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Abstract—Source and channel coding for an energy-limited
wireless sensor node is investigated. The sensor node observes
independent Gaussian source samples with variances changing
over time slots. The channel is modeled as a flat fading channel,
whose gain remains constant during each time slot, and changes
from one time slot to the next. The compressed samples are
stored in a finite data buffer, and need to be delivered to the
destination in at most d time slots. The objective is to minimize
the average squared-error distortion between the source samples
and their reconstructions. First, a battery operated system, in
which the sensor node has a finite amount of energy at the
beginning of transmission, is investigated. Then, the impact of
energy harvesting, and the energy cost of processing and sampling
are considered. The optimal compression and transmission policy
is formulated as the solution of a convex optimization problem,
and the properties of the optimal policies are identified. For the
strict delay case, d = 1, a two-dimensional (2D) waterfilling
interpretation is provided. Numerical results are presented to
illustrate the structure of the optimal policy, and to analyze the
effect of the delay constraints, data buffer size, energy harvesting,
and processing and sampling costs.

I. INTRODUCTION

Wireless sensor nodes measure physical phenomena, com-

press their measurements and transmit the compressed data

to a destination such that the reconstruction distortion at the

destination is minimized subject to delay constraints. Various

components of a wireless sensor node consume energy, in-

cluding sensing, processing and communications modules. The

small size and low cost of typical sensors impose restrictions

on the available energy, size of the battery and data buffers, and

efficiency of sensing and transmission circuity. When the time

variations of the physical environment and the communication

channel are also considered, the optimal management of the

available energy is essential to ensure minimal reconstruction

distortion at the destination with limited resources.

A. Contributions

We consider a wireless sensor node that collects samples

of a Gaussian source and delivers them to a destination. To

model the time-varying nature of the source and the channel,

we consider a time slotted system such that the source variance

and the channel power gain remain constant within each time

slot, which spans n uses of the channel, and change from

one time slot to the next. We assume that the source samples

arrive at the beginning of each time slot, and need to be

delivered within d time slots. The data buffer, which stores
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the compressed samples, has finite capacity. We first assume

that the sensor node is run by a battery, and energy is only

consumed for data transmission. Our goal is to identify the

optimal power and compression rate/distortion allocation over

a finite time horizon such that the average distortion at the

destination is minimized. This problem is formulated under

the offline optimization framework, that is, we assume that

the sensor node knows all the source variances and channel

gains a priori. We show that this problem can be cast into the

convex optimization framework, which allows us to identify

the necessary and sufficient conditions for the optimal power

and distortion allocation. For the special case of strict delay

constraints, i.e., d = 1, we show that the optimal strategy has

a two-dimensional (2D) waterfilling interpretation.

We then extend the above model to study various practical

energy constraints on the sensor node. First, we investigate the

effect of energy harvesting, and consider a model in which

a new energy packet arrives (or becomes available) at the

beginning of each time slot. Then, we concentrate on various

sources of energy consumption in the sensor such as the

operation of transmitter circuitry (digital-to-analog converters,

mixers, filters) and the sensing components (source acqui-

sition, sampling, quantization, and compression). We model

the former energy cost by the processing cost ǫp Joules per

channel use, and the latter by the sampling cost ǫs Joules

per sample. We assume that these energy costs are constant

and independent of the transmission power. We show that

the offline optimization problem retains its convexity in the

presence of energy harvesting, and processing and sampling

costs. Accordingly, we identify the properties of the optimal

power and distortion allocation under these constraints.

B. Related Work

In recent years optimal energy management polices for joint

source-channel coding has received increasing attention. In [1]

the fundamental energy-distortion trade-off is studied for an

energy-limited joint source-channel coding system. Optimal

energy allocation to minimize the sum distortion for uncoded

analog transmission of multiple sensors is investigated in [2],

[3], where [2] considers a battery operated system, while [3]

extends [2] to energy harvesting wireless nodes under finite

and infinite energy storage with both causal and non-causal

side information about channel gains and energy arrivals.

In contrast, we consider coded source-channel transmission

strategies. Separate source and channel coding is also consid-

ered in [4], [5], [7] for an energy harvesting transmitter, where

optimal energy allocation is investigated. In [4], compression
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and transmission rates are jointly optimized to guarantee

stability of the data queue for stochastic energy arrivals taking

into consideration the energy used for source compression.

This is extended in [5] to incorporate battery and memory

constraints. Our work, on the other hand, considers non-causal

knowledge of channel gains, source variances and energy

arrivals. Also, note that [2]-[5] do not take into account delay

considerations. Another related work is [6], where the problem

of sensing and transmission for parallel Gaussian sources for

a battery operated transmitter with sensing cost is studied.

Our model generalizes that of [6] to arbitrary delay d > 1,

energy harvesting and processing cost. Our previous work

[7] considers delay limited transmission of a time varying

Gaussian source over a fading channel with infinite memory

size, which is extended in this paper to finite memory size

under the energy cost of sampling and processing.

There is also a rich literature on energy harvesting transmis-

sion policies for throughput optimization ignoring the source

coding aspects. See [8] for an overview of the recent develop-

ments. The throughput maximization problem for a fading link

is studied in [9]. In [10], an energy harvesting system is studied

under battery constraints, such as battery leakage and limited

battery size. The effect of processing cost on throughput

maximizing policies are studied for battery operated parallel

Gaussian channels in [11], for energy harvesting single-link

in [12]-[14], and for energy harvesting broadband channel in

[15].

The paper is organized as follows. In the next section,

we describe the system model. In Section III, we investigate

distortion minimization for a battery-run system, and provide

the properties of optimal distortion and power allocation. We

also propose a 2D waterfilling algorithm for d = 1. We study

distortion minimization with energy constraints in Section

IV. We investigate the structure of the optimal distortion

and power allocation, and provide 2D directional waterfilling

algorithm in the presence of energy harvesting, and processing

and sampling costs in Sections IV-A, IV-B, IV-C respectively.

In Section V, numerical results are presented, and Section VI

concludes the paper.

II. SYSTEM MODEL

We consider a wireless sensor node measuring source sam-

ples that are independent and identically distributed (i.i.d.)

with a given distribution. Due to the potentially time-varying

nature of the underlying physical phenomena, we assume

that the statistical properties of the source samples change

over time. To model this change, we consider a time slotted

system with N time slots, with time slot containing n source

samples. We denote the samples arriving at time slot i as

source i, and assume that the samples of source i come

from a zero-mean Gaussian distribution with variance σ2
i . The

samples are compressed and stored in a data buffer of size

Bmax bits/source sample. In addition, in order to model delay-

limited scenarios, e.g., real-time applications, we impose delay

constraints on the samples, such that samples arriving in a time

slot need to be delivered within at most d time slots. After d

time slots, samples become stale, and we set the corresponding

distortion to its maximum value, σ2
i .

We consider that the collected samples are delivered over

a fading channel having an additive white Gaussian noise

(AWGN) with zero mean and unit variance. We assume that

the real valued channel power gain remains constant within

each time slot, and its value for time slot i is denoted by hi.

Assuming that the time slot durations in terms of channel uses

are large enough to invoke Shannon capacity arguments, the

maximum transmission rate in time slot i is given by the Shan-

non capacity 1
2 log(1 + hipi), where pi indicates the average

transmission power in time slot i. Since the source statistics

do not change within a time slot, constant power transmission

within each time slot can be shown to be optimal. This follows

from the concavity and the monotonically increasing property

of the Shannon capacity. We also assume that the number

of source samples collected in each time slot is equal to the

number of channel uses. However, the results in this paper can

be easily extended to bandwidth expansion/compression.

