical energy neutrality in uniformly-formed wireless sensor
networks (WSNs). Our framework recognizes the importance
of the application data transmission rate in the WSN’s energy
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Table IV: Minimum power harvesting requirement (min {E [X]}) under ad-hoc settings and under optimized mean data rate and
duty cycle adjustment with the proposed framework. The energy saving shows the percentile difference between the minimum
harvesting requirement for the ad-hoc and proposed cases. The network parameters of this example correspond to Figure 1(b).

Network Ad-hoc Proposed Energy Saving (%)

Parameters Pareto (α = 4) Fixed rate Pareto (α = 4) Fixed rate Pareto Fixed rate

Tier 1 radhoc = 22000 bps radhoc = 22000 bps r0 = 37135 bps r0 = 36000 bps

dfixed = 0 cadhoc = 0.0132 cadhoc = 0.0132 c0 = 0.0078 c0 = 0.0080 22.32 37.04

nfixed = 4 min {E [X]} = 112 µW min {E [X]} = 108 µW min {E [X]} = 87 µW min {E [X]} = 68 µW

Tier 2 radhoc = 12000 bps radhoc = 12000 bps r0 = 24757 bps r0 = 24000 bps

dfixed = 2 cadhoc = 0.0241 cadhoc = 0.0241 c0 = 0.0117 c0 = 0.0121 19.18 25.96

nfixed = 2 min {E [X]} = 735 µW min {E [X]} = 728 µW min {E [X]} = 594 µW min {E [X]} = 539 µW

dissipation. Specifically, it provides for an analytic assessment
of the expected energy dissipation in function of the system
parameters, under a variety of statistical characterizations for
the data transmission rate of each sensor node. The exper-
imental assessment via: (i) low-power TelosB nodes, (ii) a
recently-proposed, collision-free, communication protocol with
rapid, low-energy, convergence and (iii) an energy measure-
ment testbed, validates that our analytic framework matches
experiments with TelosB nodes with accuracy that is within
7% of the measured energy consumption.

Our framework can be used in conjunction with particular
harvesting technologies to predict the smallest possible energy
harvesting interval leading to an energy-neutral deployment
before costly and cumbersome testing in the field. Finally,
our analysis could be used in conjunction with future energy-
harvesting WSN systems and technologies in order to predict
the best possible data transmission rate that can be accommo-
dated in function of the system’s operational settings.

VII. APPENDIX I

For all distributions, we provide the first derivative and show
that, when set to zero and under n ∈ (0,∞), this leads to a
single admissible extremum value. We then demonstrate that,
under this value, the second derivative is guaranteed to be
negative. Thus, the extremum value maximizes the residual
energy under each data transmission rate PDF.

Pareto distribution: The first derivative of En,P to n, n ∈
(0,∞), is

dEn,P

dn
= cT

[
ab

n2
− a

n2
(b+ p)

(vn

a

)α
]

. (47)

Assuming that b 6= 0, the only admissible solution of
dEn,P

dn
=

0 is given in (15), as all other solutions are complex numbers.
In conjunction with the fact that En,P is differentiable for n ∈
(0,∞), this demonstrates that n0,P is the global extremum or
inflection point of En,P. The second derivative of En,P is:

d2En,P

dn2
= cT

[

−2ab

n3
− a

n3
(α− 2) (b+ p)

(vn

a

)α
]

. (48)

By evaluating
d2En,P

dn2 for n0,P nodes, we obtain

d2En,P

dn2
(n0,P) = −cT [2b+ (α− 2)] (b+ p)

3
α v3

a2b
3
α

, (49)

which is negative since α ≥ 2 and all variables are positive.
This means that the maximum-possible residual energy for n ∈
(0,∞) is achieved under n = n0,P. This derivation also covers
the case of fixed-rate data production and transmission if we
set v = (d+ 1) (r − 1) and α = r.

Exponential distribution: The first derivative of En,E to n,
n ∈ (0,∞), is

dEn,E

dn
= cT

[
ab

n2
− a

n2
(b+ p) exp

(

− a

n(d+ 1)r

)]

. (50)

Assuming that b 6= 0, the only admissible solution for
dEn,E

dn
=

0 is given in (21), as all other solutions are complex numbers.
In conjunction with the fact that En,E is differentiable for n ∈
(0,∞), this demonstrates that n0,E is the global extremum or
inflection point of En,E. The second derivative of En,E is:

d2En,E

dn2
= cT

[

−2ab

n3
− a

n4(d+ 1)r
(b+ p)

× exp

(

− a

n(d+ 1)r

)

[a− 2n(d+ 1)r]

]

(51)

By evaluating
d2En,E

dn2 for n0,E nodes, we obtain

d2En,E

dn2
(n0,E) = −cT (d+ 1)

3
br3

a2

[

ln

(
b+ p

b

)]4

, (52)

which is negative since all variables are positive and the natural
logarithm is raised to an even power. This means that the
maximum-possible residual energy for n ∈ (0,∞) is achieved
under n = n0,E.