Since the samples are continuous valued, lossy reconstruc-

tion at the destination is unavoidable. We consider mean

squared error distortion criterion on the samples at the destina-

tion. Denoting the average distortion of the source i by Di, the

objective is to minimize D , 1
N

∑N
i=1Di. We are interested

in offline optimization, that is, we assume that the transmitter

knows all the sample variances and the channel gains for time

slots i = 1, ..., N in advance. A transmission policy refers

to the average transmission power pi and average distortion

Di allocated to channel i and source samples collected in

time slot i, respectively, for i = 1, ..., N . We study the

optimal transmission policy under different energy constraints.

First, we consider a battery operated system in which the

sensor node has a total of E Joules of energy available

at the beginning of transmission. Then, we take over other

energy constraints into account, including energy harvesting,

and energy cost of processing and sampling. For the energy

harvesting system, we assume that the sensor harvests energy

packets of size Ei Joules at the beginning of time slot i,

i = 1, ..., N . The processing cost is modelled as constant

ǫp Joules per transmitted symbol, and it is assumed to be

independent of the transmission power. The sampling cost is

also assumed to be constant, and considered as ǫs Joules per

source sample and independent of the sampling rate [4].

This formulation considers separate source and channel

coding. We can equivalently model this point-to-point commu-

nication problem as multiterminal source-channel communica-

tion under orthogonal multiple access as shown in Figure 1.

In this correspondence, Encoder i corresponds to the encoder

at time slot i which observes source samples over the last d

time slots, and transmits over the channel within time slot i.

Similarly, we can consider a separate decoder for each time

slot i, i = d, d+1, ..., N , such that Decoder i observes channel

outputs i−d+1, ..., i, and reconstructs the source samples that

have been accumulated within time slot i− (d− 1). Note that

this is equivalent to decoding the source samples just before

their deadline expires, since decoding them earlier does not

gain anything in terms of the average distortion. Using [16]

we can argue the optimality of source-channel separation in

this setting; hence the above formulation gives us the optimal

average distortion.
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Figure 1. Equivalent multiterminal source-channel communication scenario
under orthogonal multiple access. Sn

i denotes source samples in time slot i,

Ŝn
i

denotes their reconstruction at the receiver.

III. DISTORTION MINIMIZATION FOR A BATTERY-RUN

SYSTEM

We assume that the sensor node has E Joules of energy at

the beginning of transmission. We focus only on the energy

consumption of the power amplifier, and ignore any energy

cost due to processing and sampling. We denote the rate

allocated to source i in time slot j, j ≤ N , as Ri,j . Note

that Ri,j = 0 for i + d ≤ j, or j < i. In a feasible

transmission policy, the transmission power in time slot j

limits the maximum rate that can be transmitted over that time

slot. Therefore, any feasible transmission policy should satisfy

the following constraints:

j
∑

i=j−d+1

Ri,j ≤
1

2
log (1 + hjpj) , j = 1, ..., N, (1)

where Ri,j = 0 for i < 1. The rate-distortion theorem in [18]

states that the average distortion of the samples taken at time

slot i, Di, should satisfy the following inequalities:

1

2
log

(

σ2
i

Di

)

≤
i+d−1
∑

j=i

Ri,j , i = 1, ..., N. (2)

In addition, the limited data buffer size imposes the following

constraints:

k+d−1
∑

j=k

k
∑

i=j−d+1

Ri,j ≤ Bmax, k = 1, ..., N. (3)

Remark 1: Note that the buffer size constraint is in terms

of the total bits per sample for those sources that have not

yet expired. This would mean that the buffer size is infinite

since the above assumptions of capacity and rate-distortion

achieving codes stipulate n→ ∞.

The goal is to identify Ri,j and Di values that minimize

D = 1
N

∑N
i=1Di under constraints (1)-(3). It can be shown

using Fourier-Motzkin elimination [17] that (1)-(3) are equiv-

alent to the following causality, delay and rate constraints,

respectively. The proof of Fourier-Motzkin elimination for the

case of three time slots with delay constraint d = 2 is given

in Appendix.

N
∑

j=i

rj ≤
N
∑

j=i

cj , i = 1, ..., N, (4)

i
∑

j=k

rj ≤
i+d−1
∑

j=k

cj, i = k, ..., N − d, k = 1, ..., N − d,

(5)

i+1
∑

j=k

rj ≤
i
∑

j=k

cj +Bmax, i = k, ..., N − 1,

k = 1, ..., N − 1 (6)

ri ≤ Bmax, i = 1, ..., N, (7)

where ri ,
1
2 log

(

σ2
i

Di

)

and ci ,
1
2 log (1 + hipi). Notice that

ri corresponds to the source coding rate for the samples col-

lected in time slot i, and ci is the channel capacity for time slot

i for power pi and channel gain hi. The causality constraints

in (4) suggest that the samples can only be transmitted after

they have arrived. The delay constraints in (5) stipulate that

the samples collected in time slot i need to be delivered to

the destination until the end of time slot i + d − 1. The data

buffer constraints in (6)-(7) impose restrictions on the amount

of bits per sample. The goal of the transmitter is to allocate

its transmission power pi within each time slot and choose

distortion level Di for each source, i = 1, ..., N , such that the

causality, delay, and data buffer constraints are satisfied, while

the average distortion D at the destination is minimized. Then,

the optimization problem can be formulated as follows.

min
ri,ci

1

N

N
∑

i=1

σ2
i 2

−2ri (8a)

s.t.

N
∑

i=1

22ci − 1

hi
≤ E, (8b)

N
∑

j=i

rj ≤
N
∑

j=i

cj , i = 1, ..., N, (8c)

i
∑

j=k

rj ≤
i+d−1
∑

j=k

cj , i = k, ..., N − d,

k = 1, ..., N − d, (8d)

i+1
∑

j=k

rj ≤
i
∑

j=k

cj +Bmax, i = k, ..., N − 1,

k = 1, ..., N − 1, (8e)

0 ≤ ri ≤ Bmax and 0 ≤ ci, i = 1, ..., N. (8f)

where the constraint in (8b) ensures that the total consumed

energy is less than the energy available in the battery at

t = 0. The constraints in (8c), (8d), and (8e) are the causality,

delay and data buffer size constraints from (4), (5), and (6),

respectively. Since the optimization problem in (8) is convex,

we can compute the optimal solution by efficient numerical

methods [19]. In the following, we investigate the properties

of the optimal solution using the Karush-Kuhn-Tucker (KKT)

optimality conditions. The Lagrangian of (8) is defined as

follows:
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L =
1

N

N
∑

i=1

σ2
i 2

−2ri + λ

(

N
∑

i=1

22ci − 1

hi
− E

)

+

N
∑

i=1

γi





N
∑

j=i

rj −
N
∑

j=i

cj





+

N−d
∑

k=1

N−d
∑

i=k

δi,k





i
∑

j=k

rj −
i+d−1
∑

j=k

cj





+

N−1
∑

k=1

N−1
∑

i=k

ζi,k





i+1
∑

j=k

rj −
i
∑

j=k

cj −Bmax





−
N
∑

i=1

βiri +

N
∑

i=1

ρi(ri −Bmax)−
N
∑

i=1

µici, (9)

where λ ≥ 0, γi ≥ 0, δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0 and

µi ≥ 0 are KKT multipliers corresponding to (8b)-(8f).

Taking the derivative of the Lagrangian with respect to ri
and ci and setting it to zero, we get

∂L
∂r∗i

= −2(ln 2)

N
σ2
i 2

−2r∗i +

i
∑

j=1

γj +

i
∑

k=1

N−d
∑

j=i

δj,k

+

i
∑

k=1

N−1
∑

j=i−1

ζj,k − βi + ρi = 0, ∀i, (10)

where ζi−1,i = 0 for ∀i, and

∂L
∂c∗i

= λ
2(ln 2)22c

∗

i

hi
−

i
∑

j=1

γj −
i
∑

k=1

N−d
∑

j=i−d+1

δj,k

−
i
∑

k=1

N−1
∑

j=i

ζj,k − µi = 0, ∀i, (11)

where δj,k = 0 for j < k.