Half-Gaussian distribution: The first derivative of En,H to
n, n ∈ (0,∞), is

dEn,H

dn
= cT

[

−ap
n2

+
a

n2
(b+ p) erf

(
a√

π(d+ 1)rn

)]

.

(53)

Assuming that p 6= 0, the only admissible solution for
dEn,H

dn
=

0 is given in (25). In conjunction with the fact that En,H is
differentiable for n ∈ (0,∞), this demonstrates that n0,H is
the global extremum or inflection point of En,H. The second
derivative of En,H is:
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d2En,H

dn2
= cT

[

2ap

n3
− 2a

n3
(b+ p)

× erf

(
a√

π(d+ 1)rn

)

− 2a2

π(d+ 1)rn4
(54)

× (b+ p) exp

(

− a2

π((d+ 1)r)2n2

)]

.

By evaluating
d2En,H

dn2 for n0,H nodes, we obtain

d2En,H

dn2
(n0,H) = −2πcT (d+ 1)

3
r3 (b+ p)

a2

×
[

erf−1

(
p

b+ p

)]4

(55)

× exp

(

−
[

erf−1

(
p

b+ p

)]2
)

,

which is negative since the inverse error function is raised to an
even power and all variables are positive. This means that the
maximum-possible residual energy for n ∈ (0,∞) is achieved
under n = n0,H.

Gaussian distribution: The first derivative of En,N to n, n ∈
(0,∞), is

dEn,N

dn
= cT

[

−ap
n2

+
a

2n2
(b+ p)

[

erf

(
(d+ 1) r√

2σ

)

− erf

(
(d+ 1) r − a

n√
2σ

)]]

. (56)

Assuming that p 6= 0, the only admissible solution for
dEn,N

dn
=

0 is given in (30). In conjunction with the fact that En,N is
differentiable for n ∈ (0,∞), n0,N is the global extremum or
inflection point of En,N. The second derivative of En,N is:

d2En,N

dn2
= cT

[

2ap

n3
+

a

n3
(b+ p)

×
[

erf

(
(d+ 1) r − a

n√
2σ

)

− erf

(
(d+ 1) r√

2σ

)]

(57)

− a2

√
2πσn4

(b+ p) exp

(

−
[
(d+ 1) r − a

n

]2

2σ2

)]

.

By evaluating
d2En,N

dn2 for n0,N nodes, we obtain

d2En,N

dn2
(n0,N) = −cT (b+ p)

a2
√

2πσ

[

(d+ 1) r −
√

2σcN

]4

exp
(
−c2N

)
,

(58)
which is negative since

[
(d+ 1) r −

√
2σcN

]
is raised to an

even power and all variables are positive. This means that the
maximum-possible residual energy for n ∈ (0,∞) is achieved
under n = n0,N.

VIII. APPENDIX II

Proof of Proposition 1: After a few straightforward deriva-
tions, we reach:

min {E [X]}P − min {E [X]}U

= c (d+ 1) r

[

−b+ b
α−1

α (b+ p)
1
α − pb

b+ p

]

(59)

Replacing (15) and (7) in the first condition of (33) we reach:

(b+ p)
1
α =

2p(d+ 1)r

v
× b

1
α

sPU (b+ p)
(60)

that leads to the final result when used within (59).
Proof of Proposition 2: After a few straightforward deriva-

tions, we reach:

min {E [X]}E − min {E [X]}U

= c (d+ 1) r

[

bln

(
b+ p

b

)

− pb

b+ p

]

(61)

Replacing (21) and (7) in the second condition of (33), we
reach the condition:

ln

(
b+ p

b

)

=
2p

sEU(b+ p)
(62)

that leads to the final result when used within (61).
Proof of Proposition 3: In this case, we reach the expression:

min {E [X]}H − min {E [X]}U

= c (d+ 1) r [−b+ (b+ p) (63)

× exp

(

−erf−1

(
p

b+ p

)2
)

− pb

b+ p

]

Replacing (25) and (7) in the third condition of (33), we reach
the condition:

erf−1

(
p

b+ p

)

=
2p√

πsHU(b+ p)
. (64)

Taking the square of the last expression and replacing in (63)
leads to the final result.

Proof of Proposition 4: We reach the expression:

min {E [X]}H − min {E [X]}E

= c (d+ 1) r [−b+ (b+ p) (65)

× exp

(

−erf−1

(
p

b+ p

)2
)

− bln

(
b+ p

b

)]

Replacing (25) and (21) in (33), we reach the condition:

erf−1

(
p

b+ p

)

=
1√
πsHE

ln

(
b+ p

b

)

(66)

Taking the square of the last expression and replacing in (65)
leads to the final result.
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