A. Optimal Distortion Allocation

From (10), replacing r∗i with 1
2 log

(

σ2
i

D∗

i

)

, we obtain

D∗
i =

N

2 ln 2





i
∑

j=1

γj +

i
∑

k=1

N−d
∑

j=i

δj,k +

i
∑

k=1

N−1
∑

j=i−1

ζj,k − βi + ρi



 .

(12)

The complementary slackness conditions require that, when-

ever βi > 0, we have D∗
i = σ2

i , and whenever ρi > 0, we

have D∗
i = σ2

i 2
−2Bmax . Therefore, the optimal distortion D∗

i

can be further simplified as

D∗
i =







σ2
i 2

−2Bmax , if ξi ≤ σ2
i 2

−2Bmax ,

ξi, if σ2
i 2

−2Bmax < ξi < σ2
i ,

σ2
i , if ξi ≥ σ2

i ,

(13)

where ξi is defined as:

ξi ,
N

2 ln 2





i
∑

j=1

γj +

i
∑

k=1

N−d
∑

j=i

δj,k +

i
∑

k=1

N−1
∑

j=i−1

ζj,k



 . (14)

Note that ξi is similar to the reverse water level in the

classical solution of the optimal distortion levels for parallel

Gaussian sources [18, Chapter 10, Section 3]. In that classical

problem, we are concerned with allocating the available fixed

rate among independent Gaussian sources to minimize the

average distortion. The optimal solution of this problem is

of the “reverse waterfilling type,” that is, there is a fixed

reverse water level ξ which determines the optimal distortion

of source i as D∗
i = {ξ, σ2

i }. While the classical solution

has a fixed reverse water level, independent of i, in our

formulation, due to the causality, delay and data buffer size

constraints, the reverse water level depends on the source

index i. Note that the optimal distortion D∗
i is confined to

the interval [σ2
i 2

−2Bmax , σ2
i ] for time slot i. Next, we identify

some properties of the optimal distortion allocation.

Lemma 1: Whenever the reverse water level ξi in (14)

increases from time slot i to time slot i + 1, all samples

collected until time slot i must be transmitted by the end of

time slot i, and whenever ξi decreases from time slot i to time

slot i+1, either the data buffer is full at the beginning of time

slot i and/or delivery of the samples collected at time slot k,

k ∈ i+ 1, ..., i+ d− 2, is postponed by i− k + d time slots.

Proof: From (14), we have

ξi+1 − ξi =
1

2 ln 2



γi+1 +

N−d
∑

j=i+1

δj,i+1 +

N−1
∑

j=i+1

ζj,i+1

−
i−1
∑

k=1

ζi−1,k −
i
∑

k=1

δi,k

)

, i = 1, ..., N − 1. (15)

Therefore, when ξi+1−ξi > 0, either γi+1 or, for some j > i,

δj,i+1 or ζj,i+1, must be positive. From the complementary

slackness conditions, we know that whenever γi+1 > 0, the

constraint in (8c) is satisfied with equality, i.e.,
∑N

j=i+1 rj =
∑N

j=i+1 cj . This means that all samples collected until time

slot i must be transmitted by the end of time slot i since the

later time slots can only support the source rates rj , j ≥ i+1.

In addition, from the complementary slackness conditions and

the constraint in (8d), we can conclude that when δj,i+1 > 0,
∑j

k=i+1 rk =
∑j+d−1

k=i+1 ck for j ≥ i+1 must be satisfied. Since

only samples collected at time slots i+1, ..., j are delivered in

time slots i+1, ..., j+d−1, and each group of source samples

has a delay constraint of d time slots, the samples collected

until time slot i should be delivered by the end of time slot i.

Similarly, from the complementary slackness conditions and

the constraint in (8e), we can argue that if ζj,i+1 > 0 then
∑j+1

k=i+1 rk − ∑j
k=i+1 ck = Bmax for j ≥ i + 1 must be

satisfied. This means that the data arriving between time slots

i+1 and j+1 leads to a full data buffer at time slot j+1 for

j ≥ i + 1, so all the samples collected until time slot i must

be transmitted by the end of time slot i. Therefore, whenever

ξi in (14) increases from time slot i to time slot i + 1, all

samples collected by time slot i must be transmitted until the

end of time slot i. Note that this leads to an empty data buffer

at the end of time slot i which follows from the positivity of

γi+1, δj,i+1, ζj,i+1 for some j ≥ i+ 1.

On the other hand, from the complementary slackness

conditions and the constraint in (8d), we can conclude that

when δi,k > 0,
∑i

j=k rj =
∑i+d−1

j=k cj for k ≤ i should be

satisfied. Therefore, samples collected at time slot i+1 should
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be delayed d time slots since time slots i + 1, ..., i + d − 1
are allocated for the delivery of samples that have arrived at

time slots k ≤ i. Similarly, from the complementary slackness

conditions and the constraint in (8e), we can argue that if

ζi−1,k > 0 then
∑i

j=k rj −
∑i−1

j=k cj = Bmax for k ≤ i − 1
must be satisfied. This means that the data buffer must be

full at the beginning of time slot i. Whenever ξi decreases

from time slot i to time slot i+1, δi,k > 0 for some k ≤ i, or

ζi−1,k > 0 for some k ≤ i−1. We can conclude that whenever

ξi decreases from time slot i to time slot i+1, either the data

buffer is full at the beginning of time slot i and/or the delivery

of the samples collected at time slot k, k ∈ i+1, ..., i+d− 2,

is postponed by at least i− k + d time slots.

B. Optimal Power Allocation

We can identify the optimal power allocation by replacing

c∗i with 1
2 log (1 + hip

∗
i ) in (11). The optimal power allocation

is given as follows.

p∗i =





1

2(ln 2)λ





i
∑

j=1

γj +

i
∑

k=1

N−d
∑

j=i−d+1

δj,k

+

i
∑

k=1

N−1
∑

j=i

ζj,k



− 1

hi





+

, (16)

where δj,k = 0 for j < k. We define νi ,
∑i

j=1
γj+

∑i
k=1

∑N−d
j=i−d+1

δj,k+
∑i

k=1

∑N−1

j=i
ζj,k

2(ln 2)λ , which can be in-

terpreted similarly to the classical waterfilling solution ob-

tained for power allocation over parallel channels with water

level being equal to νi. Similarly to (13), νi depends on i due

to causality, delay and data buffer size constraints. Next, we

provide some properties of the optimal power allocation.

Lemma 2: Whenever the water level νi in (14) increases

from time slot i to time slot i + 1, all the samples collected

until time slot i must be transmitted by the end of time slot i,

and whenever νi decreases from time slot i to time slot i+1,

either the data buffer is full at the beginning of time slot i+1
and/or the delivery of the samples collected at time slot k,

k ∈ i − d + 2, ..., i, is postponed by at least i − k + 1 time

slots.

Proof: We can show that νi+1 − νi =
γi+1+

∑N−d
j=i+1

δj,i+1+
∑N−1

j=i+1
ζj,i+1−

∑i−d+1

k=1
δi−d+1,k−

∑
i
k=1

ζi,k

2(ln 2)λ .

Using arguments similar to the proof of Lemma 1, the proof

can be completed.

Remark 2: When there is no delay constraint, i.e., d = N ,

the constraint in (8d) is no longer necessary and δi,k = 0,

∀i, k. Therefore, from Lemma 1 (Lemma 2), we can argue

that full data buffer at the beginning of time slot i (i + 1) is

the only reason of a decrease in the reverse water level ξi (the

water level νi) from time slot i to time slot i+ 1.

Remark 3: When the data buffer size is infinite, i.e.,

Bmax = ∞, we have ζi,k = 0, ∀i, k. Following the arguments

in Lemma 1 (Lemma 2), we can conclude that whenever the

reverse water level ξi (the water level νi) decreases from time

slot i to time slot i + 1, delivery of the samples collected at

time slot k, k ∈ i+ 1, ..., i+ d− 2 (k ∈ i− d+ 2, ..., i) must

be postponed by i− k + d (i− k + 1) time slots.

M1 M2
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K2

1

λ

K12
2Bmax

K22
2Bmax

(a)

M1 M2

K1

K2

1

λ

K12
2Bmax

K22
2Bmax

(b)

Figure 2. 2D waterfilling algorithm, (a) data buffer constraint is not active,
(b) data buffer constraint is active.

C. Strict delay constraint (d = 1)

In this section, we investigate the case in which the source

samples collected in time slot i need to be transmitted within

time slot i, i.e., d = 1. Note that this is equivalent to

the problem investigated in [6] with zero sensing cost, in

which the minimization of total distortion of parallel Gaussian

sources for a battery operated transmitter with sensing cost

is studied. Here we provide a 2D waterfilling interpretation

for the solution. The optimization problem in (8) can be

formulated as follows for d = 1:

min
ci

1

N

N
∑

i=1

σ2
i 2

−2ci (17a)

s.t.

N
∑

i=1

22ci − 1

hi
≤ E, (17b)

0 ≤ ci ≤ Bmax, i = 1, ..., N, (17c)

where ci =
1
2 log (1 + hipi) =

1
2 log

(

σ2
i

Di

)

.

Solving the above optimization problem we find

p∗i =
σi√
hi

[

min

{

22Bmax

σi
√
hi
,
1

λ

}

− 1

σi
√
hi

]+

. (18)

Defining Mi ,
σi√
hi

and Ki ,
1

σi

√
hi

, the optimal power in

(18) can be written as

p∗i =Mi

[

min

{

Ki2
2Bmax ,

1

λ

}

−Ki

]+

. (19)

Since 1
2 log

(

σ2
i

Di

)

≤ 1
2 log (1 + hipi) is satisfied with equality

for d = 1, from (19) the optimal distortion D∗
i is given by

D∗
i =







σ2
i 2

−2Bmax , if Miλ ≤ σ2
i 2

−2Bmax ,

Miλ, if σ2
i 2

−2Bmax < Miλ < σ2
i ,

σ2
i , if Miλ ≥ σ2

i .

(20)

The above solution is illustrated in Fig. 2 for N = 2. For

each time slot, we have rectangles of width Mi and height Ki.

The total energy is poured above the level Ki for each time

slot up to the water level 1
λ

. The power allocated to time slot

i is given by the shaded area below the water level and above

Ki. Note that the water level is bounded by the data buffer

size, i.e., Ki2
2Bmax , as argued in (19). If p∗i > 0, the distortion

for source i is given by the width Mi times the reciprocal of

the water level, and if p∗i = 0, the distortion for source i is

σ2
i = Mi

Ki
. As seen in Fig. 2(a) the water level is constant

over the two time slots, therefore, the optimal allocated power

in time slot i is given by Mi

(

1
λ
−Ki

)

for i = 1, 2, and the
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optimal distortion is given by Miλ. However, in Fig 2(b) the

water level in the first time slot is limited by K12
2Bmax due

to the data buffer constraint. Therefore, as argued in Lemma

2, the increase in the water level from the first time slot to the

second is due to a full data buffer at the first time slot. The

optimal power levels for the first and second time slots are

given by MiKi(2
2Bmax − 1) and Mi

(

1
λ
−Ki

)

, respectively.

The optimal average distortion values are M1

K122Bmax
and M2λ

for source one and two, respectively.

IV. DISTORTION MINIMIZATION UNDER VARIOUS

ENERGY CONSTRAINTS

In this section, we consider additional energy constraints on

the system including energy harvesting, and the energy cost of

processing and sensing. We study the constraints separately to

clearly illustrate their impact on the performance. In Section

IV-A we identify the effect of energy harvesting on the optimal

power and distortion allocation. Then, in Section IV-B we

consider the energy cost of processing circuitry together with

the transmission energy, and show that the optimal power

allocation is bursty in this case. Finally, in Section IV-C we

investigate the effect of sampling cost on the optimal power

and distortion allocation.

A. Distortion Minimization with Energy Harvesting

In this section, we consider energy harvesting at the sensor

node. We consider that the sensor node harvests energy packet

of size Ei at the beginning of time slot i, i = 1, ..., N . We

consider only the transmission cost and ignore the energy cost

of processing and sampling. Due to energy arrivals over time, a

feasible transmission policy must satisfy the following energy

casuality constraints:

i
∑

j=1

22cj − 1

hj
≤

i
∑

j=1

Ej , i = 1, ..., N. (21)

Consequently, the optimization problem in (8) remains the

same except that the constraint (8b) is replaced by (21). Then

the Lagrangian of (8) with energy harvesting becomes:

L =
1

N

N
∑

i=1

σ2
i 2

−2ri +

N
∑

i=1

λi





i
∑

j=1

22ci − 1

hi
−

i
∑

j=1

Ej





+

N
∑

i=1

γi





N
∑

j=i

rj −
N
∑

j=i

cj





+

N−d
∑

k=1

N−d
∑

i=k

δi,k





i
∑

j=k

rj −
i+d−1
∑

j=k

cj





+
N−1
∑

k=1

N−1
∑

i=k

ζi,k





i+1
∑

j=k

rj −
i
∑

j=k

cj −Bmax





−
N
∑

i=1

βiri +

N
∑

i=1

ρi(ri −Bmax)−
N
∑

i=1

µici, (22)

with λi ≥ 0, γi ≥ 0, δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0 and

µi ≥ 0 as the KKT multipliers.

The derivative of the Lagrangian with respect to ri is

the same as in (10); hence, the structure of the optimal

distortion allocation is the same as in Section III. Therefore,

the properties of the optimal distortion stated in Lemma 1 still

hold.

Differentiating the Lagrangian with respect to ci and setting

it to zero, we can argue that the optimal channel rate c∗i of

time slot i must satisfy

∂L
∂c∗i

=
2(ln 2)22c

∗

i

hi

N
∑

j=i

λj −
i
∑

j=1

γj

−
i
∑

k=1

N−d
∑

j=i−d+1

δj,k −
i
∑

k=1

N−1
∑

j=i

ζj,k − µi = 0, (23)

for i = 1, ..., N where δj,k = 0 for j < k. This leads to the

optimal power level p∗i as follows.

p∗i =





1

2 ln 2
∑N

j=i λj





i
∑

j=1

γj +

i
∑

k=1

N−d
∑

j=i−d+1

δj,k

+

i
∑

k=1

N−1
∑

j=i

ζj,k



− 1

hi





+

, ∀i. (24)

Defining πi ,

∑i
j=1

γj+
∑i

k=1

∑N−d
j=i−d+1

δj,k+
∑i

k=1

∑N−1

j=i
ζj,k

2 ln 2
∑

N
j=i

λj
,

we can interpret (24) similarly to the directional waterfilling

solution of [9] with water level equal to πi. Accordingly,

Lemma 2 is updated as follows for an energy harvesting

sensor node.

Lemma 3: Whenever the water level πi in (14) increases

from time slot i to time slot i + 1, all the samples collected

until time slot i are transmitted by the end of time slot i, and/or

the battery is empty at the end of time slot i. Similarly if πi
decreases from time slot i to time slot i+1, the data buffer is

full at beginning of time slot i+1, and/or the transmission of

the samples collected within time slot k, k ∈ i − d + 2, ..., i,
is postponed by at least i− k + 1 time slots.

Proof: From complementary slackness conditions, we

know that when λi > 0, the constraint in (21) is satisfied

with equality, hence, the battery must be empty at the end of

time slot i. Therefore, following the arguments in the proofs

of Lemma 1 and 2, the proof can be completed.

For the case of strict delay constraint, d = 1, we can

reformulate the optimization problem in (17) by replacing the

constraint (17b) with (21). Solving the optimization problem,

we obtain the optimal transmission power and distortion in

terms of Mi and Ki as follows.

p∗i =Mi



min







Ki2
2Bmax ,

1
√

∑N
i=i λi







−Ki





+

. (25)

Similarly, the optimal distortion D∗
i is given by

D∗
i =



















σ2
i 2

−2Bmax , , if Mi

√

∑N
i=i λi < σ2

i 2
−2Bmax ,

Mi

√

∑N
i=i λi, if σ2

i 2
−2Bmax < Mi

√

∑N
i=i λi < σ2

i ,

σ2
i , if Mi

√

∑N
i=i λi ≥ σ2

i .

(26)
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M1 M2 M3

K1

K2
K3

E1

E2

E3

(a)

M1 M2 M3

K1

K2
K3

E1

E2

E3

(b)

M1 M2 M3

K1

K2
K3

E1

E2

E3

(c)

M1 M2 M3

K1

K2
K3

E1

E2

E3

(d)

Figure 3. 2D directional water-filling algorithm. Dashed line represents the
buffer constraints (a) three time slots with energy arrivals Ei, i = 1, 2, 3, (b)
E3 allocated to the third time slot, (c) E2 allocated to the second time slot,
(d) E1 allocated to time slots 1 and 2.

Extending Section III-C, we can interpret the energy har-

vesting solution for d = 1 as directional 2D water-filling

such that the harvested energy Ei can only be allocated to

time slots j ≥ i. Accordingly, we allocate energy to the

following time slots starting from the last arriving energy and

continuing backwards to the first such that the energy causality

constraint is satisfied. In addition, allocated power to time slot

i is limited by the data buffer size and channel gain, i.e.,

p∗i ≤MiKi

(

22Bmax − 1
)

= 1
hi

(

22Bmax − 1
)

.

Consider the illustration in Fig. 3 with three time slots.

Similarly to Fig. 2, we have rectangles of width Mi and

height Ki. The horizontal dashed lines above the rectangles

correspond to Ki2
2Bmax . The arrival times of the energy

packets are represented by downward arrows. As argued

above, we first allocate the last energy packet E3 to the third

time slot as shown in Fig. 3(a). Note that due to the data buffer

constraint, the compression rate and the optimal power in the

third time slot are limited by Bmax and 1
hi

(

22Bmax − 1
)

,

respectively. This leads to an excessive energy in the battery

if E3 > 1
h3

(

22Bmax − 1
)

. Then, as shown in Fig. 3(c) the

second energy packet E2 is considered for time slots two and

three. Since the water level of the second time slot is lower

than the third time slot, E2 is allocated only to the second

time slot. Finally, we consider the first energy packet E1 and

allocate it to the first and second time slots as shown in Fig.

3(d). As argued before, we can obtain the optimal distortion

for source i by multiplying Mi with the reciprocal of the water

level above rectangle i in Fig. 3(d).

B. Distortion Minimization with Processing Energy Cost

In this section, we investigate the properties of the optimal

distortion and power allocation when, in addition to transmis-

sion energy, processing energy cost is also taken into account.

For ease of exposure, we consider a battery operated system as

in Section III and ignore the sampling cost. We assume that

the sensor node consumes energy for processing only when

transmitting as in [12]. We consider that the processing energy

cost is ǫp Joules per transmitted symbol, and it is independent

of the transmission power. Note that this energy is consumed

only when the transmitter is “on”. As shown in [11], when

the constant processing cost is taken into account, the optimal

transmission policy becomes bursty. Therefore, the optimal

policy may utilize only a fraction of each time slot. We denote

the transmission duration within time slot i by θi, 0 ≤ θi ≤ 1.

We redefine the auxiliary variable ci, the total delivered data

in time slot i, as ci , θi
2 log (1 + hipi). Accordingly, the

optimization problem in (8) remains the same except that there

is an additional constraint 0 ≤ θi ≤ 1, and the constraint (8b)

is replaced by the following energy constraint.

N
∑

i=1

θi

(

2
2ci
θi − 1

hi
+ ǫp

)

≤ E. (27)

Then, the Lagrangian of (8) with processing energy cost is

given by the following.

L =
1

N

N
∑

i=1

σ2
i 2

−2ri + λ

(

N
∑

i=1

θi

(

2
2ci
θi − 1

hi
+ ǫp

)

− E

)

+

N
∑

i=1

γi





N
∑

j=i

rj −
N
∑

j=i

cj





+
N−d
∑

k=1

N−d
∑

i=k

δi,k





i
∑

j=k

rj −
i+d−1
∑

j=k

cj





+

N−1
∑

k=1

N−1
∑

i=k

ζi,k





i+1
∑

j=k

rj −
i
∑

j=k

cj −Bmax





−
N
∑

i=1

βiri +

N
∑

i=1

ρi(ri −Bmax)−
N
∑

i=1

µici

−
N
∑

i=1

νiθi +

N
∑

i=1

ψi(θi − 1), (28)

where λ ≥ 0, γi ≥ 0, δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0,

µi ≥ 0, νi ≥ 0, and ψi ≥ 0 are KKT multipliers. When we

take the derivative of the Lagrangian with respect to ri, set

it to zero, and replace ri with 1
2 log

(

σ2
i

D∗

i

)

, we obtain (12).

Therefore the optimal distortion allocation satisfies (13), and

the properties given in Lemma 1 are also valid in this case.

Differentiating the Lagrangian with respect to ci and setting

it to zero, we obtain

∂L
∂c∗i

= λ
2(ln 2)2

2c∗
i

θ∗
i

hi
−

i
∑

j=1

γj −
i
∑

k=1

N−d
∑

j=i−d+1

δj,k

−
i
∑

k=1

N−1
∑

j=i

ζj,k − µi = 0, ∀i, (29)

where δj,k = 0 for j < k. When we replace c∗i in the above

equation with
θ∗

i

2 log (1 + hip
∗
i ), the optimal power allocation

is found as in (16). However, unlike the optimal transmission
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policy in Section III, due to the processing cost the optimal

transmission power p∗i needs to be allocated θ∗i fraction of

time slot i. Taking derivative of the Lagrangian with respect

to θi and setting it to zero, we get

∂L
∂θ∗i

= λ





2
2c∗

i
θ∗
i − 1

hi
+ ǫp −

2(ln 2)c∗i 2
2c∗

i
θ∗
i

hiθ
∗
i



− νi + ψi = 0, ∀i.

(30)

Using complementary slackness conditions together with

(30), we can argue that

• If θ∗i = 0, then c∗i = 0 and p∗i = 0.

• If 0 < θ∗i ≤ 1, i.e., νi = 0, then assuming that λ > 0,

i.e., the battery is depleted by the end of time slot N ,

and replacing c∗i with
θ∗

i

2 log (1 + hip
∗
i ) in (30), we get

ln 2 log(1 + hip
∗
i )

(

1

hi
+ p∗i

)

= (ǫp + p∗i ) +
ψi

λ
. (31)

When 0 < θi < 1, i.e., ψi = 0, we obtain the same

results as in [12, Eq. (4)]. Therefore, as argued in [12],

Equation (31) has a unique solution which depends only

on the channel gain and the processing cost. We denote

the solution of (31) by p∗i = vp,i. When θi = 1, i.e., ψi ≥
0, it can be argued from (31) that the optimal transmission

power satisfies p∗i ≥ vp,i. Note that when λ = 0, i.e., the

battery may not be depleted by the end of time slot N ,

we can restrict the optimal power allocation to the above

solution without loss of optimality.

Next, we study the optimal power and distortion allocation

for the strict delay constraint, d = 1. The optimization problem

can be formulated by replacing the constraint (17b) by (27),

and inserting an additional constraint 0 ≤ θi ≤ 1. Solving the

optimization problem, we obtain the optimal power allocation

as follows:

p∗i =
σ

2

θ∗
i
+1

h

θ∗
i

θ∗
i
+1

i



min







2
2Bmax

θ∗
i

(σi
√
hi)

2

1+θ∗
i

,
1

λ
1

1+θ∗
i







− 1

(σi
√
hi)

2

1+θ∗
i





+

(32)

where p∗i ≥ vp,i. The optimal transmission duration θ∗i satisfies

the properties obtained for general delay constraint. Therefore,

the optimal transmission power can be further simplified as

follows:

p∗i =











σi√
hi

[

min
{

22Bmax

σi

√
hi
, 1√

λ

}

− 1
σi

√
hi

]+

if θ∗i = 1,

vp,i if 0 < θ∗i < 1,
0 if θ∗i = 0.

(33)

Similarly, we can argue that the optimal distortion is given

as follows:

D∗
i =







σ2
i 2

2Bmax if ηi ≤ σ2
i 2

2Bmax and 0 < θ∗i ,

ηi if σ2
i 2

2Bmax < ηi < σ2
i and 0 < θ∗i ,

σ2
i if ηi ≥ σ2

i or θ∗i = 0,
(34)

where ηi , σ
2

θ∗
i
+1

i

(

λ
hi

)

θ∗
i

θ∗
i
+1

.

Note that for the strict delay constraint case, i.e., d = 1, θ∗i
can be interpreted as the number of channel uses per source

sample, or the channel-source bandwidth ratio for the source-

channel pair in time slot i.

C. Distortion Minimization with Sampling Cost

We now consider the sampling energy cost in addition to

the transmission energy. For ease of exposure, we assume a

battery operated system and ignore the processing cost, i.e.,

ǫp = 0. Because of the sampling cost, collecting all source

samples may not be optimal. Hence, we assume that the sensor

collects φi fraction of the samples with energy cost of ǫs
Joules per sample. We also assume that the sampling cost

is independent of the sampling rate [4]. The distortion of

source i is now given by Di = σ2
i (1 − φi) + σ2

i φi2
−

2ri
φi ,

where ri is the compression rate for the samples collected

in time slot i. Therefore, we can obtain the corresponding

optimization problem by replacing the objective function in (8)

with
∑N

i=1 σ
2
i (1− φi) + σ2

i φi2
−

2ri
φi , and the constraint (8b)

with the following energy constraint:

N
∑

i=1

φiǫs +
22ci − 1

hi
≤ E, (35)

where 0 ≤ φi ≤ 1.

Accordingly, the Lagrangian of (8b) with λ ≥ 0, γi ≥ 0,

δi,k ≥ 0, ζi,k ≥ 0, βi ≥ 0, ρi ≥ 0, µi ≥ 0, ηi ≥ 0, and ωi ≥ 0
as KKT multipliers, can be written as follows:

L =
1

N

N
∑

i=1

σ2
i (1− φi) + σ2

i φi2
−

2ri
φi

+ λ

(

N
∑

i=1

φiǫs +
22ci − 1

hi
− E

)

+

N
∑

i=1

γi





N
∑

j=i

rj −
N
∑

j=i

cj





+

N−d
∑

k=1

N−d
∑

i=k

δi,k





i
∑

j=k

rj −
i+d−1
∑

j=k

cj





+

N−1
∑

k=1

N−1
∑

i=k

ζi,k





i+1
∑

j=k

rj −
i
∑

j=k

cj −Bmax





−
N
∑

i=1

βiri +

N
∑

i=1

ρi(ri −Bmax)−
N
∑

i=1

µici

−
N
∑

i=1

ηiφi +

N
∑

i=1

ωi(φi − 1). (36)

When we take the derivative of the Lagrangian with respect

to ci, we obtain the optimal transmission power as in (16).

Therefore, the properties provided in Lemma 2 still hold.

However, when we differentiate the Lagrangian with respect
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to ri and φi, and set it to zero, we obtain

∂L
∂r∗i

= −2(ln 2)

N
σ2
i 2

−
2r∗

i
φ∗

i +

i
∑

j=1

γj +

i
∑

k=1

N−d
∑

j=i

δj,k

+

i
∑

k=1

N−1
∑

j=i−1

ζj,k − βi + ρi = 0, ∀i, (37)

where ζi−1,i = 0 for ∀i, and

∂L
∂φ∗i

=
σ2
i

N
(2

−
2r∗i
φ∗

i − 1) +
2(ln 2)σ2

i r
∗
i

Nφ∗i
2
−

2r∗i
φ∗

i

+λǫs − ηi + ωi = 0, ∀i, (38)

respectively. Combining (37) with D∗
i = σ2

i (1 − φ∗i ) +

σ2
i φ

∗
i 2

−
2r∗

i
φ∗

i we obtain the optimal distortion for source i as

follows:

D∗
i =











σ2
i (1− φ∗i + φ∗i 2

− 2Bmax
φ∗

i ) if ξi ≤ σ2
i 2

− 2Bmax
φ∗

i , 0 < φ∗i

σ2
i (1− φ∗i ) + φ∗i ξi if σ2

i 2
− 2Bmax

φ∗

i < ξi < σ2
i , 0 < φ∗i

σ2
i if ξi ≥ σ2

i or φ∗i = 0,
(39)

where ξi is equal to (14). Therefore, ξi in (39) satisfies the

properties given in Lemma 1. From (37) we can argue that

ξi = σ2
i 2

−
2r∗

i
φ∗

i , and from (38) we obtain:

λǫs − ηi + ωi

σ2
i

= 1− 2−2k∗

i − 2(ln 2)k∗i 2
−2k∗

i , (40)

where ki ,
ri
φi

. We can interpret ki as the compression rate for

the sampled φi fraction of source i. Note that the right hand

side (RHS) of (40) is a monotonically increasing function of

k∗i . When 0 < φi < 1, i.e., ηi = 0 and ωi = 0, there is a

unique solution of (40), which is denoted as k∗i = vs,i, for

given λ, ǫs, and σ2
i . In addition, we can argue that whereas

ξi decreases as source variance σ2
i increases, it increases as

the sampling cost increases. When φi = 1, i.e., ωi ≥ 0, the

solution of (40) must satisfy k∗i ≥ vs,i.

Next, we investigate the effect of sampling cost on the

optimal power and distortion allocation under strict delay

constraint. For d = 1, the optimization problem can be

formulated by replacing the constraint in (17b) with (35),

and inserting an additional constraint 0 ≤ φi ≤ 1. With

the new objective function
∑N

i=1 σ
2
i (1 − φi) + σ2

i φi2
−

2ci
φi , the

Lagrangian of the optimization problem be can written as

L =
1

N

N
∑

i=1

σ2
i (1− φi) + σ2

i φi2
−

2ci
φi + λ

N
∑

i=1

φiǫs

+
22ci − 1

hi
− E −

N
∑

i=1

βici +

N
∑

i=1

µi(ci −Bmax)

−
N
∑

i=1

ηiφi +

N
∑

i=1

ωi(φi − 1), (41)

where λ ≥ 0, βi ≥ 0, µi ≥ 0, ηi ≥ 0, and ωi ≥ 0 are KKT

multipliers. Differentiating the Lagrangian with respect to ci

and setting it to zero, we obtain

∂L
∂c∗i

= −2(ln 2)

N
σ2
i 2

−
2c∗

i
φ∗

i +
2(ln 2)λ

hi
22c

∗

i − βi + µi = 0, ∀i.
(42)

In addition, when we differentiate the Lagrangian with respect

to φi and set it to zero, we get (38). Replacing c∗i in (42)

with 1
2 log (1 + hip

∗
i ), we can argue that the optimal power

allocation is given by

p∗i =
σ

2φ∗

i
φ∗

i
+1

i

h
1

1+φ∗

i

i



min







22Bmax

(σi
√
hi)

2φ∗

i
1+φ∗

i

,
1

λ
φ∗

i
1+φ∗

i







− 1

(σi
√
hi)

2φ∗

i
1+φ∗

i





+

(43)

Combining (42) and (38) such that λ is eliminated, we

obtain

−σ2
i + σ2

i 2
−

2c∗
i

φ∗

i +
2(ln 2)σ2

i c
∗
i

φ∗i
2
−

2c∗
i

φ∗

i + ǫshiσ
2
i 2

−
2c∗

i
φ∗

i 2−2c∗i

+(βi − µi − ηi + ωi)N = 0. (44)

We can further simplify (44) as follows.

ǫs
1
hi

+ p∗i
+ (βi − µi − ηi + ωi)N = 22k

∗

i − 2(ln 2)k∗i − 1, (45)

where ki ,
ci
φi

. Using (45), we can argue the following:

• If φ∗i = 0 or c∗i = 0, then p∗i = 0 and D∗
i = σ2

i .

• If 0 < φ∗i < 1 and 0 < c∗i < Bmax, then RHS of

(45) is monotonically increasing function of k∗i , therefore

Equation (45) has a unique solution k∗i = vs,i for

a given ǫs, hi, and p∗i . When hi and p∗i are given,

c∗i = 1
2 log (1 + hip

∗
i ) is known as well; and hence, we

can compute the optimal sampling fraction φ∗i . Then the

optimal distortion D∗
i is given by D∗

i = σ2
i (1 − φ∗i ) +

σ2
i φ

∗
i 2

−2vs,i .

• If φ∗i = 1 and 0 < c∗i < Bmax, then ωi ≥ 0, therefore

from (45), we can argue that the optimal solution k∗i must

satisfy k∗i ≥ vs,i. Then, the optimal distortionD∗
i is given

by D∗
i = σ2

i 2
−2k∗

i .

V. ILLUSTRATION OF THE RESULTS

In this section, we provide numerical results to illustrate

the structure of the optimal distortion and power allocation

policy, and to analyze the impact of the delay constraint,

energy harvesting, processing and sampling costs on the

optimum average distortion. Throughout this section, we con-

sider N = 10 time slots. The channel gains are chosen as

h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], and the source

variances are σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].
We first set d = 1, and consider a battery-run system with

initial energy E = 4 Joules. We set ǫp = ǫs = 0. We

illustrate the optimal rate and power allocation for Bmax =
0.15 bits/sample in Fig. 4. In the figure, the dashed line

corresponds to Ki2
2Bmax . As shown in Fig. 4, the data

buffer size bounds the total sampled data in each time slot

and the minimum distortion. The average achievable distor-

tion is computed as D = 0.45. The optimal power and

distortion allocations are p∗ = [0.57, 0.23, 1.15, 0.46, 0.11,
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0.38, 0.25, 0, 0.5, 0.23] Joules per transmitted symbol and

D∗ = [0.56, 0.57, 0.81, 0.40, 0.28, 0.48, 0.16, 0.3, 0.56, 0.4],
respectively.
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Figure 4. 2D waterfilling for a battery-run system. E = 4
Joules, Bmax = 0.15 bits/sample, ǫp = ǫs = 0,
h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 =
[0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5], p∗ = [0.57, 0.23,
1.15, 0.46, 0.11, 0.38, 0.25, 0, 0.5, 0.23] Joules per transmitted symbol, and
D∗ = [0.56, 0.57, 0.81, 0.40, 0.28, 0.48, 0.16, 0.3, 0.56, 0.4].

Next, we assume an infinite data buffer. We as-

sume the same channel gains and source variances as

given above. The 2D waterfilling solution is shown

in Fig. 5, resulting in the optimal average distortion

D = 0.448. The optimal power and distortion alloca-

tions are p∗ = [0.74, 0, 0.48, 0.45, 0, 0.78, 0.04, 0, 0.74, 0.73]
Joules per transmitted symbol and D∗ = [0.53, 0.6,
0.9, 0.4, 0.3, 0.4, 0.19, 0.3, 0.53, 0.28], respectively.
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Figure 5. 2D waterfilling for battery-run system. E = 4 Joules,
Bmax → ∞, ǫp = ǫs = 0, h = [0.4, 0.2, 0.2, 0.5,
0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5],
p∗ = [0.74, 0, 0.48, 0.45, 0, 0.78, 0.04, 0, 0.74, 0.73] Joules per transmitted
symbol and D∗ = [0.53, 0.6, 0.9, 0.4, 0.3, 0.4, 0.19, 0.3, 0.53, 0.28].

We illustrate the optimal distortion with respect to Bmax in

Fig. 6. We assume the same channel gains and source variances

as before, and set E = 4 Joules and ǫp = ǫs = 0. As shown

in Fig. 6, the distortion decreases dramatically when the data

buffer size is large. As expected, the distortion, when the delay

constraint is d = 1, is larger than the case when d = N . The

figure also shows that the data buffer size has more impact on

the distortion when the delay constraint is more relaxed. This

is because a relaxed delay constraint allows more flexibility

in terms of rate allocation, but this flexibility can be exploited

only with a sufficiently large data buffer. In addition, distortion

remains constant when the data buffer size Bmax ≥ 0.31
bits/sample for d = 1, and when Bmax ≥ 1.12 bits/sample

for d = 10. Since the bit allocation is limited by the available

energy, relaxing the data buffer size does not decrease the

minimum achievable distortion once all the available energy

is optimally allocated to the sources.
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Figure 6. Distortion versus buffer size. E = 4 Joules, ǫp =
ǫs = 0, h = [0.4, 0.2, 0.2, 0.5, 0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 =
[0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

We investigate the variation of the optimal distortion D

with respect to the delay constraint d in Fig. 7. We consider

a battery-run system with initial energy E = 4 Joules and

ǫp = ǫs = 0. The optimal distortion values for increasing

d, plotted in Fig. 7, show that when Bmax = ∞, the

optimal distortion decreases monotonically for d ≤ 4, and

remains constant afterwards. However, when the data buffer

size is limited to Bmax = 0.15 bits/sample, relaxing the

delay constraint beyond two time slots does not decrease the

minimum achievable distortion.
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Figure 7. Average distortion D versus delay constraint d. E = 4 Joules,
Bmax = 0.15 bits/sample, ǫp = ǫs = 0, h = [0.4, 0.2, 0.2, 0.5,
0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

We also investigate the variation of the optimal distortion

D with respect to the available total energy. We consider a

battery-run system with initial energy E ∈ [0, 10] Joules and

ǫp = ǫs = 0. We assume that Bmax = 0.15 bits/sample. As

it can be seen from Fig. 8, the achievable distortion decays

with the available total energy, and for very low and very

high energy levels, the minimum achievable distortion values

are the same for d = 1 and d = N . When the available

energy is E = 0, no compression is possible, which leads to

the maximum distortion independent of the delay constraint

d. However, when the available energy in the battery is large,

all the samples of source i can be transmitted within the time

slot i with minimum achievable distortion Di = σ2
i 2

−2Bmax ,

and hence, relaxing the delay constraint does not decrease the

minimum achievable distortion since we are limited by the

data buffer constraint.

Next, we consider an energy harvesting system with energy

packets of sizes E1 = 1, E6 = 3, and Ei = 0 Joules
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Figure 8. Average distortion D versus available total energy in a battery-run
system. ǫp = ǫs = 0, Bmax = 0.15 bits/sample, h = [0.4, 0.2, 0.2, 0.5,
0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

otherwise. We set ǫp = ǫs = 0 and Bmax = ∞. The 2D

directional waterfilling solution for infinite data buffer size

is given in Fig. 9. Note that the water level changes after the

fifth time slot because of directional waterfilling. The resulting

optimal distortion is D = 0.45, larger than the battery-

run system with the same total energy (see Fig. 5), since

the battery-run system has more flexibility in allocating the

available energy over time. The optimal power and distortion

allocations are p∗ = [0.54, 0, 0.15, 0.3, 0, 0.98, 0.13, 0, 1, 0.87]
Joules per transmitted symbol and D∗ = [0.57, 0.6,
0.97, 0.43, 0.3, 0.37, 0.17, 0.29, 0.49, 0.26], respectively.
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Figure 9. 2D directional waterfilling for an EH system. E1 = 1, E6 = 3,
Ei = 0 Joules, Bmax = ∞, ǫp = ǫs = 0, h = [0.4, 0.2, 0.2, 0.5,
0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].
We have p∗ = [0.54, 0, 0.15, 0.3, 0, 0.98, 0.13, 0, 1, 0.87] and D∗ =
[0.57, 0.6, 0.97, 0.43, 0.3, 0.37, 0.17, 0.29, 0.49, 0.26].

The effect of the processing cost on the minimum distortion

for a battery-run system is illustrated in Fig. 10. We set E = 4
Joules and ǫs = 0. As seen in the figure, when the data

buffer constraint is 0.1 bits/sample and the processing cost

is low, the minimum achievable distortion is the same for

the delay constrained and unconstrained scenarios. However,

as the processing cost increases, the performance degrades

under the delay constraint. In addition, when the data buffer

size is relaxed, the performance without a delay constraint

significantly improves. However, when the processing cost is

high, for the strict delay case, relaxing the data buffer size does

not decrease the average distortion because high processing

cost limits the compression rate.

Finally, we consider the effect of the sampling cost on

the minimum distortion for a battery-run system, illustrated

in Fig. 11. We set E = 4 Joules and ǫp = 0. As seen in

the figure, when the sampling cost is low, the effect of the

limited data buffer on the average achievable distortion is more
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Figure 10. Average distortion D versus the processing energy cost for
a battery-run system. E = 4 Joules, ǫs = 0, h = [0.4, 0.2, 0.2, 0.5,
0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

significant. However, when we increase the sampling cost, the

performance of the system is mostly determined by the delay

constraint. As shown in Fig. 10 and Fig. 11, the behavior of

the distortion with respect to the sampling cost is similar to

that of the processing cost.
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Figure 11. Average distortion D versus sampling energy cost for a
battery-run system. E = 4 Joules, ǫp = 0, h = [0.4, 0.2, 0.2, 0.5,
0.4, 0.6, 0.9, 0.3, 0.4, 1], σ2 = [0.7, 0.6, 1, 0.5, 0.3, 0.6, 0.2, 0.3, 0.7, 0.5].

VI. CONCLUSIONS

We have investigated source-channel coding for a wireless

sensor node under delay, data buffer size and various energy

constraints. For a time slotted system, we have considered the

scenario in which the samples of a time varying Gaussian

source are to be delivered to a destination over a fading

channel within d time slots. In addition, we have imposed

a finite size data buffer on the compressed samples. In this

framework, we have investigated optimal transmission policies

that minimize the average mean squared distortion of the

samples at the destination for battery operated as well as an

energy harvesting system. We have also studied the impact

of various additional energy costs, including processing and

sampling costs. In each case, we have provided a convex

optimization formulation and identified the characteristics of

the optimal distortion and power levels. We have also pro-

vided numerical results to investigate the impact of energy

harvesting, processing and sampling costs. Our results have

shown that for an energy harvesting transmitter energy arrivals

over time may result in higher average distortion at the

destination. In addition, we have observed that relaxing the

data buffer constraint induces more dramatic decrease in the

average distortion when processing and sampling costs are
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low. These results have important implications for the design

of energy-limited wireless sensor nodes, and indicate that the

optimal system operation and performance can be significantly

different when the energy consumption of various other system

components, or the arrival of the energy over time are taken

into consideration.

APPENDIX

In this appendix, we illustrate Fourier-Motzkin elimination

of (1)-(3) for three time slots N = 3 when delay constraint

is d = 2. Rewriting (1)-(3) in terms of ri ,
1
2 log

(

σ2
i

Di

)

and

ci ,
1
2 log (1 + hipi) we get

R1,1 ≤ c1

R1,2 +R2,2 ≤ c2

R2,3 +R3,3 ≤ c3

r1 ≤ R1,1 +R1,2

r2 ≤ R2,2 +R2,3

r3 ≤ R3,3

R1,1 +R1,2 ≤ Bmax

R1,2 +R2,2 +R2,3 ≤ Bmax

R2,3 +R3,3 ≤ Bmax,

where R1,1 ≥ 0, R1,2 ≥ 0, R2,2 ≥ 0, R2,3 ≥ 0, R3,3 ≥ 0,

ri ≥ 0, and ci ≥ 0.

We have upper and lower bounds on R1,1 as max{0, r1 −
R1,2} ≤ R1,1 ≤ min{c1, Bmax − R1,2}. Therefore, eliminat-

ing R1,1 and the redundant inequalities, we obtain:

r1 ≤ c1 +R1,2

R1,2 +R2,2 ≤ c2

R2,3 +R3,3 ≤ c3

r2 ≤ R2,2 +R2,3

r3 ≤ R3,3

r1 ≤ Bmax

R1,2 +R2,2 +R2,3 ≤ Bmax

R2,3 +R3,3 ≤ Bmax

The upper and lower bounds on R1,2 are max{0, r1−c1} ≤
R1,2 ≤ min{c2 − R2,2, Bmax − R2,2 − R2,3}. Therefore,

eliminating R1,2 and the redundant inequalities, we obtain:

r1 +R2,2 ≤ c1 + c2

R2,2 ≤ c2

R2,3 +R3,3 ≤ c3

r2 ≤ R2,2 +R2,3

r3 ≤ R3,3

r1 +R2,2 +R2,3 ≤ c1 +Bmax

r1 ≤ Bmax

R2,2 +R2,3 ≤ Bmax

R2,3 +R3,3 ≤ Bmax

The upper and lower bounds on R2,2 are max{0, r2 −
R2,3} ≤ R2,2 ≤ min{c2, c1 + c2 − r1, Bmax − R2,3, c1 +

Bmax − r1 − R2,3}. Eliminating R2,2 and the redundant

inequalities, we obtain:

r1 ≤ c1 + c2

r2 ≤ c2 +R2,3

r1 + r2 ≤ c1 + c2 +R2,3

R2,3 +R3,3 ≤ c3

r3 ≤ R3,3

ri ≤ Bmax, i = 1, 2

r1 +R2,3 ≤ Bmax + c1

r1 + r2 ≤ Bmax + c1

R2,3 +R3,3 ≤ Bmax

The upper and lower bounds on R2,3 are max{0, r2 −
c2, r1 + r2 − c1 − c2} ≤ R2,3 ≤ min{Bmax + c1 − r1, c3 −
R3,3, Bmax − R3,3}. Eliminating R2,3 and the redundant

inequalities, we obtain:

R3,3 + r1 + r2 ≤ c3 + c2 + c1

r1 ≤ c1 + c2

R3,3 ≤ c3

R3,3 + r2 ≤ c3 + c2

r3 ≤ R3,3

ri ≤ Bmax, i = 1, 2

R3,3 ≤ Bmax

R3,3 + r2 ≤ Bmax + c2

R3,3 + r1 + r2 ≤ Bmax + c2 + c1

r1 + r2 ≤ Bmax + c1

Finally, we have upper and lower bounds on R3,3 as

max{0, r3} ≤ R3,3 ≤ min{c3, c3 + c2 − r2, Bmax, Bmax +
c2 − r2, Bmax + c1 + c2 − r1 − r2, c3 + c2 + c1 − r1 − r2}.

Eliminating R3,3 and the redundant inequalities, we obtain:

r3 ≤ c3

r2 + r3 ≤ c2 + c3

r1 + r2 + r3 ≤ c1 + c2 + c3

r1 ≤ c1 + c2

r1 + r2 ≤ c1 +Bmax

r1 + r2 + r3 ≤ c1 + c2 +Bmax

r2 + r3 ≤ c2 +Bmax

ri ≤ Bmax, i = 1, 2, 3.
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